RT info:eu-repo/semantics/conferenceObject T1 Tackling Missing Data Head-On: Strategies to Mitigate Survival and Confirmation Bias A1 Villaizán Vallelado, Mario A1 Salvatori, Matteo A1 Carro Martínez, Belén A1 Sánchez Esguevillas, Antonio Javier AB Most Artificial Intelligence models require the information in the records to be used to be fully informed. These models require a policy for handling missing information. However, traditional policies have tried to fill in the missing information with known information. This approach is correct when the missing information is random and wrong when it is not. In this article we start with a review of the main policies employed, and analyse the consequences of elimination or imputation policies and argue that these policies are sometimes unwise. PB IWANN, A coruña SN 979-13-8752213-1 YR 2025 FD 2025 LK https://uvadoc.uva.es/handle/10324/78835 UL https://uvadoc.uva.es/handle/10324/78835 LA eng NO Andreu Catalá, Gonzalo Joya y Ignacio Rojas. IWANN 2025 18th International Work-Conference on Artificial Neural Networks. A Coruña: IWANN, 2025, p. 1-1. NO Producción Científica DS UVaDOC RD 11-nov-2025