RT info:eu-repo/semantics/article T1 The Newton Polygon Method for Differential Equations A1 Cano Torres, José María K1 Matemáticas K1 Newton polygon method K1 Formal power series K1 Ordinary differential equations K1 1201 Álgebra K1 1204 Geometría AB We prove that a first order ordinary differential equation(ODE) with a dicritical singularity at the origin has a one-parameterfamily of convergent fractional power series solutions. The notion of adicritical singularity is extended from the class of first order and firstdegree ODE’s to the class of first order ODE’s. An analogous result forseries with real exponents is given.The main tool used in this paper is the Newton polygon methodfor ODE. We give a description of this method and some elementaryapplications such as an algorithm for finding polynomial solutions. PB Springer Verlag SN 0302-9743 YR 2005 FD 2005 LK https://uvadoc.uva.es/handle/10324/66227 UL https://uvadoc.uva.es/handle/10324/66227 LA spa NO Cano, J. (2005). The Newton Polygon Method for Differential Equations. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_3 NO Producción Científica DS UVaDOC RD 08-ene-2025