RT info:eu-repo/semantics/article T1 Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging A1 Corraliza Gómez, Miriam A1 Bermejo Pastor, Teresa A1 Lilue, Jingtao A1 Rodriguez Iglesias, Noelia A1 Valero Gómez Lobo, Jorge A1 Cózar Castellano, Irene A1 Arranz Sanz, Eduardo A1 Sánchez Romero, Diego A1 Ganfornina Álvarez, María Dolores K1 Bioquímica K1 Gerontología K1 Neurobiología K1 Enfermedades del sistema nervioso K1 Enzima degradadora de insulina K1 Microglía K1 Fagocitosis de mielina K1 Endocitosis de beta-amiloide K1 Inflamación K1 Estrés oxidativo K1 Proliferación microglial K1 Secreción de citocinas K1 2403 Bioquímica K1 2490 Neurociencias K1 3207.11 Neuropatología AB The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-β management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions. PB Springer Nature SN 1742-2094 YR 2023 FD 2023 LK https://uvadoc.uva.es/handle/10324/82941 UL https://uvadoc.uva.es/handle/10324/82941 LA eng NO Journal of Neuroinflammation, 2023, vol. 20, p. 1-21. NO Producción Científica DS UVaDOC RD 21-feb-2026