TY - JOUR AU - Alvarez, Marcos Lazaro AU - Arjona, Laura AU - Iglesias Martínez, Miguel E. AU - Bahillo Martínez, Alfonso PY - 2024 SN - 1687-4722 UR - https://uvadoc.uva.es/handle/10324/80195 AB - This work constitutes the first approach for automatically classifying the surface that the voiding flow impacts in non-invasive sound uroflowmetry tests using machine learning. Often, the voiding flow impacts the toilet walls (traditionally made of... LA - eng PB - Springer Nature KW - Sound uroflowmetry KW - Machine learning KW - Automatic classification KW - Surface automatic classification KW - Acoustic voiding signals TI - Automatic classification of the physical surface in sound uroflowmetry using machine learning methods DO - 10.1186/S13636-024-00332-Y ER -