RT info:eu-repo/semantics/article T1 Breast cancer prediction using fine needle aspiration features and upsampling with supervised machine learning A1 Shafique, Rahman A1 Rustam, Furqan A1 Choi, Gyu Sang A1 Torre Díez, Isabel de la A1 Mahmood, Arif A1 Lipari, Vivian A1 Rodríguez Velasco, Carmen Lili A1 Ashraf, Imran K1 Breast - Cancer - Diagnosis K1 Cancer research K1 Breast - Diseases K1 Mamas - Cáncer K1 Cytology K1 Mamas - Citología K1 Principal components analysis K1 Análisis multivariante K1 Singular value decomposition K1 Machine learning K1 Aprendizaje automático K1 Artificial intelligence K1 Oncology K1 3207.13 Oncología K1 1203.04 Inteligencia Artificial AB Simple Summary: Breast cancer is prevalent in women and the second leading cause of death. Conventional breast cancer detection methods require several laboratory tests and medical experts. Automated breast cancer detection is thus very important for timely treatment. This study explores the influence of various feature selection technique to increase the performance of machine learning methods for breast cancer detection. Experimental results shows that use of appropriate features tend to show highly accurate prediction. PB MDPI SN 2072-6694 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/63340 UL https://uvadoc.uva.es/handle/10324/63340 LA eng NO Cancers, 2023, Vol. 15, Nº. 3, 681 NO Producción Científica DS UVaDOC RD 24-nov-2024