RT info:eu-repo/semantics/article T1 An insight of deep learning based demand forecasting in smart grids A1 Aguiar Pérez, Javier Manuel A1 Pérez Juárez, María Ángeles K1 Demand forecasting K1 Load forecasting K1 Demand response K1 Forecasting horizon K1 Smart grid K1 Smart environment K1 Deep learning K1 Long short-term memory networks K1 Convolutional neural networks K1 33 Ciencias Tecnológicas AB Smart grids are able to forecast customers’ consumption patterns, i.e., their energy demand, and consequently electricity can be transmitted after taking into account the expected demand. To face today’s demand forecasting challenges, where the data generated by smart grids is huge, modern data-driven techniques need to be used. In this scenario, Deep Learning models are a good alternative to learn patterns from customer data and then forecast demand for different forecasting horizons. Among the commonly used Artificial Neural Networks, Long Short-Term Memory networks—based on Recurrent Neural Networks—are playing a prominent role. This paper provides an insight into the importance of the demand forecasting issue, and other related factors, in the context of smart grids, and collects some experiences of the use of Deep Learning techniques, for demand forecasting purposes. To have an efficient power system, a balance between supply and demand is necessary. Therefore, industry stakeholders and researchers should make a special effort in load forecasting, especially in the short term, which is critical for demand response. SN 1424-8220 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/64799 UL https://uvadoc.uva.es/handle/10324/64799 LA eng NO Sensors Enero 2023, vol. 23, n. 3. p. 1467 NO Producción Científica DS UVaDOC RD 27-dic-2024