RT info:eu-repo/semantics/article T1 Big data and machine learning to improve European grapevine moth (Lobesia botrana) predictions A1 Balduque Gil, Joaquín A1 Lacueva Pérez, Francisco J. A1 Labata Lezaun, Gorka A1 Ilarri, Sergio A1 Del Hoyo Alonso, Rafael A1 Sánchez Hernández, Eva A1 Martín Ramos, Pablo A1 Barriuso Vargas, Juan José K1 Lobesia botrana K1 Grapes - Diseases and pests K1 Vid - Enfermedades y plagas K1 Pesticides - Application K1 Control de plagas K1 Big data K1 Internet of things K1 Internet de las cosas K1 Internet - Tecnología K1 Meteorology K1 Weather data K1 Machine learning K1 Aprendizaje automático K1 Artificial intelligence K1 Pests - Integrated control K1 Manejo integrado de plagas K1 Plant Science K1 Ecology K1 Ecología K1 3102 Ingeniería Agrícola K1 2509.01 Meteorología agrícola K1 3101.09 Plaguicidas K1 1203.04 Inteligencia Artificial AB Machine Learning (ML) techniques can be used to convert Big Data into valuable information for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis & Schiffermüller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing high productivity losses in some vineyards worldwide. This work focuses on the optimization of the Touzeau model, a classical correlation model between temperature and L. botrana development using data-driven models. Data collected from field observations were combined with 30 GB of registered weather data updated every 30 min to train the ML models and make predictions on this pest’s flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The best-performing model was an artificial neural network of four layers, which considered several variables together and not only the temperature, taking advantage of the ability of ML models to find relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based models, the process and results presented herein highlight the benefits of ML applied to agricultural pest management strategies. PB MDPI SN 2223-7747 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/63485 UL https://uvadoc.uva.es/handle/10324/63485 LA eng NO Plants, 2023, Vol. 12, Nº. 3, 633 NO Producción Científica DS UVaDOC RD 08-ene-2025