TY - JOUR AU - Martín Diaz, Ignacio AU - Moríñigo Sotelo, Daniel AU - Duque Pérez, Óscar AU - Romero Troncoso, René de Jesús PY - 2017 SN - 0093-9994 UR - https://uvadoc.uva.es/handle/10324/64936 AB - Abstract—Intelligent fault detection in induction motors (IMs) is a widely studied research topic. Various artificial-intelligence- based approaches have been proposed to deal with a large amount of data obtained from destructive laboratory... LA - spa TI - Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling DO - 10.1109/TIA.2016.2618756 ER -