RT info:eu-repo/semantics/article T1 Improved in vitro corneal delivery of a thrombospondin-1-derived peptide using a liposomal formulation A1 Soriano Romaní, Laura A1 Álvarez Trabado, Jesús A1 López García, Antonio A1 Molina Martínez, Irene A1 Herrero Vanrell, Rocío A1 Diebold Luque, María Yolanda K1 Oftalmología K1 Pharmacology K1 Topical peptide K1 Cornea K1 Bioavailability K1 Péptido tópico K1 Córnea K1 Biodisponibilidad K1 3201.09 Oftalmología AB Peptide delivery to and through ocular sites is a growing field of research interest. However, several barriers restrict the permeation and bioavailability of these molecules to target tissues. The main pharmacological barriers of topical administration are the tear film, rapid drainage of the tear film, and poor corneal permeation. If the administered molecule is a peptide, instability and enzymatic degradation can be significant. Novel approaches such as the design and development of nanocarriers to overcome these drawbacks have been investigated with promising results. Therefore, in continuation of our previous study using a liposome-based (LP) formulation as topical drug delivery system, the aim of this work was to efficiently encapsulate a thrombospondin-1-derived peptide, KRFK, in this formulation and to assess peptide permeability through different ocular surface epithelia. LPs were prepared by the solvent evaporation technique and the labeled peptide FITC-KRFK was incorporated in the aqueous core. Different sonication times were used to optimize encapsulation efficiency. The selected formulation was further analyzed in terms of size, pH, osmolarity, and corneal epithelial cytotoxicity. The permeabilities of the LP-encapsulated and free labeled KRFK peptides were assessed with in vitro models of conjunctival and corneal epithelia. Our results provide a proof of concept that the LP formulation efficiently encapsulates the KRFK peptide and improves corneal permeation. Data reported in this study strongly support that this formulation could be a more effective therapeutic approach than free peptide instillation and warrant further analysis using experimental in vivo models. PB Elsevier SN 0014-4835 YR 2018 FD 2018 LK https://uvadoc.uva.es/handle/10324/64950 UL https://uvadoc.uva.es/handle/10324/64950 LA eng NO Experimental Eye Research, 2018, vol. 167, p. 118-121 NO Producción Científica DS UVaDOC RD 24-nov-2024