TY - GEN AU - Amado Caballero, Patricia AU - Garmendia Leiza, José Ramón AU - Aguilar García, M. D. AU - Martínez Fernández de Septiem, C. AU - San José Revuelta, Luis Miguel AU - García Ruano, A. AU - Alberola López, Carlos AU - Casaseca de la Higuera, Juan Pablo PY - 2024 SN - 979-8-3503-7149-9 UR - https://uvadoc.uva.es/handle/10324/72906 AB - This study explores the feasibility of employing eXplainable Artificial Intelligence XAI methodologies for the analysis of cough patterns in respiratory diseases. A cohort of 20 adult patients, all presenting persistent cough as a symptom of... LA - eng PB - IEEE, Institute of Electrical and Electronics Engineers KW - Detección KW - CAD KW - Procesado de señal KW - Machine learning KW - Deep learning KW - Respiratory diseases KW - cough KW - audio analysis KW - CNN KW - XAI KW - occlusion maps TI - Audio cough analysis by parametric modelling of weighted spectrograms to interpret the output of convolutional neural networks DO - 10.1109/EMBC53108.2024.10781781 ER -