RT info:eu-repo/semantics/article T1 Clifford elements in Lie algebras A1 Brox López, José Ramón A1 Fernández López, Antonio A1 Gómez Lozano, Miguel K1 Matemáticas K1 Anillos primos, Anillos con involución, Álgebras de Lie, elementos Jordan K1 1201.05 Campos, Anillos, Álgebras K1 1201.09 Álgebra de Lie K1 1201.12 Álgebras no Asociativas AB Let L be a Lie algebra over a field F of characteristic zero or p > 3 . An element c ∈ L is called Clifford if adc^3 = 0 and its associated Jordan algebra Lc is the Jordan algebra F ⊕ X defined by a symmetric bilinear form on a vector space X over F . In this paper we prove the following result: Let R be a centrally closed prime ring R of characteristic zero or p > 3 with involution ∗ and let c ∈ Skew(R, ∗) be such that c^3 = 0 , c^2 != 0 and c^2kc = ckc^2 for all k ∈ Skew(R, ∗) . Then c is a Clifford element of the Lie algebra Skew(R, ∗) . PB Heldermann Verlag YR 2017 FD 2017 LK https://uvadoc.uva.es/handle/10324/66183 UL https://uvadoc.uva.es/handle/10324/66183 LA spa NO Journal of Lie Theory, 2017, vol. 27, no. 1, p. 283-296 NO Producción Científica DS UVaDOC RD 07-ene-2025