RT info:eu-repo/semantics/article T1 Invariant surfaces for toric type foliations in dimension three A1 Molina Samper, Beatriz A1 Cano Torres, Felipe K1 Foliación K1 Singular foliations K1 Invariant surfaces K1 Toric varieties K1 Combinatorial blowing-ups. K1 1201.01 Geometría Algebraica AB A foliation is of toric type when it has a combinatorial reduction of singularities. We show that every toric type foliation on (C3, 0) without saddle-nodes has invariant surface. We extend the argument of Cano–Cerveau for the nondicritical case to the compact dicritical components of the exceptional divisor. These components are projective toric surfaces and the isolated invariant branches of the induced foliation extend to closed irreducible curves. We build the invariant surface as a germ along the singular locus and those closed irreducible invariant curves. The result of Ortiz-Bobadilla & Rosales-González &Voronin about the distribution of invariant branches in dimension two is a key argument in our proof. PB Universitat Autònoma de Barcelona SN 0214-1493 YR 2021 FD 2021 LK https://uvadoc.uva.es/handle/10324/70835 UL https://uvadoc.uva.es/handle/10324/70835 LA eng NO Publicacions Matemàtiques, 2021 vol. 65, n.1, pp. 291-307 DS UVaDOC RD 22-nov-2024