RT info:eu-repo/semantics/article T1 SDHAR-HOME: A sensor dataset for human activity recognition at home A1 Gómez Ramos, Raúl A1 Duque Domingo, Jaime A1 Zalama Casanova, Eduardo A1 Gómez García-Bermejo, Jaime A1 López, Joaquín K1 Dataset K1 Electronic data processing - Data preparation K1 Machine learning K1 Biosensors K1 Computer communication systems K1 Ingeniería de sistemas K1 Neural networks (Computer science) K1 Redes neuronales (Informática) K1 Home automation K1 Automatización del hogar K1 Domótica K1 Artificial intelligence K1 1203.04 Inteligencia Artificial K1 1203.25 Diseño de Sistemas Sensores AB Nowadays, one of the most important objectives in health research is the improvement of the living conditions and well-being of the elderly, especially those who live alone. These people may experience undesired or dangerous situations in their daily life at home due to physical, sensorial or cognitive limitations, such as forgetting their medication or wrong eating habits. This work focuses on the development of a database in a home, through non-intrusive technology, where several users are residing by combining: a set of non-intrusive sensors which captures events that occur in the house, a positioning system through triangulation using beacons and a system for monitoring the user’s state through activity wristbands. Two months of uninterrupted measurements were obtained on the daily habits of 2 people who live with a pet and receive sporadic visits, in which 18 different types of activities were labelled. In order to validate the data, a system for the real-time recognition of the activities carried out by these residents was developed using different current Deep Learning (DL) techniques based on neural networks, such as Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM) or Gated Recurrent Unit networks (GRU). A personalised prediction model was developed for each user, resulting in hit rates ranging from 88.29% to 90.91%. Finally, a data sharing algorithm has been developed to improve the generalisability of the model and to avoid overtraining the neural network. PB MDPI SN 1424-8220 YR 2022 FD 2022 LK https://uvadoc.uva.es/handle/10324/61626 UL https://uvadoc.uva.es/handle/10324/61626 LA eng NO Sensors, 2022, Vol. 22, Nº. 21, 8109 NO Producción Científica DS UVaDOC RD 23-nov-2024