RT info:eu-repo/semantics/article T1 Complexity of Puiseux solutions of differential and q-difference equations of order and degree one A1 Cano Torres, José María A1 Fortuny Ayuso, Pedro A1 Ribón, Javier K1 Matemáticas - Investigación K1 power series solution K1 holomorphic foliation K1 q-difference equation K1 Newton–Puiseux polygon K1 1202 Análisis y Análisis Funcional K1 1201.04 Álgebra Diferencial K1 1204 Geometría AB We relate the complexity of both differential and q-difference equations of order one anddegree one and their solutions. Our point of view is to show that if the solutions are complicated, theinitial equation is complicated too. In this spirit, we bound from below an invariant of the differentialor q-difference equation, the height of its Newton polygon, in terms of the characteristic factors of asolution. The differential and the q-difference cases are treated in a unified way. PB Universitat Autonoma de Barcelona SN 02141493 YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/70903 UL https://uvadoc.uva.es/handle/10324/70903 LA eng NO Publicacions Matèmatiques, 2024, vol. 68, n. 2. p. 331-358. NO Producción Científica DS UVaDOC RD 23-dic-2024