RT info:eu-repo/semantics/article T1 Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway A1 Cidad Velasco, María del Pilar A1 Miguel-Velado, Eduardo A1 Ruiz-McDavitt, Christian A1 Alonso Alonso, Esperanza A1 Jiménez-Pérez, Laura A1 Asuaje, Agustín A1 Carmona, Yamila A1 García-Arribas, Daniel A1 López Díaz, Javier A1 Marroquín, Yngrid A1 Fernández Gutiérrez, María Mirella A1 Roqué, Mercé A1 Pérez García, María Teresa A1 López López, José Ramón AB Phenotypic modulation (PM) of vascular smooth muscle cells (VSMCs) is central to the process of intimal hyperplasia which constitutes a common pathological lesion in occlusive vascular diseases. Changes in the functional expression of Kv1.5 and Kv1.3 currents upon PM in mice VSMCs have been found to contribute to cell migration and proliferation. Using human VSMCs from vessels in which unwanted remodeling is a relevant clinical complication, we explored the contribution of the Kv1.5 to Kv1.3 switch to PM. Changes in the expression and the functional contribution of Kv1.3 and Kv1.5 channels were studied in contractile and proliferating VSMCs obtained from human donors. Both a Kv1.5 to Kv1.3 switch upon PM and an anti-proliferative effect of Kv1.3 blockers on PDGF-induced proliferation were observed in all vascular beds studied. When investigating the signaling pathways modulated by the blockade of Kv1.3 channels, we found that anti-proliferative effects of Kv1.3 blockers on human coronary artery VSMCs were occluded by selective inhibition of MEK/ERK and PLCγ signaling pathways, but were unaffected upon blockade of PI3K/mTOR pathway. The temporal course of the anti-proliferative effects of Kv1.3 blockers indicates that they have a role in the late signaling events essential for the mitogenic response to growth factors. These findings establish the involvement of Kv1.3 channels in the PM of human VSMCs. Moreover, as current therapies to prevent restenosis rely on mTOR blockers, our results provide the basis for the development of novel, more specific therapies. SN 0031-6768 YR 2014 FD 2014 LK https://uvadoc.uva.es/handle/10324/65881 UL https://uvadoc.uva.es/handle/10324/65881 LA spa NO Pflugers Arch . 2015 Aug;467(8):1711-22. doi: 10.1007/s00424-014-1607-y. Epub 2014 Sep 12. DS UVaDOC RD 17-jul-2024