TY - JOUR AU - Gacto, María José AU - Galende Hernández, Marta AU - Alcalá, Rafael AU - Herrera, Francisco PY - 2014 SN - 0020-0255 UR - https://uvadoc.uva.es/handle/10324/74373 AB - In this contribution, we propose a two-stage method for Accurate Fuzzy Modeling in High-Dimensional Regression Problems using Approximate Takagi–Sugeno–Kang Fuzzy Rule-Based Systems. In the first stage, an evolutionary data base learning is performed... LA - eng PB - Elsevier KW - Accurate fuzzy modeling KW - Takagi–Sugeno–Kang rules KW - Multi-objective genetic algorithms KW - Embedded genetic data base learning KW - Regression KW - High-dimensional and large-scale problems TI - METSK-HDe: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy systems in high-dimensional and large-scale regression problems DO - 10.1016/J.INS.2014.02.047 ER -