RT info:eu-repo/semantics/article T1 Finding eigenvectors with a quantum variational algorithm A1 García Escartín, Juan Carlos K1 Computación cuántica K1 Algoritmos cuánticos K1 Algoritmos variacionales K1 Fotónica K1 Autovalores K1 Algoritmos cuánticos K1 Algoritmos variacionales K1 2210.23 Teoría Cuántica K1 1203 Ciencia de Los Ordenadores K1 2209 Óptica AB This paper presents a hybrid variational quantum algorithm that finds a random eigen-vector of a unitary matrix with a known quantum circuit. The algorithm is based on theSWAP test on trial states generated by a parametrized quantum circuit. The eigenvec-tor is described by a compact set of classical parameters that can be used to reproducethe found approximation to the eigenstate on demand. This variational eigenvector finder can be adapted to solve the generalized eigenvalue problem, to find the eigenvectors of normal matrices and to perform quantum principal component analysis on unknown input mixed states. These algorithms can all be run with low-depth quantum circuits, suitable for an efficient implementation on noisy intermediate-scale quantum computers and, with some restrictions, on linear optical systems. In full-scale quantum computers, where there might be optimization problems due to barren plateaus in larger systems, the proposed algorithms can be used as a primitive to boost known quantum algorithms. Limitations and potential applications are discussed. PB Springer SN 1573-1332 YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/72722 UL https://uvadoc.uva.es/handle/10324/72722 LA eng NO Garcia-Escartin, J.C. Finding eigenvectors with a quantum variational algorithm. Quantum Inf Process 23, 254 (2024). NO Producción Científica DS UVaDOC RD 18-dic-2024