RT info:eu-repo/semantics/article T1 EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces A1 Santamaría Vázquez, Eduardo A1 Martínez Cagigal, Víctor A1 Vaquerizo Villar, Fernando A1 Hornero, Roberto K1 Brain-computer interfaces K1 Event-related potentials K1 P300 K1 Deep learning K1 Convolutional Neural Networks K1 Inception K1 Transfer learning AB In recent years, deep-learning models gained attention for electroencephalography (EEG) classification tasks due to their excellent performance and ability to extract complex features from raw data. In particular, convolutional neural networks (CNN) showed adequate results in brain-computer interfaces (BCI) based on different control signals, including event-related potentials (ERP). In this study, we propose a novel CNN, called EEG-Inception, that improves the accuracy and calibration time of assistive ERP-based BCIs. To the best of our knowledge, EEG-Inception is the first model to integrate Inception modules for ERP detection, which combined efficiently with other structures in a light architecture, improved the performance of our approach. The model was validated in a population of 73 subjects, of which 31 present motor disabilities. Results show that EEG-Inception outperforms 5 previous approaches, yielding significant improvements for command decoding accuracy up to 16.0%, 10.7%, 7.2%, 5.7% and 5.1% in comparison to rLDA, xDAWN + Riemannian geometry, CNN-BLSTM, DeepConvNet and EEGNet, respectively. Moreover, EEG-Inception requires very few calibration trials to achieve state-of-the-art performances taking advantage of a novel training strategy that combines cross-subject transfer learning and fine-tuning to increase the feasibility of this approach for practical use in assistive applications. PB IEEE YR 2020 FD 2020-12-30 LK https://uvadoc.uva.es/handle/10324/65991 UL https://uvadoc.uva.es/handle/10324/65991 LA spa NO IEEE Transactions on Neural Systems and Rehabilitation Engineering, Diciembre, 2020, vol. 28 (12), pp. 2773 - 2782. DS UVaDOC RD 07-ene-2025