RT info:eu-repo/semantics/conferenceObject T1 Accelerating Scientific Model Optimization with a Pipelined FPGA-Based Differential Evolution Engine A1 Castro Caballero, Manuel De A1 Osorio, Roberto R. A1 Torres de la Sierra, Yuri A1 Llanos Ferraris, Diego Rafael K1 Informática K1 1203 Ciencia de Los Ordenadores K1 3304 Tecnología de Los Ordenadores AB Differential Evolution (DE) [5] with Numerical Integration (NI) is an ideal target for Custom Computing Machines on FPGAs, since it produces deep pipelines, requires minimal external memory bandwidth, and benefits from large memory bandwidth. DE is a genetic algorithm used for scientific model optimization. We propose a generic FPGA-based DE architecture, parameterized to accommodate to different scientific models. It supports both non-adaptive and adaptive NI methods. The core DE engine is programmed in VHDL for high adaptability and performance, whereas the scientific models and their NI are programmed in C++ for flexibility and easiness of development. PB IEE YR 2025 FD 2025 LK https://uvadoc.uva.es/handle/10324/75777 UL https://uvadoc.uva.es/handle/10324/75777 LA eng NO 33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, Arkansas, USA NO Producción Científica DS UVaDOC RD 19-jul-2025