RT dataset T1 Life cycle assessment of biostimulant production from algal biomass grown on piggery wastewater A1 Rojo De Benito, Elena María A1 Rossi, Simone A1 Bolado Rodríguez, Silvia A1 Gallo Stampino, Paola A1 Ficara, Elena A1 Dotelli, Giovanni A2 Elsevier K1 Microalgae K1 Agricultural product K1 Biomass valorisation K1 Life cycle assessment K1 Climate change AB Piggery wastewater has become a large source of pollution with high concentrations of nutrients, that must be managed and properly treated to increase its environmental viability. Currently, the use of microalgae for treating this type of wastewater has emerged as a sustainable process with several benefits, including nutrient recovery to produce valuable products such as biostimulants, and CO2 capture from flue gases. However, the biostimulant production from biomass grown on piggery wastewater also has environmental impacts that need to be studied to identify possible hotspots. This work presents the life cycle assessment by IMPACT 2002+ method of the production of microalgae-based biostimulants, comparing two different harvesting technologies (membrane in scenario 1 and centrifuge in scenario 2) and two different technologies for on-site CO2 capture from flue gases (chemical absorption and membrane separation). The use of membranes for harvesting (scenario 1) reduced the environmental impact in all categories (human health, ecosystem quality, climate change, and resources) by 30 % on average, compared to centrifuge (scenario 2). Also, membranes for CO2 capture allowed to decrease environmental impacts by 16 %, with the largest reduction in the resource category (∼33 %). Thus, the process with the best environmental viability was achieved in scenario 1 using membranes for CO2 capture, with a value of 217 kg CO2 eq/FU. In scenario 2 with centrifugation, the high contribution of the cultivation sub-unit in all impacts was highlighted (>75 %), while in scenario 1 the production sub-unit also had moderate contribution in the human health (∼35 %) and climate change (∼30 %) categories due to the lower concentration and high flow rates. These results were obtained under a worst-case situation with pilot scale optimized parameters, with limited data which would have to be further optimized at industrial-scale implementation. The sensitivity analysis showed a little influence of the parameters that contribute the most to the impacts, except for the transportation of the piggery wastewater to the processing plant in scenario 2. Because of the relevant impact of biostimulant transportation in scenario 1, centrifugation becomes more favourable when transportation distance is longer than 321 km. YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/78221 UL https://uvadoc.uva.es/handle/10324/78221 LA spa NO Instituto de Procesos Sostenibles DS UVaDOC RD 11-ene-2026