RT info:eu-repo/semantics/article T1 New constructions of MSRD codes A1 Martínez Peñas, Umberto K1 Linearized Reed–Solomon codes K1 Maximum sum-rank distance codes K1 Rank metric K1 Sum-rank metric K1 12 Matemáticas AB In this work, we provide four methods for constructing new maximum sum-rank distance(MSRD) codes. The first method, a variant of cartesian products, allows faster decoding thanknown MSRD codes of the same parameters. The other three methods allow us to extend ormodify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrixsizes (numbers of rows and columns in different blocks) that were not attainable by previousconstructions. In this way, we show that MSRD codes exist (by giving explicit constructions)for new ranges of parameters, in particular with different numbers of rows and columns atdifferent positions. PB Springer SN 2238-3603 YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/75211 UL https://uvadoc.uva.es/handle/10324/75211 LA eng NO Computational and Applied Mathematics, 2024, vol. 43, n.7 NO Producción Científica DS UVaDOC RD 04-jun-2025