RT info:eu-repo/semantics/article T1 Diagonalizably realizable implies universally realizable A1 Marijuán López, Carlos A1 Soto, Ricardo L. K1 Spectra diagonalizably realizable K1 Spectra universally realizable K1 Nonnegative matrices K1 Jordan structure K1 12 Matemáticas AB A spectrum Λ={λ1,…,λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix A. The spectrum Λ is diagonalizably realizable (DR) if the realizing matrix A is diagonalizable, and Λ is universally realizable (UR) if it is realizable for each possible Jordan canonical form allowed by Λ. In 1981, Minc proved that if Λ is the spectrum of a diagonalizable positive matrix, then Λ is universally realizable. One of the main open questions about the problem of universal realizability of spectra iswhether DR implies UR. Here, we prove a surprisingly simple result, which shows how diagonalizably realizable implies universally realizable. PB International Linear Algebra Society SN 1081-3810 YR 2024 FD 2024 LK https://uvadoc.uva.es/handle/10324/79184 UL https://uvadoc.uva.es/handle/10324/79184 LA eng NO The Electronic Journal of Linear Algebra, 2024, vol. 40, p. 382-395 NO Producción Científica DS UVaDOC RD 07-nov-2025