RT info:eu-repo/semantics/article T1 Discovery of the Elusive Carbonic Acid (HOCOOH) in Space A1 Sanz Novo, Miguel A1 Rivilla, Víctor M. A1 Jiménez Serra, Izaskun A1 Martín Pintado, Jesús A1 Colzi, Laura A1 Zeng, Shaoshan A1 Megías, Andrés A1 López Gallifa, Álvaro A1 Martínez Henares, Antonio A1 Massalkhi, Sarah A1 Tercero, Belén A1 Vicente, Pablo de A1 Martín, Sergio A1 Andrés, David San A1 Requena Torres, Miguel A. K1 Ácido carbónico (HOCOOH) K1 Carbonic acid (HOCOOH) K1 Interstellar molecule K1 Molécula interestelar K1 21 Astronomía y Astrofísica AB A quarter century after the detection of the last interstellar carboxylic acid, acetic acid (CH3COOH), we report the discovery of a new one, the cis-trans form of carbonic acid (HOCOOH), toward the Galactic center molecular cloud G+0.693–0.027. HOCOOH stands as the first interstellar molecule containing three oxygen atoms and the third carboxylic acid detected so far in the interstellar medium. Albeit the limited available laboratory measurements (up to 65 GHz), we have also directly identified several pairs of unblended lines in the astronomical data (between 75 and 120 GHz), which allowed us to slightly improve the set of spectroscopic constants. We derive a column density for cis-trans HOCOOH of N = (6.4 ± 0.4) × 1012 cm−2, which yields an abundance with respect to molecular H2 of 4.7 × 10−11. Meanwhile, the extremely low dipole moment (about 15 times lower) of the lower-energy conformer, cis-cis HOCOOH, precludes its detection. We obtain an upper limit to its abundance with respect to H2 of ≤1.2 × 10−9, which suggests that cis-cis HOCOOH might be fairly abundant in interstellar space, although it is nearly undetectable by radio astronomical observations. We derive a cis-cis/cis-trans ratio of ≤25, consistent with the smaller energy difference between both conformers compared with the relative stability of trans- and cis-formic acid. Finally, we compare the abundance of these acids in different astronomical environments, further suggesting a relationship between the chemical content found in the interstellar medium and the chemical composition of the minor bodies of the solar system, which could be inherited during the star formation process. PB IOP Publishing SN 0004-637X YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/61053 UL https://uvadoc.uva.es/handle/10324/61053 LA eng NO The Astrophysical Journal, 2023, Volume 954, Number 1 NO Producción Científica DS UVaDOC RD 08-sep-2024