RT info:eu-repo/semantics/article T1 Shock propagation in aerogel and TPP foams for inertial fusion energy target design A1 Parisuaña, C. A1 Valdivia, M. P. A1 Bouffetier, V. A1 Kurzer-Ogul, K. A1 Bott-Suzuki, S. A1 Casner, A. A1 Christiansen, N. S. A1 Czapla, N. A1 Eder, D. A1 Galtier, E. A1 Glenzer, S. H. A1 Goudal, T. A1 Haines, B. M. A1 Hodge, D. A1 Ikeya, M. A1 Izquierdo, L. A1 Khaghani, D. A1 Kim, Y. A1 Klein, S. A1 Koniges, A. A1 Lee, H. J. A1 Leininger, M. A1 Leong, A. F. T. A1 Lester, R. S. A1 Makita, M. A1 Mancelli, D. A1 Martin, W. M. A1 Nagler, B. A1 Sandberg, R. L. A1 Truong, A. A1 Vescovi, M. A1 Gleason, A. E. A1 Kozlowski, P. M. A1 Pérez Callejo, Gabriel AB Achieving practical inertial fusion energy (IFE) requires the development of target designs with well-characterized microstructure and compression response. We measured shock dynamics in low-density (17.5–500 mg/cm3) aerogel and two-photon polymerization (TPP) foams using x-ray phase contrast imaging (XPCI) methods and the Velocity Interferometer System for Any Reflector. By analyzing shock front evolution, we examined how target type and density influence shock propagation and energy dissipation. Talbot-XPCI shows that aerogels support a smooth, bowed shock front due to their homogeneous nanometer-scale pore network. In contrast, TPP foams exhibit irregular, stepwise propagation driven by interactions with their periodic micrometer-scale lattice. Shock velocity follows a power-law relation: aerogels deviate from classical scaling due to pore-collapse dissipation, while TPP foams follow the trend with larger uncertainties from density variations. Comparisons with xRAGE simulations reveal systematic underestimation of shock speeds. These results provide the first experimental constraints on shock propagation in TPP foams over a wide density range and highlight the influence of internal structure on anisotropic shock behavior. Our findings support improved benchmarking of EOS and hydrodynamic models and inform the design of foam architectures that promote implosion symmetry in IFE capsules. PB American Institute of Physics SN 1070-664X YR 2025 FD 2025 LK https://uvadoc.uva.es/handle/10324/77239 UL https://uvadoc.uva.es/handle/10324/77239 LA spa NO Physics of Plasmas, Agosto 2025, vol. 32, n. 8. p. 082707 NO Producción Científica DS UVaDOC RD 26-sep-2025