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Abstract

We propose a fully three-dimensional methodology for the computation of myocardial non-viable tissue trans-

murality in contrast enhanced magnetic resonance images. The outcome is a continuous map defined within the

myocardium where not only current state-of-the-art measures of transmurality can be calculated, but also information

on the location of non-viable tissue is preserved. The computation is done by means of a partial differential equation

framework we have called Multi-Stencil Streamline Fast Marching (MSSFM). Using it, the myocardial and scarred

tissue thickness is simultaneously computed. Experimental results show that the proposed 3D method allows for the

computation of transmurality in myocardial regions where current 2D methods are not able to as conceived, and it

also provides more robust and accurate results in situations where the assumptions on which current 2D methods are

based —i.e., there is a visible endocardial contour and its corresponding epicardial points lie on the same slice—,

are not met.
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I. INTRODUCTION

According to the World Health Organization, cardiovascular diseases are the leading cause of death in the world

and, among them, ischemic heart disease (IHD) was in 2008 the most prevalent in middle- and high-income

countries [1], [2]. IHD shows up as a restriction of blood supply that may cause damage to myocardial tissue due

to oxygen shortage.

Among the existing cardiac magnetic resonance (CMR) modalities that are employed in clinical practice, Contrast

Enhanced (CE) CMR imaging is able to detect infarcted tissue in the myocardium by highlighting regions with

contrast accumulation [3]. In this modality, a metabolically inert paramagnetic contrast bolus, usually composed of

a Gadolinium Chelate, is injected into the patient. The volumes are acquired when the contrast has been washed

out of the myocardial viable tissue, but it is still present in the damaged tissue due to a number of reasons [4]: low

perfusion, fibrosis, inflammation or tumor neovasculature. This causes the damaged tissue to appear hyperenhanced

in the image, since the paramagnetic contrast shortens the T1 relaxation time. Therefore, CE-CMR is of great

interest in IHD, as well as in several non-ischemic pathologies such as myocarditis or hypertrophic cardiomyopathy

(HCM) [5] [6].

About IHD, it is well known that some of the affected myocardium may recover its functionality by revasculariza-

tion if there is viable tissue [7]. The transmural extent of the damaged tissue is often used as a relevant criterion to

decide the appropriateness of a revascularization procedure [4], [8]–[10]: if the non-viable tissue covers more than

50% of the myocardial wall thickness, it is unlikely that the contractile function will be recovered [4]. Regarding

other non-ischemic cardiomyopathies, it has been described [11] that 26% to 75% of scarred wall thickness is

significantly predictive of inducible ventricular tachycardia (VT). The authors include in their study numerous cases

with non-subendocardial scar as it is frequently the case in this sort of cardiomyopathies. This suggests that an

accurate framework to measure thickness and transmurality seems beneficial towards a detailed diagnostic procedure

for both ischemic and non-ischemic cardiomyopathies.

In cardiomyopathies, VT may appear due to the existence of functional tissue islands surrounded by non-viable

myocardium [12]. Besides implantable cardioverter-defibrillators, catheter ablation is an important tool for the

treatment of this pathology [13]; this technique is based on removing conducting channels (CC) by damaging the

arrhytmogenic substrate present at any depth in the myocardium, and it may be performed through an intracardiac

or percutaneous approach. In that respect, the development of tools to assist in the decision of which approach

to choose might be helpful in clinical practice. To guide the ablation procedure and to identify existing CC, an

electroanatomic voltage map is created by a point-by-point probing of the endocardium, which is a time-consuming

and invasive task. Moreover, it provides only a rough delineation of scar areas in the basal septum and posterior

wall of the left ventricle due to the difficulty in accessing them in a trans-aortic catheterism [14].

Sustained monomorphic VT substrate has been noninvasively identified by channels of heterogeneous tissue (HT)

in CE-CMR images [15]–[17]. In [18], high-resolution CE-CMR images were integrated into a CARTO navigation

system to aid the VT ablation procedure, and the authors also reported a good correlation between the endocardial
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Figure 1. Example of the crossing of SA planes within an LA slice. Some endocardial-epicardial point-to-point correspondences are depicted.

electroanatomic maps and a projection into the endocardium of the scar present at the subendocardial half-wall of

the myocardium, segmented from the CE-CMR image. Therefore, having a precise map of scar location and layout

seems of great interest in this application domain as well to shift from invasive to non-invasive clinical procedures.

A. Existing Methods for Transmurality Computation

Several methods for computing scar transmurality in two-dimensional CE-CMR slices have been reported in

the literature, most of them following a ray-tracing methodology [11], [19], [20]. They start by dividing the

myocardium into sectors and tracing paths along which the amount of myocardial and scarred tissue is computed. The

transmurality on each path is computed and the transmurality measures are finally averaged within each myocardial

sector. A summary of the main differences among these methods is shown in Table I; they mainly stem from how

paths are chosen and how tissue thickness is computed.

Specifically, in Schuijf et al. [19], a modification of the centerline method [21] was used, where the myocardium

and scar thickness were evaluated along 100 rays and the myocardium was sampled with 10 points per ray to

compute the transmurality as the average of sampled points belonging to non-viable tissue. Nazarian et al. [11]

employed 30 radial lines per each of the 12 sectors which the myocardium was partitioned into. Tissue thickness

was defined as the length of the segment between the starting and the ending points belonging to the tissue in

the path. Recently, Elnakib et al. [20] used point-to-point correspondences between the endocardial and epicardial

contours, found by solving a two-dimensional Laplace equation in the myocardium, and computing the streamlines

out of the solution. The sectors were assigned following the 17-segment myocardium model [22]. The Laplace

partial differential equation (PDE) has been previously employed as a means to compute the thickness of the highly

geometrically irregular human brain cortex [23], [24]. A different approach was shown in [10] where, instead of

using a ray tracing approach, the sector transmurality was given by dividing the scar tissue area by the whole sector

area.

These methods are devised for two-dimensional image slices, mostly short-axis (SA) acquisitions, although [19]

and [20] may be applied to long-axis (LA) slices as well. In particular, [11] implicitly assumes that the endo- and

epicardial contours can be modeled as two concentric circumferences, an assumption that does not hold on LA

acquisitions or in certain heart diseases such as HCM, where there is a significant thickening of part of the heart
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Table I

COMPARISON OF THE TRANSMURALITY METHODS IN THE LITERATURE AND THE PROPOSED ONE.

Method Schuijf et al. [19] Nazarian et al. [11] Elnakib et al. [20] Proposed

Dimension 2D 2D 2D 2D, 3D

Chosen paths Centerline normals Radial lines Streamlines Streamlines

Thickness computation Point sampling Segment length Segment length Line integral

Need of explicit lines Yes Yes Yes No

Location information No No No Yes

Soft segmentations No Yes No Yes

muscle. They also need both the endocardium and the epicardium to be visible in the slices where transmurality is

to be computed, which might not be necessarily the case in SA apical slices (see Figure 1). Also, the endocardial-

epicardial point correspondences may not be located within the same 2D slice. Figure 1 shows that the closer to

the apex, the further apart these points are located in the LA direction. In addition, none of these methods keeps

information about the scar depth location although such a piece of information might be useful to distinguish

between epicardial and endocardial scars, for example in determining whether an epicardial or an endocardial

approach would be best. It must be noted that the methods relying on measuring segment lengths assume that all

the scar within the myocardial path is compact with no healthy tissue in-between, which is the case in IHD but

may not be in other pathologies. Two possibilities not taken into account are that a highly transmural scar island

may be distributed into neighboring sectors, or the presence of fibrotic tissue in islands within a sector. Because

of the averaging and depending on how much healthy tissue remains within each sector, these sectors may yield

a much lower transmurality than what would be clinically expected. In such cases, averaging by sectors hides the

underlying scar distribution, while a local transmurality map would disclose it. In addition, such a local map would

remain unaffected by described discrepancies between sectors and actual coronary layout [25].

B. Contributions and Paper Structure

In this paper, we propose a dense transmurality map which is, to the best of our knowledge, the first fully 3D

transmurality method that takes into account the patient-specific myocardial geometry and that provides partial

measures of the subendocardial transmurality at every point of the myocardium. In order to accomplish this, an

Eulerian algorithm that simultaneously computes scar and myocardial thickness maps has been developed by means

of a Multi-Stencil Streamline Fast Marching (MSSFM) method. While the image data set used in this paper consists

of CE-CMR volumes, the proposed methodology is not restricted to this modality and it is extensible to other imaging

systems, such as Delayed Enhancement Computed Tomography.

As in [20], [24], the Laplace equation is employed to provide a harmonic function between the endocardium and

the epicardium, whose streamlines yield a point-to-point correspondence between both surfaces but, unlike [20],

these streamlines do not need to be explicitly computed and only the harmonic function is necessary. This allows for

the interpretation of transmurality as a dense scalar field, as well as to visualize it as a 3D rendering. Transmurality
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mapping and visualization has been studied in [26], although its computation was performed slice-by-slice by a 2D

method based on [11], with 100 sectors per slice. Significant variations of the transmurality using different spatial

resolutions were also reported. Using the proposed methodology it is possible to extract a map of the fully 3D

subendocardial local transmurality at any depth of the myocardium. This makes our maps of potential help in intra

cavity ablation contexts, since the scar present at the subendocardial half-wall of the myocardium correlates better

with endocardial electroanatomic voltage maps [18] than the scar in the whole myocardium.

This paper is organized as follows. Section II gives a brief description of the most closely related Fast Marching

(FM) methods to the one proposed here. The MSSFM method differential formulation and numerical scheme

are described in Sections III-A and III-B respectively. The computation of the transmurality maps is detailed in

Section IV. In Section V, experiments performed on both synthetic and real images are described and Section VI

gathers conclusions of this work.

II. RELATED WORK

A. Yezzi’s Approach to Thickness Computation

Transmurality computation relies on the ability of measuring thickness. In the context of neurology, cortical

thickness measurement has been an active field of research due to the difficulties that the convoluted geometry of

gray matter poses. A brief overview on the problem is given in [23], [24].

In [24], Yezzi and Prince proposed a PDE framework to compute thickness at any point x as it was defined

in [23], that is, the total arclength of a unique curve (or correspondence trajectory) passing through x connecting

an inner Γ0 and an outer Γ1 boundaries of an image region R ⊂ RN , N = 2, 3. Γ0 and Γ1 must be simply

connected, and R must have exactly these two boundaries [23]. Note that with this definition, all the points in

the correspondence trajectory have the same thickness. Therefore, a family of non-intersecting curves providing a

bijection between the boundaries is needed.

The thickness is computed as W (x) = T (x) + T̃ (x), where T (x) and T̃ (x) are the solution of the following

PDEs with boundary conditions:

V(x) · ∇T (x) = 1, subject to T (Γ0) = 0 (1)

−V(x) · ∇T̃ (x) = 1, subject to T̃ (Γ1) = 0 (2)

where V(x) is a unitary vector field tangent to the correspondence trajectories. Two choices are a normalized

gradient vector flow field [27] and the normalized gradient of a harmonic function that solves Laplace’s equation

in R, with boundary conditions on Γ0 and Γ1 [24]. The solution of Eqs. (1) and (2) is given by first-order upwind

numerical schemes (see [24] for details).

This thickness computation framework [24] was not designed to compute non-viable tissue transmurality, and it

is not straightforwardly adaptable to that end due to the following reasons. Myocardial scar may have an arbitrary

topology, often appearing as islands within the myocardium, and therefore two unconnected boundaries may not

appear in general, which would invalidate the premises established in [24]. Even the division of the scar perimeter
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into artificial boundaries would pose further difficulties. Since the same vector field V(x) should be used to compute

both the myocardial and the scar thickness, a previous analysis would need to be done to partition the damaged

tissue into connected regions where no myocardial correspondence trajectory crossed healthy tissue. The explicit

computation of these trajectories should then be forcibly carried out, which [24] tried to avoid. These problems stem

from the fact that Eqs. (1) and (2) consider that the cost of moving from one point to another depends exclusively

on the direction given by V(x).

B. The Fast Marching Method

This method, proposed in [28] as a front propagation algorithm, allows the assignment of scalar costs to every

node by means of a propagation speed. Let Ω ⊂ RN , and let Γ(t) be a monotonically advancing front in Ω, whose

speed component in the normal direction is F (x). The original Fast Marching method [28] computes the arrival

times T (x) of the front to any point x=(x1, . . . , xN )∈Ω, by solving the boundary value problem:

|∇T (x)|F (x) = 1,

T (Γ(0)) = 0
(3)

with F (x)> 0. For F (x) = 1, T (x) yields an approximation of the Euclidean distance to Γ(0). The proposed

algorithm is based on an upwind finite differences numerical scheme to update node values, and it is solved in one

pass by always freezing the node with the lowest T (x) value and updating its neighbors. Further details of the Fast

Marching numerical implementation may be found in [28]–[30].

The Fast Marching method is not in general suitable to compute thickness or transmurality, however, because

the propagation of the front may follow any arbitrary direction in Ω.

To illustrate this, let us consider how the myocardial and scar thickness could be approximated with Euclidean

distances by creating two maps defined over the myocardium, Dm(x) and Ds(x):

1. Dm(x) is the Euclidean distance from the point x to the endocardium, which will be computed with the Fast

Marching method with the endocardium as Γ(0) and moving at a uniform speed Fm(x) = 1.

2. Ds(x) is the outcome of the Fast Marching method, which starts its propagation from the endocardium with

speed Fs(x)=exp(8χs(x)). The propagation speed depends on whether x is located or not within the scar

provided by the indicator function χs(x). It is used to approximate the scar thickness as Dm(x)−Ds(x).

Let us now create a map tE(x) where any point x of the myocardium is associated with the fraction of the

Euclidean distance from that point to the endocardium that was covered by non-viable tissue.

tE(x) =
Dm(x)−Ds(x)

Dm(x)
(4)

The value of tE(x) at the epicardium would be the scar transmurality, defined as the ratio of non-viable tissue within

the myocardial thickness; but at middle points, this map would change differently for different scar configurations

even if they had the same amount of non-viable tissue.
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In Figure 2(a) we show a segmented slice of a myocardium with a scar. The healthy and scarred myocardial

tissues are given in black and white respectively and the background is colored in gray. Figures 2(b), 2(c) and 2(d)

show the computed tE(x), Dm(x) and Dm(x)−Ds(x) maps respectively.

There is a region (pointed to by the white arrow) in Figure 2(a) where the myocardium is occupied by both

scar and healthy tissue. The transmurality in that region should thus have intermediate values; however, Figure 2(b)

shows that tE(x) = 1 at the epicardium. This would mean that the whole myocardial thickness is fully composed

of damaged tissue, which clearly is not the case. Moreover, at some neighboring epicardium (on the right of the

annotated radius, pointed by the black arrow) where no scar is present, tE(x) takes on values different from zero,

the expected transmurality value at those points.

The reason for these disagreements lies in the maps Dm(x) and Dm(x)−Ds(x) (Figures 2(c) and 2(d) respec-

tively). While Dm(x) shows the expected behavior of a myocardial thickness map, Dm(x)−Ds(x) takes on higher

values than expected at the regions pointed by the white and black arrows. This is due to the fact that the Fast

Marching method assumes that, unlike [24], the propagating front may evolve unrestricted by direction. Accordingly,

nodes with low Ds(x) values influence all their neighbors regardless of the endocardial-epicardial direction, causing

a leaking that may be appraised in Figure 2(d). Consequently, a front-propagation method to compute distances

only along a meaningful direction would be needed to overcome these limitations in the computation of thickness

and transmurality with an Eulerian framework.

(a) (b) (c) (d)

Figure 2. (a) Scar segmentation χs(x) that produces the following maps with the Fast Marching method: (b) transmurality tE(x), (c) myocardial

thickness Dm(x), and (d) scar thickness Dm(x)−Ds(x).

III. MULTI-STENCIL STREAMLINE FAST MARCHING METHOD

A. Differential Formulation

Let R ⊂ Ω ⊂ RN be a spatial region, let Γ0,Γ1 be two non-intersecting, simply connected hypersurfaces

contained in the boundary of R, and let s(x) be a function that satisfies the following properties:

1) It is defined in Γ0 ∪R ∪ Γ1 and differentiable in R.

2) The streamlines of s(x) cannot cross each other in Γ0 ∪R ∪ Γ1.

3) For every point in Γ0 ∪R ∪ Γ1, there is a single streamline passing through which connects Γ0 with Γ1.

4) The values of s(x) when moving along any streamline from Γ0 to Γ1 are monotonically increasing.
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To include a directional restriction in Eq. (3), we redefine T (x) to be the arrival time to the point x ∈ R of a

particle moving with speed F (x) along the streamline of s(x) passing through, whose initial position was in Γ0.

To do this, we propose to solve the 1D Eikonal equation:

|D∇sT (x)|F (x) = 1, subject to T (Γ0) = 0 (5)

where D∇sT is the directional derivative of T in the direction of ∇s, and F (x) > 0 is the speed with which the

front moves at x. DvT can be expressed in terms of ∇T by:

DvT =
v

|v|
∇T, (6)

which allows Eq. (5) to be reformulated as:∣∣∣∣ ∇s(x)

|∇s(x)|
· ∇T (x)

∣∣∣∣ = C(x), subject to T (Γ0) = 0 (7)

where C(x) = 1
F (x) is a different way of representing the cost of a node x in the computation of T (x) as a local

time contribution to the global arrival time T (x).

Then, by means of Eq. (7), the 1D Eikonal equation given by Eq. (5) is solved in RN for a family of streamlines

given by s(x) simultaneously, as in [24]. In addition, the front propagation is controlled by C(x), which allows

for different behaviors on healthy and non-viable myocardial tissue (like [28]) and is thus suitable for computing

scar and myocardial thickness.

This method generalizes1 the thickness computation framework in Section II-A, whose PDEs are given in Eqs. (1)

and (2). If we set C(x) = 1, and choose V(x) = ∇s(x)
|∇s(x)| , Eq. (7) becomes:

|V(x) · ∇T (x)| = 1 (8)

Taking into account that s(x) is monotonically increasing from Γ0 to Γ1 and T (x) is not decreasing along every

streamline in R,

V(x) · ∇T (x) = 1 (9)

is the correct choice for evolving T (x) from Γ0 to Γ1, and is equivalent to Eq. (1). Remark that −s(x) is

monotonically increasing from Γ1 to Γ0. Then, Eq. (8) translates into:

−V(x) · ∇T (x) = 1 (10)

if Γ0 and Γ1 are swapped to be respectively the end and start of the propagating front. Thus, Eq. (2) may also be

issued from Eq. (7).

For the purpose of computing thickness, we are interested in solving Eq. (7) from Γ0 to Γ1 or from Γ1 to Γ0 so

we can use in both cases a numerical scheme for the upwind equation:

∇s(x)

|∇s(x)|
· ∇T (x) = C(x) (11)

replacing s(x) by −s(x) if the front is chosen to propagate from Γ1 instead of from Γ0.

1This method is also a generalization of our preliminary work [31] (where a Radial Fast Marching method for R2 was proposed) by choosing

s(x) to be s(x, y) =
√
x2 + y2.
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B. Multi-Stencil Numerical scheme

The following numerical scheme stems from the Multistencil Fast Marching method [30], originally proposed

for solving Eq. (3), which has the advantage of taking into account the information provided by all the neighboring

nodes in order to reduce the numerical error along the diagonal directions. This is achieved by considering derivatives

not only along the natural coordinates of the grid, but also in diagonal directions.

Let us define a set of Q stencils {Si}Qi=1, where Si =
{
~vij
}N
j=1

is a set of N vectors that constitute a basis of

RN . ~vij is the j-th vector of the i-th stencil. Each of these vectors provides the means to access the immediate

nodes of the grid in the discrete domain, along the direction defined by that vector. An example for R2 is given

in Figure 3(a), where the nodes and the vectors of each stencil are shown. If hκ is the grid spacing along the κ-th

dimension, their expressions are S1 = {~v1
1 = (h1, 0), ~v1

2 = (0, h2)} for the stencil along the natural coordinates,

and S2 = {~v2
1 = (h1, h2), ~v2

2 = (−h1, h2)} for the stencil that uses the nodes in the diagonals. There are different

alternatives of number of stencils Q and their composition in R3. Following [30], the chosen stencil vectors for

R3, assuming a voxel size of h1×h2×h3, are given in Table II. Note that S1 covers a 6-neighborhood, S1–S4 an

18-neighborhood, and S1–S6 a 26-neighborhood.

(a) (b)

Figure 3. (a) Description of the stencils used in R2. (b) 2D graph of the default value computation for T [x].

Table II

VECTORS THAT COMPOSE THE STENCILS Si IN R3 .

Si ~vi
1 ~vi

2 ~vi
3

S1 (h1, 0, 0) (0, h2, 0) (0, 0, h3)

S2 (h1, 0, 0) (0, h2,−h3) (0, h2, h3)

S3 (h1, 0,−h3) (0, h2, 0) (h1, 0, h3)

S4 (h1, h2, 0) (−h1, h2, 0) (0, 0, h3)

S5 (h1, 0, h3) (−h1, h2, h3) (h1, h2,−h3)

S6 (h1, 0,−h3) (h1, h2, h3) (−h1, h2,−h3)

Let Ui=(U i1, . . . , U
i
N )T , with U ij =D~vi

j
T (x) be the vector of directional derivatives of T (x) along the vectors

in Si. As stated in [30], a linear system can be built using Eq. (6) to express Ui in terms of ∇T :

Ui = Ri · ∇T, with Rijk =
vijk
|~vij |

(12)
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Then, Eq. (11) can be reformulated for each stencil as:

∇s(x)

|∇s(x)|
· (Ri)−1 ·Ui(x) = C(x) (13)

If ~αi := (αi1, . . . , α
i
N ) = ∇s(x)

|∇s(x)| · (R
i)−1, then the equation

N∑
j=1

αij(x)U ij(x) = C(x) (14)

must be solved for every Si, i = 1, . . . , Q. The directional derivatives in Ui are approximated by the following

forward and backward difference schemes:

D+~vi
jT [x] =

T [x + ~vij ]− T [x]

|~vij |
(15)

D−~v
i
jT [x] =

T [x]− T [x− ~vij ]
|~vij |

(16)

where the notation [·] means we are in the discrete domain.

As it is also the case of the original Fast Marching method [28], the front propagation direction must be taken into

account in the computation of T [x]. Therefore, an upwind finite difference scheme is employed for the numerical

scheme. Equation (14) can then be discretized as:
N∑
j=1

(
max(αij [x], 0) ·D−~v

i
jT [x]

+ min(αij [x], 0) ·D+~vi
jT [x]

)
= C[x]

(17)

which may be expressed as a first order polynomial λi1T [x] + λi0 = C[x], where λi0 and λi1 have the expressions:

λi0 =

N∑
j=1

min(αij [x], 0)T [x+~vij ]−max(αij [x], 0)T [x−~vij ]
|~vij |

(18)

λi1 =

N∑
j=1

|αij [x]|
|~vij |

(19)

Then, at each node, a candidate value T i[x] can be computed for every stencil as:

T i[x] =
C[x]− λi0

λi1
(20)

We must check that the computed T i[x], i = 1, . . . , Q satisfy the causality condition, that is, that their value is

larger than the rest of the arrival times already known in the streamline. For this, the value of a known2 node xk,

T [xk], will be used to reject those candidates for which T i[x]<T [xk] is true. The node xk is chosen as:

xk = arg max
xc

(
s[x]− s[xc]
|x− xc|

)
(21)

where xc are the locations of those nodes in the neighborhood with known values. Then, T [x] is chosen as the

minimum T i[x] that satisfies the causality condition T i[x]≥T [xk]. If no T i[x] meets it, a default value for T [x]

2The value of known nodes is fully computed and frozen (see Section IV-A).
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Figure 4. General flowchart of the computation of t(x).

is computed as T [x] = T [xk] + C[x] · D, where D is the length of the segment between x and the isocontour

{z : s(z)=s[xk]} along the direction given by ∇s[x]. If the isocontour is approximated by its tangent plane in

xk, D can be approximated by trigonometry. Figure 3(b) contains a graph of the elements that take part in the

computation of the default value.

IV. TRANSMURALITY MAPS

A. Definition and Calculation

Our goal is to define transmurality as a function whose domain is the myocardium, which not only provides the

transmurality values that the existing 2D methods offer, but also supplies information about the scar depth location.

In addition, it is computed as a fully 3D method. We assume that segmentations of the endocardium, the epicardium

and the scar are available. A general flowchart of the proposed framework for the computation of transmurality

maps is drawn in Figure 4, using the same inputs as in Figure 2. Note how the proposed framework overcomes the

limitations of the FM method to compute transmurality.

The first step is to have an appropriate s(x) for each particular myocardium, since there is a high variability in

their geometry. The following Laplace equation with boundary conditions is solved within the myocardium:

∇2s(x) = 0, subject to s(Γ0) = 0, s(Γ1) = 1 (22)

with Γ0 and Γ1 being respectively the endocardial and the epicardial boundaries. The harmonic function s(x) that

solves Eq. (22) satisfies the properties given in Section III-A, and also provides a unique point-to-point mapping

between Γ0 and Γ1 [23]. Nevertheless, if the transmurality map methodology were to be applied in a different

context (for example, in a setting where the object geometry was fixed and known beforehand), a different choice
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for s(x) might be considered without loss of generality as long as the aforementioned properties were satisfied.

Figure 5 shows some streamlines, in 3D and projected on an SA and an LA plane, computed out of the harmonic

function s(x) yielded by solving Laplace’s equation in a real CE-CMR dataset.

Figure 5. Left: 3D rendering of some streamlines from a harmonic function s(x), computed from a real dataset, superposed to the endocardial

surface. Right: projection of the streamlines on an SA plane (top) and an LA plane (bottom).

In the next step Ts(x) and Tm(x), respectively the scar and myocardial thickness maps, are simultaneously

computed by means of the MSSFM method with the same harmonic function s(x) and different local costs Cs(x)

and Cm(x). Let χs(x) and χm(x) be the characteristic functions of the scar and the myocardium segmentations

respectively, such that χν ∈ [0, 1], ν = s,m, with the extreme situations of χν = 1 if x is within the tissue of

interest (scar or myocardium) and χν = 0 otherwise. Note that χν(x) does not need to only take on the binary

values {0, 1}, a fact that opens up possibilities such as taking into account the existence of tissue mixtures inside

a voxel and soft segmentations. Then, to compute the scar and myocardial thickness, the local costs are chosen to

be Cs(x)=χs(x) and Cm(x)=χm(x). The following algorithm computes Ts[x] and Tm[x] simultaneously3:

1. Label all the nodes enclosed by the endocardium as Known, and set their value Ts[x] = Tm[x] = 0. Label the

remaining nodes as Far.

2. Build a narrow band with the Far neighbors of Known nodes, label them as Active, compute Ts[x] and Tm[x]

(see Section III-B), and add them to the heap.

3. While there are Active nodes within the myocardium:

a Find the Active node with the smallest s[x] value, and mark it as Known.

b Look for its neighbors within the myocardium whose label is not Known. Change those with a Far label to

Active and add them to the heap. Compute Ts[x] and Tm[x] (see Section III-B).

c Go back to step 3.

3We change from the continuous domain (x) to the discrete domain [x] to match the notation in Section III-B. The continuous notation is

resumed afterwards.
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In steps 2 and 3.b, after computing T is [x] and T im[x] for every stencil Si, i = 1, . . . , Q, we assign Ts[x] = T js [x]

and Tm[x] = T jm[x] from the stencil Sj with the smallest value of T im[x]. If in the computation of either Ts(x)

or Tm(x) a default value from the causality condition needs to be used, then default values must be computed for

both Ts(x) and Tm(x). This is done because as long as the same stencil is used for computing Ts[x] and Tm[x],

and Cs[x] ≤ Cm[x],∀x ∈ R, then Ts[x] ≤ Tm[x],∀x ∈ R which ensures that the computed transmurality will only

take on values in [0, 1].

Finally, the transmurality map t(x) is computed as:

t(x) =
Ts(x)

Tm(x)
(23)

Within the myocardium, t(x) is the transmurality using the piece of streamline between x and the endocardium.

At the epicardial nodes, t(x) provides the transmurality using the whole myocardial thickness in the same manner

as state-of-the-art transmurality methods do. Therefore, at the rest of the myocardium t(x) supplies additional

information over the intramural location of the damaged tissue.

For visualization purposes, however, it may be convenient to assign the same transmurality value to all the

points in a streamline, as it is done in [24]. This can be easily performed by computing T̃s(x) and T̃m(x) using

C̃s(x) = Cs(x) and C̃m(x) = Cm(x) respectively, but employing s̃(x) = −s(x) and swapping the contours (using

the epicardium as Γ̃0 and the endocardium as Γ̃1). The expression for the transmurality when all the points in a

streamline have the same value, t̂(x), is:

t̂(x) =
Ts(x) + T̃s(x)

Tm(x) + T̃m(x)
(24)

In order to provide better accuracy to the MSSFM method, upsampled segmentations may be used to compute

Ts(x) and Tm(x), and then return to the original resolution by decimation.

B. Visualization of 3D Local Transmurality Maps

The inspection of a myocardial 3D local transmurality map poses a challenge, since depth adds further complexity

to the visualization on top of the 3D myocardial geometry and the transmurality value. One of the possibilities is

to use 3D rendering techniques; for example, to employ an isosurface of s(x) at a certain depth value and encode

the transmurality as the isosurface color. This approach allows for a good representation of the myocardial shape,

but only one isosurface is shown at a time, and always some part of the myocardium is hidden to the viewer.

A different possibility is to use a 3D to 2D map projection that allows for the visualization of the whole isosurface,

in the same manner the Earth surface is depicted on a cartographic plane. As a result there are no occlusions in

the visualization, and several 2D maps at different depths can be observed simultaneously.

Let {Ψ : 0 ≤ v ≤ vmax ≤ π
2 ,−π cos v ≤ u ≤ π cos v} be the 2D domain in which the isosurface s(x, y, z) = s0

is to be mapped, let the ventricle long axis be roughly aligned with the z-axis, and let (u, v) be a point in Ψ. The

z coordinate is mapped onto v, such that v = 0 and v = π
2 belong to the ventricle basis and apex, respectively. If

the apex is not present in the volume, a value vmax ≤ π
2 is computed as vmax = arctan

(
∆z
∆r

)
, where ∆z is the
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ventricle length in the z-axis and ∆r the ventricle radius of the most apical short-axis slice. Then, to extract the

isosurface point that maps into (u, v), a ray is traced along the following coordinates:

x = x0(v) + r cos
( u

cos v
+ θ0

)
y = y0(v) + r sin

( u

cos v
+ θ0

)
z = z0 + zmax

v

vmax

(25)

where r ≥ 0 controls the location of the isosurface within the myocardium thickness, (x0(v), y0(v)) are the

coordinates of the ventricle long axis, θ0 is an angular offset to allow for a rotation of the ray around the ventricle

long axis (see Section V-C3), and z0 and zmax are the z coordinates of the most basal and apical myocardial slices.

The value assigned to (u, v) is the value of the transmurality local map where this ray crosses the isosurface of

s(x) at the desired depth.

V. EXPERIMENTAL RESULTS

The experimentation is divided into three parts. The accuracy and consistency of the Streamline Fast Marching

is tested in Section V-A. Then, a comparison between the proposed and existing 2D methods for transmurality

computation is carried out using a 3D synthetic model in Section V-B. Finally, in Section V-C the transmurality

maps of real datasets are shown and their capability to distinguish different scar configurations is discussed.

A. Accuracy and Consistency of the MSSFM

1) Experimental Design: Following the methodology of [30], a number of analytical functions Ti(x), si(x)

and Ci(x) that together satisfy Eq. (7) are employed as the gold standard to compare the computed Ti[x]. These

analytical functions are given in Table III; the first four are 2D and the remaining three are 3D. Given that T1(x)

and T5(x) have unitary speed, their computational outcome can be compared with the result provided by the upwind

PDE for thickness computation (given by Eq. (1)) proposed in [24]. In Figures 6(a)–6(d), the isocontours of the

2D analytical functions Ti(x), i = 1, . . . , 4 are drawn.

The error committed by the numerical scheme is measured by means of the L1 and L∞ norms of the absolute

difference between the computed Ti[x] and the analytical Ti(x):

Li1 =

∑N
j=1 |Ti[xj ]− Ti(xj)|

N
(26)

Li∞ = max
j=1,...,N

(|Ti[xj ]− Ti(xj)|) (27)

where N is the number of nodes in the discretized domain. We also employ a normalized version of these norms,

Li1n =
Li

1

max(Ti)
and Li∞n =

Li
∞

max(Ti)
, to account for the variations in range of the different Ti.
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Table III

ANALYTICAL FUNCTIONS EMPLOYED IN THE EXPERIMENTS.

i Ti(x) si(x) Ci(x)

1
√
x2 + y2

√
x2 + y2 1

2
√
x2 + y2 − 2 sin

(√
x2+y2

2

) √
x2 + y2 1− cos

(√
x2+y2

2

)
3 x2

25
+ y2

9

√
x2 + y2 18x2+50y2

225
√

x2+y2

4 x2

100
+ y2

20

√
x2 + y2 x2+5y2

50
√

x2+y2

5
√
x2 + y2 + z2

√
x2 + y2 + z2 1

6
√
x2 + y2 + z2 − 3 sin

(√
x2+y2+z2

3

) √
x2 + y2 + z2 1− cos

(√
x2+y2+z2

3

)
7 x2

50
+ y2

20
+ z2

100

√
x2 + y2 + z2 2x2+5y2+z2

50
√

x2+y2+z2
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Figure 6. Results for T1(x), with isotropic grid spacing h = 1. (a)–(d): Analytical functions Ti(x), i = 1, . . . , 4. (e)–(h): Computed

Ti[x], i = 1, . . . , 4. (i)–(l): Absolute error |Ti(x)− Ti[x]|, i = 1, . . . , 4.

2) Accuracy: In Figures 6(e)–6(h), the computed Ti[x], i = 1, . . . , 4 are also shown as isocontours, whereas the

absolute error with respect to the analytical solution is shown in Figures 6(i)–6(l). In Table IV, the L1 and L∞

norms for each Ti(x) computed by the proposed multi-stencil scheme (and when possible, also by the thickness

computation method [24]) are given, using h1 = h2 = 1, −50 ≤ x, y ≤ 50 for the 2D test functions T1 to T4 and
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Table IV

COMPUTED NORMS BETWEEN THE PROPOSED MULTI-STENCIL METHOD AND THE METHOD [24], WHEN APPLICABLE (T1 AND T5).

i max(Ti)
MSSFM Method [24]

Li
1n Li

∞n Li
1n Li

∞n

1 70.711 4.35×10−3 8.34×10−3 1.12×10−2 1.90×10−2

2 72.142 9.54×10−3 3.48×10−2 — —

3 377.778 9.19×10−3 1.75×10−2 — —

4 150.000 8.72×10−3 1.80×10−2 — —

5 51.961 7.54×10−3 1.48×10−2 2.52×10−2 3.94×10−2

6 54.959 1.16×10−2 2.80×10−2 — —

7 72.000 1.40×10−2 2.69×10−2 — —

h1 = h2 = h3 = 1, −30 ≤ x, y, z ≤ 30 for the remaining T5 to T7. It may be observed that the proposed method

yields more accurate results than [24] for T1(x) and T5(x), due to the fact that [24] only uses one stencil (S1) in

its numerical scheme. Therefore, the information provided by the rest of the neighboring nodes is not employed,

which makes the error grow. It is worth noting that the L1 norm yielded by [24] surpasses the L∞ norm yielded by

the proposed multi-stencil method. We remark that the accuracy results for T4(x) are slightly better than the ones

achieved for the same function by the original first-order multi-stencil method proposed for solving the Eikonal

equation [30] in the same experimental conditions, which scored L1 = 1.515 and L∞ = 3.000, while the MSSFM

yielded L4
1 = 1.308 and L4

∞ = 2.697. The error behavior shown in Figures 6(i)–6(l) may be explained studying

the error along the stencil directions, where the numerical scheme can be viewed as a 1D numerical integration

of Ci(x). In Figure 6(i) it can be seen that for the constant C1(x) the error along the stencil directions is zero,

and it grows as we move away from them. In Figures 6(j) and 6(l) the local costs C3(x) and C4(x) are no longer

constant but increasing. Since the value computation —see Eq. (20)— assumes the local cost is constant in the

neighborhood, an overestimation occurs. Again, the error increases far from the stencil directions. Lastly, Figure 6(k)

shows the error for the sinusoidal local cost C2(x). The observed pattern is originated because the overestimations

when C2(x) increases are subsequently compensated by underestimations when C2(x) diminishes.

3) Influence of the Stencil Set: In Table V we show a comparison of the method accuracy and computational

cost using one, four and six stencils to compute T5[x], T6[x] and T7[x] with the same discretization as before. The

computational cost is measured by the execution time of an implementation of the algorithm in C++ on a computer

with an Intel Core(TM) i7-2670QM at 2.20GHz CPU and 8GB of RAM. We can see that the accuracy increases

with the number of stencils. In particular, except for T7, the maximum absolute error Li∞ achieved by using 6

stencils is less than the mean absolute error Li1 that is yielded when 1 stencil is employed. There is, however, a

reduction of the execution time by using one and four stencils of a 52% and a 20% respectively compared with

using six stencils.

4) Consistency: Another experiment has been performed to check the numerical scheme consistency, i.e., whether

the numerical scheme error tends to zero as the grid spacing does. For this purpose, an isotropic grid of pixel size
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Table V

ERROR NORMS AND EXECUTION TIME USING DIFFERENT STENCIL SETS TO COMPUTE T5 , T6 AND T7 .

Exp.
6 stencils 4 stencils 1 stencil

Li
1 Li

∞ Time Li
1 Li

∞ Time Li
1 Li

∞ Time

T5 0.392 0.771 51 s 0.688 1.102 40 s 1.322 2.237 24 s

T6 0.639 1.541 50 s 0.781 1.625 40 s 1.579 2.784 24 s

T7 1.008 1.936 50 s 1.008 1.936 40 s 1.238 4.026 24 s

Table VI

CONSISTENCY RESULTS FOR T1 AND T3 VARYING THE GRID SPACING h.

h
T1 T3

Li
1 Li

∞ Li
1 Li

∞

2−4 1.22×10−2 2.36×10−2 4.40×10−3 8.18×10−3

2−5 8.16×10−3 1.57×10−2 2.17×10−3 4.11×10−3

2−6 5.22×10−3 1.00×10−2 1.09×10−3 2.08×10−3

2−7 3.22×10−3 6.18×10−3 5.50×10−4 1.06×10−3

2−8 1.94×10−3 3.71×10−3 2.79×10−4 5.37×10−4

h × h has been used to generate T1[x] and T3[x] with different resolutions. In Table VI the computed errors for

different h values show that for smaller h the error diminishes, as expected. In contrast with the results in Table IV,

the error norm values for T3[x] in Table VI are smaller than for T1[x]. The reason for this is that the grid size and

spacing are chosen to discretize the domain [−1, 1]× [−1, 1], in which C2(x) ≤ C1(x).

B. Validation using a Synthetic Model

1) Model Description: To assess the accuracy of the transmurality measures provided by the existing 2D methods

and the proposed 3D algorithm on the left ventricle, a myocardium-like synthetic phantom has been built using

semi-ellipsoids for the endocardium and the epicardium. The endocardium is given by:

x2

R2
x

+
y2

R2
y

+
z2

R2
z

= 1,−80 ≤ x, y ≤ 80, 0 ≤ z ≤ 80 (28)

with Rx =Ry = 30, Rz = 50, and a resolution of 160×160×80. The epicardium is built using new semiaxes

R̂x = Rx +Dx, R̂y = Ry +Dy and R̂z = Rz +Dz , where D{x,y,z}=16 are the thicknesses along each respective

axis. The myocardium is then divided into twelve sectors, whose geometry is shown in Figure 7. Instead of using

planes perpendicular to the z-axis for the boundaries between basal, mid-cavity and apical sectors, two cones with

the z-axis as their axis of revolution were used which intersect the endocardium at zen1 =20 and zen2 =40 (see

Figure 7). Their generatrices are parallel to the endocardium normal at the point of intersection, to better emulate the

propagation of ischemia from the endocardium to the epicardium. Each sector is given a random scar transmurality
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(a) (b) (c)

Figure 7. (a) LA (left) and bull’s eye with sector numbers (right) views of the synthetic myocardium used in the experiments. (b) LA view

of two instances of the phantom with a pitch angle of 0◦ (left) and 20◦ (right) and a null yaw angle, where the scar is colored by sector. (c)

Superposition of the endocardial (red) and epicardial (green) contours at z=0 of all the instances with modified radii and thicknesses.

value ti ∈ [0, 1], i = 1, . . . , 12, and the scar is computed with the expression:

χs(x, y, z) =

12∑
i=1

H
{

1−
( x2

(Rx + tiDx)2

+
y2

(Ry + tiDy)2
+

z2

(Rz + tiDz)2

)1
2

, 0.01
}
χi(x, y, z)

(29)

where χi(x, y, z) ∈ {0, 1} is the characteristic function of membership to sector i and H(·, ε) ∈ [0, 1] is a well

known regularized Heaviside function whose expression is:

H(u, ε) =


1, u > ε

0, u < −ε

1
2

(
1 + u

ε + 1
π sin

(
uπ
ε

))
, |u| ≤ ε

(30)

Note that χs(x, y, z) may have non integer values in a small band. The scar has constant transmurality within a

sector, but there are abrupt changes in scar thickness at the boundaries between neighboring sectors.

2) Comparison with 2D Transmurality Methods: To compute the transmurality with the 2D methods described

in Nazarian et al. [11], Schuijf et al. [19] and Elnakib et al. [20], the myocardium was divided into slices along the

z-axis. Given that the sector boundaries are not orthogonal to the z-axis, a ray may be traced along more than one

sector. In that case, the computed transmurality is considered to belong to the sector that has the largest number of

nodes along the ray. A 3D transmurality map was computed using the proposed method, upsampling the phantom

by 2. The experiment was repeated 100 times for different random sector transmurality configurations.

Two error types are defined. ξs is defined as the error committed in the estimation of the transmurality in sector

s by averaging all its Ns individual transmurality measures t̃is:

ξs =

∣∣∣∣∣∣ts − 1

Ns

∑
〈Ns〉

t̃is

∣∣∣∣∣∣ (31)

A local error LEi is defined as the absolute deviation of an individual transmurality measure t̃is(i) with respect

to the true transmurality value ts(i) (with s(i) the appropriate sector for the i-th measure):

LEi = |t̃is(i) − ts(i)| (32)
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The behavior of ξs for the different methods is compared by means of the root mean square (RMSE) and the

maximum error, both computed out of 100 experiments carried out with different scar configurations; results are

shown in Table VII. In the basal sectors (1–4), Elnakib et al. achieved the best results, followed by Nazarian et al.

and the 3D transmurality map method, whereas Schuijf et al. was the method with the highest error. However, the

3D transmurality map achieves better results in the mid-cavity and apical sectors, especially in the latter, where

only 5 slices could be used by the 2D methods, since the rest of them contained no endocardial contour; however,

the proposed method does not suffer from this limitation. This also leads to a high maximum error deviation of the

2D methods within these sectors, some as high as 0.782 in a measure that takes on values in [0, 1], committed by

Elnakib et al., while for the 3D transmurality map the maximum error was of 0.062. Taking into account all the

sectors in the error computation, the 3D transmurality map achieved the best overall results.

Table VII

RMSE = RMSE(ξs) AND ξmax
s = max(ξs)) OF THE TRANSMURALITY ERROR BY SECTORS.

Sectors
Nazarian et al. Schuijf et al. Elnakib et al. Prop. Upsampled

RMSE ξmax
s RMSE ξmax

s RMSE ξmax
s RMSE ξmax

s

Basal 0.013 0.033 0.028 0.058 0.005 0.021 0.016 0.056

Mid-cavity 0.031 0.126 0.050 0.111 0.033 0.131 0.011 0.048

Apical 0.153 0.698 0.093 0.215 0.175 0.782 0.021 0.062

All 0.090 0.698 0.063 0.215 0.103 0.782 0.016 0.062

In order to check whether the model regularity affects performance, the phantom radii Rx and Ry had its length

modified randomly a 20%, and their respective thicknesses Dx and Dy were also randomly changed 10% within

each instance in which the transmurality was computed (see Figure 7(c)). In this case, each instance of RMSE

is calculated from all the LEi corresponding to the points within a myocardium at some selected slice and the

magnitude we show is the average of RMSE along 100 experiments with different scar configurations. Results

are shown in Figure 8. The vertical red and green dotted lines are located on the slices with a vertical transition

of sectors in the endocardium and the epicardium, respectively. It may be observed that the 3D method provides

transmurality measures in apical slices, while the other methods are unable to do so due to the reasons stated

previously (i.e., no endocardium is found in them). We can see that in all the methods there are error peaks in

the slices near the transition between basal and mid-cavity sectors, and between mid-cavity and apical sectors. For

the proposed 3D method, the highest errors are located near the epicardial boundaries, while for the 2D methods

they are in the slices with a mixture of basal and mid-cavity, or mid-cavity and apical sectors. Far from these

transitions, where the scar has constant thickness, the proposed method with upsampling provides the least LE.

Hence, geometry regularity seems important for the 2D methods to perform correctly.

The LE in the set of slices where all 2D and 3D methods could be applied (slices 1–50) was then inspected. In

Figure 9, a box plot of the RMSE(LE) values for the 100 trials with geometry variation shows that the 3D method

with upsampling achieves the best results. We have also performed three two-sample t-tests —with significance
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Figure 8. Average RMSE(LE) within slices computed with different methods.

level of 0.05 assuming different variances— between the results of the 3D method with upsampling against those

of each of the 2D methods. Results indicate that the mean of the RMSE(LE) of the 3D method is smaller than

the mean using any of the three other methods (for Nazarian et al. with p < 10−20; using Schuijf et al., with

p < 10−29; and using Elnakib et al., with p < 10−13).

Figure 9. Box plots of the global RMSE(LE) for the compared methods.

The slice orientation in short-axis acquisitions is manually done by the operator of the CMR equipment and

may have a deviation with respect to the true short-axis orientation, with a subsequent volume rotation. In order to

assess the effect that rigid transformations may have in the transmurality accuracy, we have conducted an experiment

where the phantom with Rx=Ry=30, Dx=Dy=Dz=16 is rotated by a controlled pitch angle between 0 and 20◦

(see Figure 7(b)). To avoid favoring some sectors over others, a second rotation by a yaw angle is applied. Forty

instances, each with a random yaw angle and scar configuration, were carried out for every pitch angle value.

The average global RMSE(LE) by pitch angle is shown in Figure 10 for the proposed 3D method and Elnakib

et al.’s algorithm, which achieved the best results among the 2D methods. The proposed 3D method achieves lower

average RMSE(LE) for every pitch angle. It may also be observed that the average error committed by Elnakib et

al.’s method increases with the angle. With respect to the influence of the rigid transformation on the sector errors
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ξs, Figure 11 shows the average RMSE(ξ) for basal, mid-cavity and apical sectors. In the mid-cavity sectors both

methods achieve similar results —slightly better for the proposed method, as shown in Figure 11(b)—, and in the

apical sectors the local transmurality map method clearly yields a lower average error than Elnakib et al.’ approach

in the whole pitch angle range. In the basal sectors the error committed by Elnakib et al.’s method increases with

the rotation angle, and has a higher error than the proposed 3D method for angles ≥ 10◦.

Figure 10. Average global RMSE(LE) with respect to the pitch angle.

C. Transmurality Maps on Real Datasets

1) Image Dataset: Our dataset includes eight cardiac short axis CE-CMR volumes, acquired with a 1.5T GE

Genesis Signa MRI scanner. Each of them has between 10 and 13 slices with 512× 512 pixels and 10 mm of slice

thickness. The in-plane spatial resolution varies among volumes, taking on values between 0.7031 mm and 0.9375

mm.

A set of endocardial and epicardial contours has been manually drawn for each volume by a cardiologist. To

compute the scarred tissue masks χs[x], the automatic segmentation method described in [32] has been used.

Before computing the proposed 3D transmurality maps, the volumes of the dataset have been interpolated in the

LA direction to provide nearly isotropic resolution using a registration-based interpolation method developed by

our team [33].

2) Transmurality Maps on 2D slices: The transmurality map of three two-dimensional slices extracted from the

CE-CMR volumes was computed. Figures 12(a), 12(d) and 12(g) show the myocardium with added endocardial

(red), epicardial (green) and scar (yellow) contours. Both alternative transmurality maps t(x) and t̂(x) are computed,

the former appears in Figures 12(b), 12(e) and 12(h) and the latter in 12(c), 12(f) and 12(i). The t(x) map shows

the partial transmurality computed from the endocardium to x, and thus provides the transmurality of the whole

myocardial thickness at the epicardial nodes. The t̂(x) map assigns to x the transmurality computed in the streamline

passing through that node, which discards information about the depth at which the non-viable tissue is located.

The myocardial transmurality, however, is more easily visualized. Notice that in Figure 12(d) the largest scar island
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(a)

(b)

(c)

Figure 11. Average RMSE(ξ) with respect to the pitch angle for all (a) basal, (b) mid-cavity, and (c) apical sectors.

is located near the epicardium. In that myocardium section, the local transmurality map (Figure 12(e)) is zero at the

endocardium, and starts growing as it propagates through the non-viable tissue. In contrast, the local transmurality

behavior when the scar is attached to the endocardium, as in 12(g), is to start with a unitary value at the endocardium

which is maintained until healthy tissue is encountered, and then it begins decreasing as long as no new scar is

crossed. These different behaviors makes the local transmurality map t(x) provide information on the scar location,

while t̂(x) does not.

3) 3D Transmurality Maps: Figure 13 shows renderings of the transmurality map computed on four interpolated

CE-CMR volumes (where the endocardial and epicardial contours marked by experts have been interpolated

accordingly) using the proposed three-dimensional method; as the visualization technique we have chosen an
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Examples on 2D CE-CMR slices, with the segmentation s(x) on the left column ((a), (d) and (g)) and the transmurality maps t(x)

and t̂(x) on the central ((b), (e) and (h)) and right ((c), (f) and (i)) columns respectively.

epicardial isosurface where color maps the scar transmurality.

Figure 14 shows the projections of the isosurfaces at the isovalues s(x) = { 1
3 ,

2
3 , 1} of the interpolated volume

whose 3D rendering of the epicardial transmurality is shown in Figure 13(a), colored either by their transmurality

(Figures 14(a), 14(e) and 14(i)) or by the associated scar segmentation (Figures 14(c), 14(g) and 14(k)). Three SA

slices of the scar segmentation are included in Figures 14(d), 14(h) and 14(l). The bullseye diagram of the mean

subendocardial transmurality at s(x)={ 1
3 ,

2
3 , 1}, computed after dividing the myocardium into sectors following [22]

are displayed in Figures 14(b), 14(f) and 14(j). The angular offset θ0 has been chosen so that the anterior (1, 7)

and the anterolateral (6, 12) myocardial sectors are placed respectively at the leftmost and rightmost borders of the

map, and sector numbers have been added to help locate any particular sector. Notice, however, that due to the

16 sector model design [22] and the choice of θ0, a thin stripe from sector 13 experiences a wrap-around effect

and appears at the rightmost border of the projection. It may be observed that regions with transmural scars have
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(a) (b)

(c) (d)

Figure 13. Three-dimensional transmurality maps at the epicardium of four interpolated CE-CMR volumes.

unitary transmurality in red color at every isovalue of s(x) (see for example segments 8 and upper left corner of 14).

Regions with subendocardial scar have a mostly unitary transmurality at low s(x) values (near the endocardium),

which decays at higher s(x) values where no more scar is present (see upper right corner of segments 7 and 14).

On the contrary, regions with subepicardial scar have low transmurality values at low s(x) values, which increases

with s(x) when scarred tissue is met (see sector 10). In sector 4 at s(x)={ 2
3 , 1}, a small region with increased

transmurality, whose scar has not appeared in the segmentation projections shown in Figures 14(c) and 14(g), is

displayed. This is due to a thin scar island between s(x)=1
3 and s(x)=2

3 which has not been crossed by the 2D

projections of the segmentation.

4) Comparison with 2D Transmurality Methods: Lastly, we compare the 3D transmurality map yielded by the

proposed framework (Figure 15(d)) with the 3D rendering of the epicardium colored by the result of the 2D

transmurality methods [11], [19], [20] (respectively in Figures 15(c), 15(a), and 15(b)), computed slice by slice

in one of the interpolated CE-CMR volumes, whose scar segmentation is shown in Figure 14. We observe that

Figures 15(a) and 15(b) are similar to each other but different from Figures 15(c) and 15(d). The reason for this

is that the former measure the scar thickness as a segment length, and the latter either probe the points along the

path [19] or compute a line integral. In a patient with IHD, where the ischemic wave moves from the endocardium

to the epicardium, both measuring philosophies would provide similar results, but this example has healthy tissue
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14. 2D projections of the local transmurality map rendered in Figure 13(a) at depths (a) s(x)=1
3

, (e) s(x)=2
3

, and (i) s(x)=1; with

their respective bullseye diagrams in (b), (f) and (j). 2D projections of the associated scar segmentation at depths (c) s(x)= 1
3

, (g) s(x)= 2
3

,

and (k) s(x)=1. Blue lines mark the crossings with the SA slices shown —from top to bottom— in (d), (h) and (l). Myocardial segments.

(Basal) 1: Anterior, 2: Anteroseptal, 3: Inferoseptal, 4: Inferior, 5: Inferolateral, 6: Anterolateral. (Midventricular) 7: Anterior, 8: Anteroseptal,

9: Inferoseptal, 10: Inferior, 11: Inferolateral, 12: Anterolateral. (Apical) 13: Anterior, 14: Septal, 15: Inferior, 16: Lateral.

interlaced with scar (see Figure 14). It may also be seen how the proposed framework provides a smoother map than

the 2D methods. The influence of allowing 3D point-to-point endocardial to epicardial matches can be appraised

in the basal and apical regions of Figure 15(d). There, the streamlines respectively evolve upwards and downwards

the LA direction (see Figure 5) due to the myocardial curvature, which translates into a stretched appearance along

the LA compared to the 2D methods; particularly [19], shown in Figure 15(c).

VI. CONCLUSIONS AND FUTURE WORK

A method for computing thickness and transmurality has been developed, which to our best knowledge is the first

to be fully 3D. To this end, a MSSFM method has been created to compute line integrals along the streamlines of a

scalar field gradient that fulfills a number of requirements. One such field is the harmonic function that arises from

solving Laplace’s equation within the myocardium. This method generalizes the one used in [24] for computing

cortical and myocardial thickness and provides more accurate results thanks to a multi-stencil numerical scheme that

has also been detailed. Using this method it is possible to compute scar thickness out of soft or hard segmentations

and to provide a continuous framework for transmurality. We have also presented an algorithm to simultaneously

build the myocardial and scar thickness. In addition to the transmurality being computed considering the whole

myocardial thickness, this method also provides partial transmurality measures at any depth within the myocardium.
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(a) (b)

(c) (d)

Figure 15. 3D transmurality maps of an interpolated CE-MRI volume, using the transmurality method proposed by: (a) Nazarian et al. [11],

(b) Elnakib et al. [20], (c) Schuijf et al. [19], and (d) this paper.

The method has been tested on synthetic and real CE-CMR volumes. An experimental comparison of the accuracy

of sector and local transmurality computed by existing 2D methods and the proposed framework shows that the

3D transmurality map is more robust against myocardial geometry deformations and rotations, performing better

in mid-cavity and apical sectors. Additionally, it is capable of providing transmurality measures at the whole

myocardium. This constitutes an advantage against 2D methods, which are unable to do so in apical slices where

no endocardium is identified, but yet an endocardial-epicardial 3D correspondence may be established. We have

also provided examples on how the location of the scarred tissue may be inferred from the transmurality map and

have used a map projection technique to concurrently visualize the information contained at different depths of the

3D local transmurality. We plan to explore the application of local transmurality maps to other contrast enhanced

MRI modalities.
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