RT info:eu-repo/semantics/article T1 Prediction of daily ambient temperature and its hourly estimation using artificial neural networks in an agrometeorological station in Castile and León, Spain A1 Diez, Francisco Javier A1 Correa Guimaraes, Adriana A1 Chico Santamarta, Leticia A1 Martínez Rodríguez, Andrés A1 Murcia Velasco, Diana Alexandra A1 Andara, Renato A1 Navas Gracia, Luis Manuel K1 Ambient temperature K1 Evapotranspiration K1 Climate K1 Clima K1 Evaporación (Meteorología) - España K1 Meteorology, Agricultural K1 Meteorología agrícola K1 Redes neuronales (Informática) K1 Neural networks (Computer science) K1 Artificial intelligence K1 Precision farming K1 Agricultura - Innovaciones tecnológicas K1 Prediction K1 Castilla y León - Clima K1 3102 Ingeniería Agrícola K1 2502 Climatología K1 2509 Meteorología K1 1203.04 Inteligencia Artificial AB This study evaluates the predictive modeling of the daily ambient temperature (maximum, Tmax; average, Tave; and minimum, Tmin) and its hourly estimation (T0h, …, T23h) using artificial neural networks (ANNs) for agricultural applications. The data, 2004–2010, were used for training and 2011 for validation, recorded at the SIAR agrometeorological station of Mansilla Mayor (León). ANN models for daily prediction have three neurons in the output layer (Tmax(t + 1), Tave(t + 1), Tmin(t + 1)). Two models were evaluated: (1) with three entries (Tmax(t), Tave(t), Tmin(t)), and (2) adding the day of the year (J(t)). The inclusion of J(t) improves the predictions, with an RMSE for Tmax = 2.56, Tave = 1.65 and Tmin = 2.09 (°C), achieving better results than the classical statistical methods (typical year Tave = 3.64 °C; weighted moving mean Tmax = 2.76, Tave = 1.81 and Tmin = 2.52 (°C); linear regression Tave = 1.85 °C; and Fourier Tmax = 3.75, Tave = 2.67 and Tmin = 3.34 (°C)) for one year. The ANN models for hourly estimation have 24 neurons in the output layer (T0h(t), …, T23h(t)) corresponding to the mean hourly temperature. In this case, the inclusion of the day of the year (J(t)) does not significantly improve the estimations, with an RMSE = 1.25 °C, but it improves the results of the ASHRAE method, which obtains an RMSE = 2.36 °C for one week. The results obtained, with lower prediction errors than those achieved with the classical methods, confirm the interest in using the ANN models for predicting temperatures in agricultural applications. PB MDPI SN 1424-8220 YR 2022 FD 2022 LK https://uvadoc.uva.es/handle/10324/61886 UL https://uvadoc.uva.es/handle/10324/61886 LA eng NO Sensors, 2022, Vol. 22, Nº. 13, 4850 NO Producción Científica DS UVaDOC RD 27-dic-2024