RT info:eu-repo/semantics/article T1 Metal- and covalent-organic framework mixed matrix membranes for CO2 separation: A perspective on stability and scalability A1 Shan, Meixia A1 Geng, Xiumei A1 Imaz, Ihnar A1 Broto-Ribas, Anna A1 Ortín-Rubio, Borja A1 Maspoch, Daniel A1 Ansaloni, Luca A1 Peters, Thijs A. A1 Tena Matias, Alberto A1 Boerrigter, Marcel E. A1 Vermaas, David A. AB Membrane technology has attracted great industrial interest in carbon capture and separation owing to the merits of energy-efficiency, environmental friendliness and low capital investment. Conventional polymeric membranes for CO2 separation suffer from the trade-off between permeability and selectivity. Introducing porous fillers in polymers is one approach to enhance membrane separation performance. Metal-organic frameworks (MOFs), with ordered porous structure and diverse chemical functionalities, are promising fillers to prepare mixed matrix membranes (MMMs) for CO2 separation. However, the main issue of MOF based MMMs in industry is their stability and processability. This review analyses recent work on stable and scalable MOF based MMMs for CO2 separation. The typical stable MOFs, MOF-based MMMs and the scalable MOF synthesis are summarized. A large number of MOF-based MMM suffer from instability upon exposure to contaminants. For that reason, we also discuss the use of covalent organic frameworks (COFs) as an alternative to prepare MMMs for CO2 separation, considering their excellent stability and good compatibility with polymers. Finally, a brief conclusion and current challenges on obtaining scalable and stable MMMs are outlined. This review may provide some guidance for designing high performance MMMs for industrial CO2 capture and separation to help achieving carbon neutrality. PB Elsevier YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/72890 UL https://uvadoc.uva.es/handle/10324/72890 LA eng NO Journal of Membrane Science 691 (2024) 122258 NO Producción Científica DS UVaDOC RD 22-ene-2025