TY - JOUR AU - Perez-Velasco, Sergio AU - Santamaria-Vazquez, Eduardo AU - Martinez-Cagigal, Victor AU - Marcos-Martinez, Diego AU - Hornero, Roberto PY - 2022 SN - 1534-4320 UR - https://uvadoc.uva.es/handle/10324/81636 AB - In this study, we present a new Deep Learning (DL) architecture for Motor Imagery (MI) based Brain Computer Interfaces (BCIs) called EEGSym. Our implementation aims to improve previous state-of-the-art performances on MI classification by overcoming... LA - eng PB - IEEE KW - Brain computer interface (BCI), deep learning (DL), motor imagery, transfer learning, inter-subject TI - EEGSym: Overcoming Inter-Subject Variability in Motor Imagery Based BCIs With Deep Learning DO - 10.1109/TNSRE.2022.3186442 ER -