RT info:eu-repo/semantics/article T1 Application of convolutional neural networks in weed detection and identification: a systematic review A1 García Navarrete, Óscar Leonardo A1 Correa Guimaraes, Adriana A1 Navas Gracia, Luis Manuel K1 Precision agriculture K1 Agricultural innovations K1 Agricultura - Innovaciones tecnológicas K1 Weeds K1 Malas hierbas K1 Weeds - Control K1 Control de malezas K1 Artificial intelligence -- Agricultural applications K1 Machine learning K1 Aprendizaje automático K1 Computer vision K1 Visión artificial (Robótica) K1 Image processing K1 Imágenes, Tratamiento de las K1 Neural networks (Computer science) K1 Redes neuronales (Informática) K1 Sustainable agriculture K1 Agricultura sostenible K1 3102 Ingeniería Agrícola K1 1203.04 Inteligencia Artificial K1 1203.17 Informática AB Weeds are unwanted and invasive plants that proliferate and compete for resources such as space, water, nutrients, and sunlight, affecting the quality and productivity of the desired crops. Weed detection is crucial for the application of precision agriculture methods and for this purpose machine learning techniques can be used, specifically convolutional neural networks (CNN). This study focuses on the search for CNN architectures used to detect and identify weeds in different crops; 61 articles applying CNN architectures were analyzed during the last five years (2019–2023). The results show the used of different devices to acquire the images for training, such as digital cameras, smartphones, and drone cameras. Additionally, the YOLO family and algorithms are the most widely adopted architectures, followed by VGG, ResNet, Faster R-CNN, AlexNet, and MobileNet, respectively. This study provides an update on CNNs that will serve as a starting point for researchers wishing to implement these weed detection and identification techniques PB MDPI SN 2077-0472 YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/68120 UL https://uvadoc.uva.es/handle/10324/68120 LA eng NO Agriculture, 2024, Vol. 14, Nº. 4, 568 NO Producción Científica DS UVaDOC RD 21-dic-2024