RT info:eu-repo/semantics/article T1 Abstract fractional linear pseudo-parabolic equations in Banach spaces: well-posedness, regularity, and asymptotic behavior A1 Cuesta Montero, Eduardo A1 Ponce, Rodrigo K1 Fractional calculus (primary); Pseudo-parabolic equations; Evolution families AB In this paper we study the well-posedness, regularity, and asymptotic behavior of the solutions \red{to} the \red{abstract} pseudo-parabolic equation $\partial_t^\alpha u(t) = A u(t) + B\partial_t^\beta u(t) + f(t),$ where $A,B$ are closed linear operators in a Banach space, and $\partial_t^\gamma u$ denotes the Caputo or Riemann--Liouville fractional derivative of order \red{$\gamma>0$.} PB ELSEVIER YR 2022 FD 2022-10-26 LK https://uvadoc.uva.es/handle/10324/64373 UL https://uvadoc.uva.es/handle/10324/64373 LA eng NO Fractional Calculus and Applied Analysis, October 2022, vol. 25, pp. 2332–2355. NO Producción Científica DS UVaDOC RD 22-dic-2024