RT info:eu-repo/semantics/conferenceObject T1 AdSight: Scalable and Accurate Quantification of User Attention in Multi-Slot Sponsored Search A1 Villaizán Vallelado, Mario A1 Salvatori, Matteo A1 Latifzadeh, Kayhan A1 Penta, Antonio A1 Leiva, Luis A. A1 Arapakis, Ioannis K1 SERP K1 Búsqueda patrocinada K1 Publicidad online K1 Seguimiento del cursor del ratón K1 Anuncios multiespacio K1 Visualizaciones directas K1 Atención del usuario K1 Redes neuronales AB Modern Search Engine Results Pages (SERPs) present complex layouts where multiple elements compete for visibility. Attention modelling is crucial for optimising web design and computational advertising, whereas attention metrics can inform ad placement and revenue strategies. We introduce AdSight, a method leveraging mouse cursor trajectories to quantify in a scalable and accurate manner user attention in multi-slot environments like SERPs. AdSight uses a novel Transformer-based sequence-to-sequence architecture where the encoder processes cursor trajectory embeddings, and the decoder incorporates slot-specific features, enabling robust attention prediction across various SERP layouts. We evaluate our approach on two Machine Learning tasks: (1)~regression, to predict fixation times and counts; and (2)~classification, to determine some slot types were noticed. Our findings demonstrate the model's ability to predict attention with unprecedented precision, offering actionable insights for researchers and practitioners. PB Association for Computing Machinery, Inc SN 9798400715921 YR 2025 FD 2025 LK https://uvadoc.uva.es/handle/10324/78833 UL https://uvadoc.uva.es/handle/10324/78833 LA eng NO Nicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, Suzan Verberne. SIGIR '25: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. Padua, 2025, p. 255-265. NO Producción Científica DS UVaDOC RD 11-nov-2025