RT info:eu-repo/semantics/conferenceObject T1 Online Active Learning For LSTM-Based Network Traffic Prediction A1 Casaseca de la Higuera, Juan Pablo A1 Aguiar Pérez, Javier Manuel A1 Amado Caballero, Patricia A1 Morgado, Antonio J. A1 Silva Moreira, Joana da A1 Luo, Chunbo A1 Wang, Xinheng K1 Redes LSTM K1 Aprendizaje en línea K1 Aprendizaje activo K1 Predicción del tráfico de red AB This paper introduces an online active deep learning framework tailored for intelligent and sustainable aerial-terrestrial IoT networks. The framework utilizes Long Short-Term Memory (LSTM) models, enhanced with active learning and incremental updates, to address the challenges of dynamic network traffic prediction. Model updates are selectively applied, prioritizing samples with higher prediction errors, enabling the system to adapt dynamically to evolving traffic patterns and improving predictive accuracy. The proposed approach accommodates non-stationary data streams and prioritizes critical information, establishing a robust foundation for effective network management. The framework's performance was validated using the Milan traffic dataset, demonstrating its effectiveness compared to non-weighted online learning methods and static models. PB IEEE Computer Society SN 978-1-6654-5734-7 YR 2025 FD 2025 LK https://uvadoc.uva.es/handle/10324/78604 UL https://uvadoc.uva.es/handle/10324/78604 LA eng NO Zhu, Yingbo and Vichare, Parag and Shakir, Muhammad Zeeshan and Sturley, Hamish and Salva-Garcia, Pablo and Salau, Nurudeen. 2025 International Conference on Software, Knowledge, Information Management & Applications (SKIMA). Paisley: United Kingdom, 2025, p. 1-7. NO Producción Científica DS UVaDOC RD 29-nov-2025