RT info:eu-repo/semantics/doctoralThesis T1 Automatic analysis of retinal images to aid in the diagnosis and grading of diabetic retinopathy A1 Romero Oraa, Roberto A2 Universidad de Valladolid. Escuela de Doctorado K1 Oftalmología K1 Image processing Digital techniques K1 Diabetic retinopathy K1 Retinopatía diabética K1 Retinographies K1 Retinografías K1 Image processing K1 Procesado de imagen K1 2209.90 Tratamiento Digital. Imágenes K1 3201.09 Oftalmología AB Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and one of the leading causes of preventable blindness in the adult working population. Visual loss can be prevented from the early stages of DR, when the treatments are effective. Therefore, early diagnosis is paramount. However, DR may be clinically asymptomatic until the advanced stage, when vision is already affected and treatment may become difficult. For this reason, diabetic patients should undergo regular eye examinations through screening programs. Traditionally, DR screening programs are run by trained specialists through visual inspection of the retinal images. However, this manual analysis is time consuming and expensive. With the increasing incidence of diabetes and the limited number of clinicians and sanitary resources, the early detection of DR becomes non-viable. For this reason, computed-aided diagnosis (CAD) systems are required to assist specialists for a fast, reliable diagnosis, allowing to reduce the workload and the associated costs.We hypothesize that the application of novel, automatic algorithms for fundus image analysis could contribute to the early diagnosis of DR. Consequently, the main objective of the present Doctoral Thesis is to study, design and develop novel methods based on the automatic analysis of fundus images to aid in the screening, diagnosis, and treatment of DR.In order to achieve the main goal, we built a private database and used five retinal public databases: DRIMDB, DIARETDB1, DRIVE, Messidor and Kaggle. The stages of fundus image processing covered in this Thesis are: retinal image quality assessment (RIQA), the location of the optic disc (OD) and the fovea, the segmentation of RLs and EXs, and the DR severity grading.RIQA was studied with two different approaches. The first approach was based on the combination of novel, global features. Results achieved 91.46% accuracy, 92.04% sensitivity, and 87.92% specificity using the private database. We developed a second approach aimed at RIQA based on deep learning. We achieved 95.29% accuracy with the private database and 99.48% accuracy with the DRIMDB database.The location of the OD and the fovea was performed using a combination of saliency maps. The proposed methods were evaluated over the private database and the public databases DRIVE, DIARETDB1 and Messidor. For the OD, we achieved 100% accuracy for all databases except Messidor (99.50%). As for the fovea location, we also reached 100% accuracy for all databases except Messidor (99.67%).The joint segmentation of RLs and EXs was accomplished by decomposing the fundus image into layers. Results were computed per pixel and per image. Using the private database, 88.34% per-image accuracy (ACCi) was reached for the RL detection and 95.41% ACCi for EX detection. An additional method was proposed for the segmentation of RLs based on superpixels. Evaluating this method with the private database, we obtained 84.45% ACCi. Results were validated using the DIARETDB1 database.Finally, we proposed a deep learning framework for the automatic DR severity grading. The method was based on a novel attention mechanism which performs a separate attention of the dark and the bright structures of the retina. The Kaggle DR detection dataset was used for development and validation. The International Clinical DR Scale was considered, which is made up of 5 DR severity levels. Classification results for all classes achieved 83.70% accuracy and a Quadratic Weighted Kappa of 0.78.The methods proposed in this Doctoral Thesis form a complete, automatic DR screening system, contributing to aid in the early detection of DR. In this way, diabetic patients could receive better attention for their ocular health avoiding vision loss. In addition, the workload of specialists could be relieved while healthcare costs are reduced. YR 2021 FD 2021 LK https://uvadoc.uva.es/handle/10324/59907 UL https://uvadoc.uva.es/handle/10324/59907 LA eng NO Escuela de Doctorado DS UVaDOC RD 24-nov-2024