TY - JOUR AU - Martínez Moro, Edgar AU - Piñera Nicolás, Alejandro AU - Fernández Rúa, Ignacio PY - 2018 SN - 0022-4049 UR - http://uvadoc.uva.es/handle/10324/35923 AB - In this work, we study the structure of multivariable modular codes over finite chain rings when the ambient space is a principal ideal ring. We also provide some applications to additive modular codes over the finite field F4 LA - eng PB - Elsevier KW - Anillos (Álgebra) TI - Multivariable codes in principal ideal polynomial quotient rings with applications to additive modular bivariate codes over F4 DO - 10.1016/j.jpaa.2017.04.007 ER -