RT info:eu-repo/semantics/article T1 A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type A1 Dougalis, Vassilios A A1 Durán Martín, Ángel K1 Korteweg–de Vries equation K1 spectral method K1 Runge–Kutta composition methods K1 error estimates AB We consider the periodic initial-value problem for the Korteweg–de Vries equation that we discretize in space by a spectral Fourier–Galerkin method and in time by an implicit, high-order, Runge–Kutta scheme of composition type based on the implicit midpoint rule. We prove L2 error estimates for the resulting semidiscrete and the fully discrete approximations. Some numerical experiments illustrate the results. PB Oxford University Press SN 0272-4979 YR 2022 FD 2022 LK https://uvadoc.uva.es/handle/10324/62420 UL https://uvadoc.uva.es/handle/10324/62420 LA eng NO IMA Journal of Numerical Analysis, 2022, 42 (4), pp. 3022 - 3057 NO Producción Científica DS UVaDOC RD 23-dic-2024