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Chapter 1: Introduction 

 

1. Problem statement 

Due to economic development and the continuous rise in population, the demand for 

energy is increasing [1]. The world is facing unprecedented challenges for energy supply 

because ofthe decrease in oil and gas reserves, aggravated by the emissions of 

greenhouse gases [2]. Many researchers are focusing on alternative energy sources to 

fulfill this demand [3]:solar, wind, tidal wave, and biomass, have been studied to provide 

safe and sustainable energy sources. However, high installation costs, coupled with the 

uneven availability distribution, are still preventing them from being widely used. 

Affordable, clean, safe, and adequate energy sources remain one of the world’s biggest 

challenges. 

Water and energy are intrinsically linked; both are required to maintain an adequate 

standard of living [4].Today, energy is not yet sufficiently abundant in any form that may 

be used sustainably to increase water supplies. Reuse of water makes great technical 

sense, and this approach must be explored and applied to its greatest practical extent. 

The desalination of seawater is the second largest method, after fresh water treatment, 

for water supply to communities and cities [5]. Reverse osmosis (RO), and thermal 

desalination processes like multi-effect distillation (MED), are the most common 

processes for seawater desalination. Unfortunately, the major problem in these 

processes is the high energy requirements for seawater desalination [5]. Consequently, 

it becomes a necessity to find technologies that have a low environmental impact to 

fulfill the need of water and energy.  

2. Pressure Retarded Osmosis (PRO) 

Pressure Retarded Osmosis (PRO) is the process through which osmotic energy can be 

harnessed and power generated [6]. In a typical PRO process, water molecules are 

spontaneously transported through a semi-permeable membrane from a low salinity 

stream (such as river water, brackish or waste water) at ambient pressure into a 

pressurized high salinity stream (seawater or brine), withthe aid of the osmotic 

pressure gradient across the membrane. Power is then obtained by depressurizing a 
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portion of the diluted seawater through a hydro-turbine [7]. It has been estimated that 

up to 0.8 kWh can be generated when 1 m3 of river water flows into seawater. Thus, it is 

estimated that the global energy production potential of PRO is around 2,000 TWh per 

year [8].  

A review of published material and experimental data on pressure retarded osmosis 

(PRO) showed increasing interest in PRO for power generation in two time periods, the 

1970s -for 20 years-, and significant attention over the past decade- the 2000s-, with 

increasing oil prices. Although the concept of PRO was first reported by Pattle in 1954 

[9], the method has been improving over the years, particularly after the opening of the 

first osmotic power plant prototype by the Norwegian state-owned power company, 

Statkraft, in 2009. The plant followed the proposal plant by Loeb and was designed to 

generate 10 kW [10]. Work is currently being done to overcome some of the difficulties 

of the technology, such as the high price of the membrane and its durability, the fouling 

and scaling, and the concentration polarization.  

3. Objectives of the thesis 

The main objectives of this investigation are: 

1. To develop a model of the water flux for a PRO flat sheet membrane that includes 

all the limitation factors of the PRO process, such as the concentration 

polarization and the salt leakage. This model will be validated using lab-scale 

experiments. The model will be extended to a large-scale PRO membrane. 

 

2. To develop a model for salt flux diffusion in PRO that reproduces the behavior of 

the reverse salt diffusion across the membrane, in order to understand the 

decrease in performance, and to suggest solutions for better PRO 

membranes.This model will also be validated using lab-scale experiments. 

3. To study the effect of the operating conditions (concentrations, temperature, 

pressure, etc.) on the performance of the PRO in realistic conditions. 

4.  To develop a model to quantify the temperature distribution inside a PRO 

membrane as a function of the solution temperatures. 

 

5. To study the feasibility of integrating PRO within desalination units to improve 

their performance. 



Chapter 1: Introduction 
 

3 

 

4. Organization of the dissertation 

This document contains 6 chapters distributed as follows: 

 The first chapter (the current one) contains a brief introduction presenting the 

motivation, a brief discussion of the PRO process (that will be extended further in 

the second chapter),and the objectives of this thesis. 

 

 The second chapter presents the state of the art of PRO, since the discovery of the 

process to the present. 

 

 The third chapter deals with the development of a model reproducing the water 

flux. The model is also validated and used to study the effect of the operating 

conditions on the water flux and, subsequently, on the power density. 

 

 The fourth chapter contains the development of a model reproducing the salt flux 

diffusion. After being validated, the model was used to study the effect of the 

operating conditions on reverse salt diffusion and its impact on power plants. 

 

 The fifth chapter deals with the effect of temperature on the hydrodynamics and 

the membrane parameters in PRO based on the models developed in the previous 

chapters. 

 

 The sixth chapter contains a study of the integration of PRO within desalination 

units (MED and RO) and the feasibility of this integration. 
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Chapter 2: 

Pressure Retarded Osmosis: State of the art  
  
  

 

1. Introduction 
 
The global primary energy demand has doubled between 1971 and 2012, mainly 

relying on fossil fuels [1]. This affects the world’s environment in aspects such as 

climate change, and other long term effects mainly caused by the increase in 

quantity of greenhouse gases (GHGs) emissions [2]. Moreover, the present use of 

fossil fuels such as oil and natural gas will result in an expected depletion in 2050 

onwards [3]. Each of these concerns should provide enough motivation for 

drastically reducing the use of fossil fuels. Therefore, the need of renewable energy 

sources has increased during the last decades in order to meet the world energy 

demand and progressively divert fossil energy sources [4]. One of these new 

renewable energy sources is the so-called ‘Blue Energy’ or ‘Salinity Gradient 

Power’ (SGP). 

 

2. Salinity gradient energy 

Salinity gradient power is the energy created from the difference in salt 

concentration between two fluids, commonly fresh and salt water. When a river 

runs into a sea, spontaneous mixing of fresh and salt water occurs. This natural 

process is irreversible; no work is attained from it. However, if the mixing is done 

(partly) reversibly, work can be obtained from the mixing process [4]. 

Approximately 0.70–0.75 kWh (2.5–2.7 MJ) is dissipated when 1m3 of freshwater 

flows into the sea [5], meaning that 1m3.s-1 of freshwater can potentially generate 

2.5–2.7 MW. Helfer et al. [2] gave some estimation about the maximum energy that 

could be theoretically produced the energy from the mixing of freshwater with 

saline water from five different sources (summarized in Table 2.1). The total 

technical potential for salinity gradient power is estimated to be around 647 

gigawatts (GW) globally (compared to a global power capacity in 2011 of 5456 

GW), which is equivalent to 5177 terawatt-hours (TWh), or 23% of electricity 
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consumption in 2011 [5]. The report [6] by Kachan& Copointed out that the 

osmotic power generation is potentially worth three times more than solar and 

wind power generation combined. Osmotic power reportedly could generate up to 

1,700 TWh of electricity each year by 2030 that is around 50% of Europe’s total 

energy demand. 

 

Table 2.1: Theoretical extractable energy from the mixing of fresh water with 
saline water from different sources [2]. 

 

Renewable energy could reduce global greenhouse gas emissions by 2741 Mt by 

2030 under accelerated environmental policies, according to the International 

Energy Agency [7]. EU leaders have agreed on a binding target of cutting emissions 

40% on 1990 levels by 2030.  Annual coal-fired generation is projected to double 

from 7,400 TWh in 2006 to 9,500 TWh in 2015 and 13,600 TWh in 2030 [7]. 

Replacing current and planned coal-fired power plants with salinity power plants 

(40% of energy conversion) could reduce global greenhouse gas emissions by 10 

Pg CO2-eq/year (~ 1010 tonnes/year). This means a potential reduction of 40% of 

current global energy-related greenhouse gas emissions [8].  

The most investigated techniques to generate energy from SGP are Pressure 

Retarded Osmosis (PRO) and Reversed Electrodialysis (RED) where, respectively, 

transport of water or ions through semi-permeable membranes takes place 

[9,10,11].  Both PRO and RED have a large potential for producing energy for the 

coming years and they could be used for different applications [4,11]. This 

dissertation concentrates on PRO because it could achieve greater efficiencies and 

higher power densities than RED [11]. PRO is more suitable to extract energy from 

a range of salinity gradients. 

 

  

Saline water source Concentration (g/l) Theoretical energy (kWh/m3) 

Seawater 35 2.7 

SWRO brine 70 5.4 

Great Salt Lake 485 37.5 

Dead Sea 657 50.7 
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3. Gibbs free energy of mixing 

The Gibbs energy of mixing Δ𝑚𝑖𝑥𝐺 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥isthe theoretical non-

expansion work that can be produced from mixing. It determines whether mixing 

at constant temperature and pressure is a spontaneous process. This quantity 

combines two physical effects: the enthalpy of mixing  ∆𝐻𝑚𝑖𝑥, which is a measure 

of the energy change, and the entropy of mixing ∆𝑆𝑚𝑖𝑥:  

 

Δ𝑚𝑖𝑥𝐺 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥 (2.1) 

 

For an ideal gas mixture or an ideal solution, there is no enthalpy of mixing 

(∆𝐻𝑚𝑖𝑥 = 0); the expression of the free Gibbs energy of mixing a concentrated and 

a diluted solutions is [4,12]: 

 

𝛥𝑚𝑖𝑥𝐺 =  ∆𝐺𝑏 − (∆𝐺𝑐 + ∆𝐺𝑑) = −(𝑛𝑐 + 𝑛𝑑)𝑇∆𝑚𝑖𝑥𝑆𝑏 +  (𝑛𝑐𝑇∆𝑚𝑖𝑥𝑆𝑐 + 𝑛𝑑𝑇∆𝑚𝑖𝑥𝑆𝑑) 

(2.2) 

where: 

The subscript c:corresponds to the concentrated solution.  

The subscript d:corresponds todilute solution.  

The subscript b:corresponds to the resulting brackish solution. 

n: the amount (moles).  

T: the absolute temperature. 

ΔmixS: the contribution of the molar entropy of mixing (J/mol/K) to the total molar 

entropy of the corresponding electrolyte solution, according to: 

 

∆𝑚𝑖𝑥𝑆 = −𝑅 ∑ 𝑥𝑖𝐿𝑛𝑥𝑖𝑖   (2.3) 

 

whereR is the universal gas constant (8.314 J/mol/K), and x the mole fraction of 

component i(For simulated seawater, i= Na, Cl, H2O). Vermaas et al. [10] showed 

that the theoretically Gibbs free energy obtained by mixing simulated seawater (30 

g/l NaCl) and simulated river water (1g/lNaCl), both at a flow rate of 1 m3/s,is 1.39 

MJ. Post et al. [4] presented some results of the theoretically available amount of 

energy (MJ) from mixing 1 m3 of a diluted and 1 m3 of a concentrated sodium 

chloride solution (Fig. 2.1). 

http://en.wikipedia.org/wiki/Spontaneous_process
http://en.wikipedia.org/wiki/Enthalpy
http://en.wikipedia.org/wiki/Ideal_gas
http://en.wikipedia.org/wiki/Ideal_solution
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Fig. 2.1: Theoretically available amount of energy (MJ) from mixing 1m3 of 

a diluted and 1m3 of a concentrated sodium chloride solution (T = 293 K). [4] 

 

4. Pressure Retarded Osmosis 

4.1 Osmotic processes 

The Osmosis phenomenon was already observed by Nollet in 1748 [13]. When two 

solutions of different concentration are separated by a semipermeable membrane 

(i.e. one which is permeable to the solvent but impermeable to the solute), osmotic 

pressure π arises due to the difference in the chemical potential. Water flows from 

the high chemical potential side to the low one until equilibrium is reached. The 

increased volume of water in the low chemical potential side builds up a 

hydrodynamic pressure difference, which is called the osmotic pressure difference 

Δπ. Osmotic processes include Reverse Osmosis (RO), Forward Osmosis (FO), and 

Pressure Retarded Osmosis (PRO). 

 

4.1.1 Reverse Osmosis  

Reverse Osmosis (RO) is a process that uses semipermeable membrane to separate 

dissolved salt from water. It is the process of Osmosis in reverse. Whereas Osmosis 

occurs naturally without energy required, to reverse the process of osmosis energy 

has to be applied to the most saline solution [14]. A reverse osmosis membrane is 

then a semi-permeable membrane that allows the passage of water molecules. 

However the water has to be pushed through the RO membrane by applying 

pressure ΔP greater than the naturally occurring osmotic pressure, in order to 

migrate pure water  from the saline solution while holding back the majority of salt 

(Fig. 2.2). 

 

http://forwardosmosis.biz/education/what-is-forward-osmosis
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4.1.2 Forward Osmosis 

Forward Osmosis uses the osmotic pressure differential (Δπ) across a semi-

permeable membrane, that separates two solutions with different concentration, 

as the driving force for transport of water from low concentrated solution to high 

concentrated solution (Fig. 2.2) [14]. 

 

4.1.3 Pressure Retarded Osmosis 

Pressure Retarded Osmosis can be viewed as an intermediate process between FO 

and RO, where hydraulic pressure is applied in the opposite direction of the 

osmotic pressure gradient (similar to RO). However, the net water flux is still in the 

direction of the concentrated draw solution (Fig. 2.2) [14].  

 

 

Fig. 2.2: Representation of water flow in FO, PRO, and RO (The thick black line 
represents the membrane active layer). 

 

4.2 Basic concept of Pressure Retarded Osmosis  

As it has been seen, Pressure Retarded Osmosis is a membrane-based process that 

generates energy from salinity gradients [15]. The principle of power generation 

by PRO is illustrated in Fig. 2.3.When concentrated seawater and diluted fresh 

water (i.e. river water) are separated by a semipermeable membrane, water will 

diffuse from the feed side into the draw solution side (i.e. seawater side), that is 

pressurized. To recover the hydraulic energy generated the pressurized diluted 

seawater is then split into two streams: one going through a hydro-turbine to 

generate electric power, and the other one passing through a pressure exchanger 

to assist in pressuring the inlet seawater, and thus maintaining the circulation [16]. 

The main variables of the process are now discussed in detail. 
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Fig. 2.3: Schematic of a PRO power plant. 

 

 

4.2.1 Water and salt fluxes across a PRO membrane  

a. Ideal membrane with perfect hydrodynamics 

Theoretically, the water permeation flux Jw across an ideal semi-permeable thin 

film that allows water passage but fully rejects all other solute molecules or ions 

can be expressed in terms of water permeability coefficient A, the osmotic 

pressure difference Δπ and the trans-membrane hydraulic pressure difference ΔP 

as follows [17]: 

 

𝐽𝑤 = 𝐴(∆𝜋 − ∆𝑃) = 𝐴(𝜋𝐷𝑟𝑎𝑤 − 𝜋𝐹𝑒𝑒𝑑 − ∆𝑃)  (2.4) 

 

where πDraw and πFeed are the bulk osmotic pressures of the draw and feed 

solutions, respectively. This equation is valid in an ideal system with a perfectly 

selective membrane (the membrane allows only the passage of water molecules 

but rejects all solutes) and perfect hydrodynamics in the draw and feed channels 

so that the concentrations at the membrane surface are equal to the bulk 

concentrations. 

 

Draw 
Pre-treatment 

Feed 
pre-treatment 

Membrane module 

Saline (Draw) solution 

Feed solution 

Pressure exchanger 

Turbine 

Brackish 
water 

Feed solution 

bleed 

Diluted solution  

Power 

Pump 
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b. Realistic membrane with reverse salt flux and concentration polarization. 

With a realistic membrane and hydrodynamics, an amount of salt permeates the 

membrane from the draw solution to the feed solution due to the concentration 

gradient across the membrane, and the effect of hydrodynamics is present. A 

schematic presentation of a PRO membrane at steady state is shown in Fig. 2.4.  

Three phenomena occur to reduce the trans-membrane water flux: 

 First, the porous support layer induces Internal Concentration Polarization 

(ICP): this effect takes place within the porous support, increasing the local 

concentration at the active-support interface, from CF,b to CF,m, which 

detrimentally enhances πF,m (the osmotic pressure of the feed solution at the 

interface active-support layers) by increasing the solute concentration at 

the feed membrane interface reducing the transmembrane driving force.  

 Second, without perfect hydrodynamics in the draw solution flow channel, 

dilutive External Concentration Polarization (ECP) occurs in the mass 

transfer boundary layer of the draw solution, reducing the local 

concentration at the active layer from CD,b to CD,m, which lowers πD,m ( the 

osmotic pressures of the draw active layer surface membrane). 

  Lastly, because the membrane is no longer perfectly selective, reverse salt 

flux takes place, resulting in uncontrolled mixing and therefore reducing the 

energy extraction in the process.   

As consequences of these effects, mass transfer kinetics of water across the 

semipermeable membrane under applied hydraulic pressure, ΔP is more precisely 

described as: 

 

𝐽𝑤 = 𝐴(∆𝜋𝑚 − ∆𝑃) = 𝐴(𝜋𝐷,𝑚 − 𝜋𝐹,𝑚 − ∆𝑃)  (2.5) 

 

The reverse salt flux, Js, is described as [18]: (2.6) 

 

𝐽𝑠 = 𝐵(𝐶𝐷,𝑚 − 𝐶𝐹,𝑚)              (2.7) 

 

where, B is the salt permeability coefficient of the membrane active layer and CD,m 

and CF,m are the solute concentrations at the interface of the active and support  
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layers, respectively. A typical concentration profile through the membrane is 

shown in Fig. 2.4. 

The salt permeability coefficient B of a semi-permeable membrane can be obtained 

from RO experiments [17] and is given by: 

 

𝐵 =
𝐴(1−𝑅𝑠)(∆𝜋−∆𝑃)

𝑅𝑠
  (2.8) 

 

where 𝑅𝑠 is the salt rejection defined as: 

 

𝑅𝑠  =  1 – 
𝐶𝑃

𝐶𝐹
  (2.9) 

 

with CP the salt concentration in the permeate solution obtained in the RO 

experiments and CF the one of the feed solution.  

The salt reverse flux can be expressed as a function of Jw using van't Hoff factor 𝛽as 

[19]: 

 

𝐽𝑠 =
𝐵

𝛽𝑅𝑇
(

𝐽𝑤

𝐴
+ ∆𝑃)  (2.10) 

 

where R is the universal gas constant, and T is the absolute temperature. 
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Fig. 2.4: Schematic representation of the concentration profile over the membrane, 
and the directions of the water flux Jw and the salt flux Jsacross a PRO membrane at 
steady state. Concentrative ECP in the feed solution is assumed to be negligible.  
 

 

4.2.2 Concentration polarization 

Concentration polarization is a phenomenon that can severely reduce the effective 

osmotic pressure difference across the membrane, due to the accumulation or 

depletion of solutes near an interface [20]. As a result of water crossing the 

membrane,  in PRO process the solute concentrates on the feed side of the 

membrane surface and dilutes on the permeate side. Because the membranes used 

in PRO are typically asymmetric (comprised of a thin dense layer on top of a 

porous support layer), concentration polarization occurs externally on the dense 

layer side and internally in the support layer side. Both internal and external 

concentration polarization reduce the effective osmotic pressure difference across 

the membrane. 

 

4.2.2.1 Internal Concentration Polarization  

When a non-ideal composite membrane is operated in a standard PRO process 

(with the active layer facing the draw solution), water flows from the fresh water 

through the support and active layers into the draw solution, while salt permeates 

from the salty water across the membrane skin and the support layer into the fresh 

water. Therefore, there exists a salt gradient in the membrane support (see Fig. 

2.4). This gradient will result in concentrative Internal Concentration Polarization 

ICP, lowing the osmotic force driving the water across the membranes [19, 20].  

CD,b CD,m 

CF,m 

CF,b 

External concentration 

polarizationECP 

Internal concentration 

polarizationICP 

Jw 
Js 

PRO module 

Active layer Support layer 
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ICP occurs when the thin film is supported by a porous substrate: based on the 

mass balance in the porous substrate layer, Lee et al. developed a theoretical 

model for the PRO process which suggested that membranes with high water 

permeation and high salt rejection are essential for high PRO performance [17]. 

The mass transport of salt in the membrane support, and in each of the boundary 

layers, will balance the sum of the convective salt transport and the diffusive salt 

transport due to the gradient in salt concentration. Hence, this balance of transport 

of salt can be described by: 

 

𝜀𝐷

𝜏

𝑑𝐶

𝑑𝑥
− 𝐽𝑤𝐶 = 𝐽𝑠  (2.11) 

 

where C is the salt concentration at position x, D is the diffusion coefficient, ε is the 

porosity and τ is the tortuosity of the support layer. Lee et al. [17] derived an 

expression for modeling this phenomenon in PRO, which Loeb et al. [21] later 

related to water flux and other membrane constants: 

 

𝐾 = (
1

𝐽𝑤
) 𝐿𝑛

𝐵+𝐴𝜋𝐷,𝑚−𝐽𝑤

𝐵+𝐴𝜋𝐹,𝑚
  (2.12) 

 

where K is the solute resistivity for diffusion within the porous support layer, 

defined by: 

 

𝐾 =
𝜏𝑡𝑠

𝜀𝐷
  (2.13) 

 

where ts is the thickness of the support layer. 

 

4.2.2.2 External Concentration Polarization  

a. Concentrative ECP 

In PRO process, concentrative ECP occurs when the support layer of the membrane 

faces the feed solution [22]. The water flow transports the solute from the bulk 

solution to the surface of the active layer. Water permeates this layer leaving the 

solute behind with higher concentrations. Thus, the feed solutes would be 

expected to accumulate at the surface of the active layer and cause the increase of 
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the feed concentration (CF,bCF,m) (Fig. 2.4). The driving force must overcome this 

increased concentration, in order for water flux to occur. As a result, the effective 

osmotic pressure difference would reduce (πF,bπF,m). McCutcheon et al. proved 

that πF,m is related to πF,b by what is called the concentrative ECP modulus 

assuming that the ratio of the membrane surface concentration of feed solute to 

the bulk concentration is equal to the corresponding ratio of osmotic pressures 

[23]: 

 

𝜋𝐹,𝑚

𝜋𝐹,𝑏
= 𝑒𝑥𝑝 (

𝐽𝑤

𝑘
)  (2.14) 

 

where k is the mass transfer coefficient defined as: 

 

𝑘 =
𝑆ℎ𝐷

𝑑ℎ
  (2.15) 

 

with Sh the Sherwood number and dh the hydraulic diameter of the flow channel. It 

should be pointed out that when the feed solution concentration is negligible, the 

concentrative ECP can also be considered negligible. 

 

b. Dilutive ECP 

Dilutive ECP occurs on the draw side of the membrane in PRO mode. It is a 

phenomenon similar to the concentrative ECP:on the draw side, solutes are diluted 

at the surface, as water enters from the feed side, giving rise to dilutive ECP. As a 

result, the effective osmotic pressure difference would reduce (πD,bπD,m). Dilutive 

ECP is expressed using the dilutive ECP modulus [23]: 

 

𝜋𝐷,𝑚

𝜋𝐷,𝑏
= 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘
)  (2.16) 

 

4.2.3 PRO power density 

In terms of energy production, the power density W is defined as osmotic energy 

output per unit of membrane area, which can be calculated by the product of the 

trans-membrane pressure ΔP and the water flux Jw permeating across the 

membrane [24]: 
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𝑊 = 𝐽𝑤∆𝑃 = 𝐴(∆𝜋 − ∆𝑃)∆𝑃  (2.17) 

 

By differentiating Eq. (2.15) with respect to ΔP, the maximum power density can 

be obtained: this corresponds to a hydrostatic pressure difference equal to half of 

the osmotic pressure difference across the membrane, Δπ/2. Then, the maximum 

of energy that can be produced is: 

 

𝑊𝑚𝑎𝑥 = 𝐴
∆𝜋2

4
  (2.18) 

 

Fig. 2.5 shows the variation of the water flux Jwand the power density W as a 

function of ΔP for FO (P = 0) PRO (ΔP<∆𝜋), and RO (where ΔP>∆𝜋) under ideal 

conditions.  

 

 

Fig. 2.5: Magnitude and direction of Jw  for FO, PRO, and RO and magnitude of W for 
PRO in an ideal case. 
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4.3 Developments of PRO 

In our point of view, the development of the PRO process was a result of two 

fundamental factors. The first one is the membrane fabrication progress which 

allowed reaching higher values of power density and proved the feasibility of the 

process. The second one is the good understanding of the process by developing 

mathematical models reproducing fluxes and power densities. In this section, a 

brief description of the history of PRO is presented concentrating on the 

development of the membranes and models.  

 

4.3.1 Temporal sequence of the PRO development  

Pressure Retarded Osmosis is a novel technology, although it already has a long 

history, starting from the first article that was published by Pattle in 1954 [26]. 

Pattle described how to use osmotic energy and semi-permeable membrane to 

produce power by mixing freshwater and saltwater in a Nature article, describing 

that when a volume V of a pure solvent mixes with a much larger volume of a 

solution of osmotic pressure π, the free energy released is equal to πV. No work 

was then published on PRO for around 20 years.Since then, the concept of PRO has 

received spasmodic attention, mainly in the form of design studies and economic 

viability evaluations, it has not been yet fully developed due to the inadequate 

separation capabilities of current semi-permeable membranes, the expected high 

cost and the relatively low trans-membrane water flux [16,17,18]. 

 After the oil crisis in 1973, the subject of renewable energies was opened, so, from 

1974 to 1976, four investigation papers were published about the feasibility of 

using PRO to produce energy [15,24,25,43]. The PRO process subject started to 

appear as a feasible solution. The challenge in PRO began with the schematic 

diagram of an osmotic energy convertor proposed by Norman [25] in 1974. He 

suggested that after freshwater permeated through a selective permeable 

membrane into a pressurized seawater chamber, the spill-over water would turn a 

water wheel to power a generator. One year later, Loeb and Norman [24] proposed 

PRO based on osmotic driven membrane process. The first experimental PRO data 

were published by Loeb at al. in 1976 [15] where hollow fiber seawater RO 

membrane were tested using freshwater in bore and pressurized brine in shell. 



Chapter 2: State of the art 

 

20 

 

The principle was validated, although the performance was small due to the use of 

a RO membrane. 

In 1978, Loeb and Mehta [27] published a paper introducing the role of the 

internal concentration polarization and discussing the strong adverse effect on the 

power generation by PRO.  One year later, Loeb and Mehta [28] published an 

article investigating various operating conditions to prove the PRO concept and 

developed a model to predict flux in PRO; the measured power densities up to 3.27 

W/m2, using a hypersaline draw solution. The result of the study showed that 

osmotic power could produce renewable energy if the design and production of a 

specific semi-permeable membrane was addressed. Jellinek and Masuda [29] 

proposed a construction of a cost-comparative PRO power plant in 1981. Lee et al. 

[17] developed a model considering the effect of the internal concentration 

polarization and neglecting the external concentration polarization, in order to 

evaluate the power density and water flux, from FO and RO experiments. Low 

water flux and power density, due to internal concentration polarization of RO 

membrane, were obtained in experimental results by Lee et al. and Mehta. Despite 

that, the model developed by Lee et al. [17] was a reference model for further 

developments. In 1990, the theoretical mechanical efficiency of several 

configurations of PRO plants was investigated by Loeb et al. [30]. It was found that 

the alternating-flow terrestrial PRO plant had the highest efficiency but required 

the use of two pressure vessels in addition to the usual PRO equipment. In parallel, 

Reali et al. [31] used numerical techniques to compute the profile of salt 

concentration in the porous support layer in PRO system showing the effect of 

membrane characteristics, such as the water permeability coefficient A, the salt 

permeation coefficient B, the effective salt diffusivity D and the support layer 

thickness ts, on the water and salt permeation flux through an anisotropic 

membrane. 

 In 1998, Loeb studied the possibility of producing water using the Dead Sea [32]: 

depending on various configurations of the PRO system, the cost of produced 

electrical energy would be from 0.058 to 0.07 $/KWh. During the same year, 

Seppälä et al. realized a theoretical study to optimize PRO [33]. They suggested 

that the system can be optimized either by maximizing the net power or 

maximizing the ratio between the net power and entropy generation.  At the 
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beginning of the 2000s, Loeb continued his investigation on PRO applications now 

in the Great Salt Lake and found that the cost of the produced electrical energy 

would be 0.15 $/KWh at this location [34]. Then, the pressure exchanger device 

(originally developed for RO applications) was then introduced to reduce internal 

power consumption, providing a cost-effective PRO system by Loeb in 2002 [35]. 

In 2004, Seppälä published a work suggesting that there is no proof that the 

apparent non-linearity of the osmotic pressure is caused by concentration 

polarization phenomena [36]. 

After that,  the development of osmotic power has been promoted by Statkraft and 

executed by research groups in Germany, Norway, Netherlands, USA, Canada, 

Japan and Korea, increasing the power density of PRO membranes from less than 

0.1 W/m2 up to 3 W/m2 [37]. The first prototype PRO installation was opened in 

Norway by Statkraft in 2009. The plant configuration followed the proposed 

schematic of plant by Loeb and was designed to generate 10 kW of power, firstly to 

confirm that the designed system can produce power on a reliable 24 h/d, and 

secondly to use the plant for further tests [38] (see Fig. 2.6).   

Achilli et al. [39] expanded on the model developed by Lee et al. [17] by 

considering the external concentration polarization in an experimental and 

theoretical investigation into PRO system: power density that exceeded 5.1 W/m2 

was observed with a flat sheet cellulose triacetate (CTA) FO membrane. In 2011, 

Yip et al. fabricated a thin film composite PRO membrane with a polysulfone 

support layer and a polyamide active layer; they also developed a model for the 

water flux considering internal and external concentration polarizations, and salt 

flux leakage. Experimental results lead to a projected peak power density of 

6.1W/m2. Since that time, several investigations have been published studying the 

parameters optimizing the PRO power density [39,40,41,46]. In parallel, several 

membranes had been fabricated for PRO, like spiral wound membranes and hollow 

fiber membranes. The progress of PRO membrane is studied in details in Section 

4.3.2. Also, several works investigating the integration of PRO were published (this 

subject is left for Section 4.4.) 

Unfortunately, in 2014, the Statkraft Company declared that it was discontinuing 

its efforts and leaving the PRO technology development to “other players in the 

global market”. “Our main challenge has been to make the technology efficient 
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enough to achieve energy production costs on par with competing technologies. With 

the current market conditions, we see that we cannot achieve this in the foreseeable 

future. There are other technologies which have developed enormously in recent 

years. These are more competitive and relevant investments for us in the future”,said 

Statkraft department manager Stein Erik Skilhagen [42]. However, research in PRO 

has not been suspended; many researchers are now carrying on developing the 

process and improving its performance [76,78,79,80]. In addition, other 

interesting PRO projects were launched such as “Mega-ton RO-PRO” in Fukuoka 

City- Japan (Fig. 2.10)that are starting to give results [72,97].  

 

 

Fig. 2.6: Schematic diagram of the pilot PRO plant, constructed by Statkraft [38]. 

 

4.3.2 PRO models development  

4.3.2.1 Loeb model 

The first PRO model was developed by Sidney Loeb in 1976 [43]. It was developed 

for a RO asymmetric hollow fiber membrane. Loeb considered that the porous 

substructure have the character of a boundary layer, in which water flux is a 

function of concentrations and of concentration gradients. Assuming that the salt 

flux, Js,is negligible, the transport of water in the porous substructure is by 

diffusion only, the concentration is proportional to the osmotic pressure, and there 

is no external concentration polarization, the expression of the water flux 

developed was: 

 



Chapter 2: State of the art 

 

23 
 

𝐽𝑤 = 𝐴 (𝜋𝐷𝑟𝑎𝑤 − 𝜋𝐹𝑒𝑒𝑑 exp (
∆𝑋

𝐷𝑠𝑝
) − ∆𝑃)  (2.19) 

 

where 𝜋𝐷𝑟𝑎𝑤 and 𝜋𝐹𝑒𝑒𝑑 are the osmotic pressures of the draw and feed bulks, 

respectively, ∆𝑋 is the thickness of the membrane and 𝐷𝑠𝑝 is the diffusion 

coefficient in the support layer. 

 

4.3.2.2 Lee model 

The model developed by Lee et al. in 1981 was the first to consider concentration 

polarization in PRO [17]. Assuming that the external concentration polarization 

has been reduced to negligible levels by efficient stirring, and the ratio of salt 

concentrations is equal to the ratio of osmotic pressures, they derived an 

expression to model the effect of internal concentration polarization that gave the 

following PRO water flux model: 

 

𝐽𝑤 = 𝐴 (𝜋𝐷,𝑚

1−
𝐶𝐹,𝑏

𝐶𝐷,𝑚
exp (𝐽𝑤𝐾)

1+
𝐵

𝐽𝑤
[𝑒𝑥𝑝(𝐽𝑤𝐾−1)]

)  (2.20) 

 

where 𝜋𝐷,𝑚 is the osmotic pressure at the active layer in the draw bulk side, 𝐶𝐹,𝑏 

and 𝐶𝐷,𝑚 are, respectively, the feed solution and the solute concentrations in the 

active layer of the draw bulk side, and K is the solute resistivity. The effect of the 

ICP corresponds to the term exp (𝐽𝑤𝐾) in the water flux equation. 

 

4.3.2.3 Achili model 

Achili et al. [39] expanded on the model developed by Lee et al. [17] by considering 

the external concentration polarization. Using the external concentration 

polarization modulus developed by [22], and assuming that  𝐶𝐹,𝑏/𝐶𝐷,𝑚  =

𝜋𝐹,𝑏/𝜋𝐷,𝑚 , Eq. (20) becomes: 

 

𝐽𝑤 = 𝐴 (𝜋𝐷,𝑏exp (−
𝐽𝑤

𝑘⁄ )
1−

𝜋𝐹,𝑏
𝜋𝐷,𝑏

exp (𝐽𝑤𝐾)exp (
𝐽𝑤

𝑘⁄ )

1+
𝐵

𝐽𝑤
[𝑒𝑥𝑝(𝐽𝑤𝐾−1)]

) (2.21) 

 

where k is the mass transfer coefficient. 
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4.3.2.4 Yip model 

The previous models did not take into consideration the effect the reverse salt flux. 

In 2011, Yip et al. [18] modified the existing Lee model to incorporate the effect of 

ECP and the reverse permeation of the salt. Assuming that the osmotic pressure is 

linearly proportional to the salt concentration and neglecting the concentrative 

ECP, the water flux expression is:  

 

𝐽𝑤 = (
𝜋𝐷,𝑏𝑒𝑥𝑝(−

𝐽𝑤
𝑘

)−𝜋𝐹,𝑏(𝐽𝑤𝐾)

1+
𝐵

𝐽𝑤
[𝑒𝑥𝑝(𝐽𝑤𝐾)−exp (−

𝐽𝑤
𝑘

)]
)  (2.22) 

 

where 𝜋𝐷,𝑏 and 𝜋𝐹,𝑏 are the osmotic pressures of the draw and feed bulks, 

respectively, and k is the mass transfer coefficient in the draw water side. The term 

𝑒𝑥𝑝 (−
𝐽𝑤

𝑘
)condenses the effect of the external concentration polarization. The 

effect of the reverse permeation of the salt gaves the denominator of Eq. (2.22). 

 

4.3.2.5 Sivertsen model ( for a hollow fiber PRO membrane) 

The previous models are only applicable to flat sheet membranes. So, they should 

be modified according to the new spatial parameters when the geometry of the 

membrane changes. For example, Sivertsen et al. [44] developed a model for water 

transport in PRO asymmetric hollow fiber membranes. A structure parameter 

similar to the one for flat sheet membranes has been defined. Assuming a 

cylindrical geometry of a single hollow fiber, the equation describing the effective 

concentration difference in the active layer is presented as: 

 

∆𝐶𝑠𝑘𝑖𝑛 =
𝐶𝑠−𝐶𝑓(𝑟0+

𝑑𝑠
𝑟0

⁄ )
𝐽𝑣𝑚𝑟0/𝐷

(𝑟0−
∆𝑥𝑚𝑒𝑚

𝑟0
⁄ −∆𝑥𝑚𝑒𝑚−𝑑𝑓)

𝐽𝑣𝑚𝑟0/𝐷

(
𝑟0

𝑟0−∆𝑥𝑚𝑒𝑚
⁄ )

𝐽𝑣𝑚𝑟0/𝐷𝜙

(𝑟0+
𝑑𝑠

𝑟0
⁄ )

𝐽𝑣𝑚𝑟0/𝐷

+(𝐵
𝐽𝑣𝑚

⁄ )[((𝑟0+
𝑑𝑠

𝑟0
⁄ )

𝐽𝑣𝑚𝑟0/𝐷

)(𝑟0−
∆𝑥𝑚𝑒𝑚

𝑟0
⁄ −∆𝑥𝑚𝑒𝑚−𝑑𝑓)

𝐽𝑣𝑚𝑟0/𝐷

(
𝑟0

𝑟0−∆𝑥𝑚𝑒𝑚
⁄ )

𝐽𝑣𝑚𝑟0/𝐷𝜙
−1]

 (2.23) 

 

where ∆𝐶𝑠𝑘𝑖𝑛 the concentration difference of salt over the membrane active layer, 

𝐶𝑠 and 𝐶𝑓 are the draw and feed bulk solute concentrations, respectively, 𝐽𝑣𝑚 is the 

volume flux, 𝑑𝑠 and 𝑑𝑓 are the film thicknesses at the draw side and the feed side, 

respectively, D is the diffusion coefficient, ∆𝑥𝑚𝑒𝑚 is the membrane thickness, 𝜙 is 

the porosity and 𝑟0 is the radial distance between the center of the hollow fiber and 

the active layer. 
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4.3.3 PRO membrane development 

Pressure retarded osmotic and forward osmosis are similar technics, but differ in 

the purpose of each process: PRO is generally used to produce energy and FO to 

produce freshwater. The performance of both technics is strongly dependent on 

the membrane.  The earlier studies on PRO were developed using reverse osmosis 

membranes. Severe internal concentration polarization was found due to the thick 

support layer, which leads to a very low permeate flow rate. The development of 

specific PRO membrane becomes a necessity to overcome the limitations of the 

process. Desalination using FO is less energetic comparing to RO process, which 

stimulated an interest to develop forward osmosis desalination. The rapid 

progress in forward osmosis membranes [45] opened up new perspectives for the 

development of PRO membranes. Suitable membranes are being developed 

following the information extracted from the mathematical models to improve the 

energy production. 

The best characteristics of membranes for PRO should be: 

 High density of the active layer for high solute rejection; a thin membrane 

with minimum porosity of the support layer for low ICP, and therefore, 

higher water flux.  

 Hydrophobicity for enhanced flux and reduced membrane fouling.  

 High mechanical strength to sustain hydraulic pressure.  

Two main families of membrane are being developed for PRO: flat-sheet 

membranes and hollow-fiber membranes. Several studies carried out to improve 

the performance of both membranes families are now discussed. 

 

4.3.3.1 Flat-sheet membrane development 

a. Cellulose acetate membrane 

Cellulose is considered one ofthe most abundant natural polymers [46]Cellulose 

acetate (CA) Cellulose is considered one ofthe most abundant natural polymers. It 

was first prepared in 1865 by heating cotton with acetic anhydride [47]. Cellulose 

acetate-based membranes have been used widely in the PRO process for power 

generation [39,58,59]. These membranes have several advantages such as high 

hydrophilicity, which promotes water flux and reduces membrane fouling, good 

mechanical strength, and relatively high tolerance to chlorine [48]. The hydrophilic 
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nature of cellulose acetate is desirable in osmotically driven membrane processes: 

wetting of the membrane reduces ICP and increases the water flux [49]. Based on 

the Preferential Sorption-Capillary Flow Model, Loeb and Sourirajan [61] 

developed cellulose acetate membrane for seawater desalination. The 

announcement of Loeb-Sourirajan membrane in 1960 opened up the golden era of 

R&D activities on membrane technologies [50]. During the 1990s, a special 

membrane for FO was developed by Osmotek Inc. (Albany, Oregon) (Hydration 

Technologies Inc. (HTI)). This membrane has been tested in a wide variety of 

applications by different research groups [39,51,52]. It is also used successfully in 

commercial applications of water purification for military, emergency relief, and 

recreational purposes. The HTI membrane revealed a good performance in PRO 

bench scale test [39]. However, Statkraft, the first PRO prototype plant, obtained in 

practice power densities of less than 1.5 W/m2 using these conventional cellulose 

acetate flat sheet membranes [53]. This value is far below the target power density 

of 5W/m2 for the process to be commercially viable. Schiestel et al. [54] developed 

a cellulose acetate membrane with better performance than HTI membrane, withy 

highly porous support layers with pressure stability up to 20 bar (Fig. 2.7). Table 

2.2 presents some experimental results using flat sheet –based cellulose acetate 

membranes. 

 

 

Fig. 2.7: Scanning Electron Microscope (SEM) photos of Cellulose acetate PRO 
membrane developed by Schiestel [54]. 
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b. Thin film composite PRO membrane  

Thin-film composite (TFC) membranes usually consist of layers of dissimilar 

materials joined together to form a single membrane. This layered construction 

permits using material combinations that optimize the performance and durability 

of the membrane. Contrary to CTA membrane, TFC membranes are characterized 

by a wide range of feed pH; however they have low tolerance to oxidants and 

chlorine chemicals [69]. Yip et al. [17] were the first to use a Polysulfone (PSF)-

Polyamide TFC membrane supported by mesh spacers in PRO bench scale tests. 

The study of the membrane revealed that a less porous sponge-like morphology is 

present in the top skin portion of the PSf support layer that is capable of 

minimizing the detrimental effects of ICP while allowing the formation of a 

polyamide layer that possesses high water permeability and salt rejection 

properties. The active layer (modified polyamide Surface) was characterized by 

sponge-like skin layer forming on top of a layer containing macrovoids.  Yip 

claimed that the presence of macrovoids is capable to minimize ICP; however, this 

suggestion was rejected by other reaserchers [55,56]. Han et al. prepared a new 

modified surface single layer TFC membrane with so called “Matrimid” support 

layer [21]. The membrane revealed a good robustness, high water permeability 

and sufficient power density. Zhang et al. fabricated a Polyamide /Polyacrylonitrile 

(PAN) composite membrane with enhanced mechanical properties and water 

permeability for osmotic power (Fig. 2.8) [56]. It was shown that the membrane 

treatment by alcohol leads to higher water fluxes and mechanical stability. Also, 

ethanol treatment swells up the polymeric chains and extracts unreacted 

monomers and low molecular weight polymer chains. Consequently, a thinner and 

smoother polyamide layer with a larger free volume is therefore produced, which 

leads to a higher water flux, better mechanical stability and greater power density. 

For the first time, Bui et al. introduced the use of nanofiber TFC membrane in PRO 

power production [57].Two different selective layers were formed, each from 

different precursors and having different permselectivity. One was generated from 

Trimesoylchloride (TMC) and m-phenylene diamine (MPD) (mTFC), while the 

other was produced from Isophthaloyl chloride (IPC) and Polyethyleneimine (PEI) 

(pTFC). These membranes employ an extremely thin selective layer forming on a 

highly porous, interconnected, low tortuosity nanofiber mat electro-spun onto a 
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nonwoven polyester backing. This nanofiber structure is tiered, meaning the 

nanofibers decrease in diameter as they approach the selective layer. Both the 

pTFC and mTFC membranes exhibited much higher water fluxes and power 

densities, than the HTI-CTA membrane. Some experimental results using flat sheet 

TFC membranes are presented in Table 2.2. 

 

 

Fig. 2.8: SEM cross-section of the Polyamide/polyacrylonitrile (PAN) substrates 
made from two polymer concentrations developed in [56]. 

 

 

4.3.3.2 Hollow fiber PRO membrane 

A A hollow fiber membrane is a tubular, self-supporting membrane with a fiber 

diameter less than 500 μm [60]. These membranes are prepared by phase 

inversion in a hollow fiber spinning setup. A viscous polymer solution (dope 

solution) is pumped through a spinneret and the bore solution fluid is pumped 

through the inner tube of the spinneret. After a short residence time in air or a 

controlled atmosphere, the fiber is soaked in a coagulation bath.  

As with flat sheet membranes, the hollow fiber membranes have shown a 

remarkable development since its first use in PRO [61].  A hollow fiber membrane 

was first used in PRO by Chou et al. [62]. The support layer of the membrane was a 

commercial polymer polyethersulfone (PES) and the active layer was prepared 

using polyamide. According to Chou et al., the membrane performance was the 

best in term of energy production and mechanical strength compared to results 
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published for other types of PRO membranes. One year after, Chou et al. 

introduced another hollow fiber PRO membrane by adopting the Polyetherimide 

as the material for the substrate layer and the polyamide RO-like as the active 

layer [63]. The newly developed TFC hollow fiber membrane was characterized by 

high mechanical strength, high power density and low reverse salt diffusion.  Han 

et al. [64] fabricated a robust hollow fiber membrane supports for high 

performance thin-film composite PRO membranes. Han et al. claimed that the 

desirable hollow fiber supports should possess high stretch resistance and 

acceptable ductility. The developed TFC PRO hollow fiber revealed a very low 

specific reverse salt flux value.  

A fundamental study of polyamide-based thin film composite hollow fiber 

membranes over a PES support for PRO through chemical modification was carried 

out by Ingole et al. [65]. The characterization of the membrane revealed that a 

thinner and smoother polyamide layer with a larger free volume was produced, 

which led to a higher water flux, better mechanical stability and greater power 

density than existing membranes. A thin-film composite TFC hollow fiber 

membrane via dual-layer co-extrusion technology has been designed and 

manufactured by Li et al. [66]. The proposed membrane support resisted high 

burst pressures (up to 24 bar). Zhang et al. [67] used an advanced co-extrusion 

technology to fabricate the PES hollow fiber supports with diversified structures 

from macrovoid to sponge-like. The TFC hollow fiber fabricated showed high 

asymmetry, high porosity, and a thick skin layer with a small and narrow pore size 

distribution underneath the TFC layer; it produced a maximum power density of 

24.3 W/m2 at 20.0 bar using 1M NaCl, as the draw, and deionized water as feed 

(See Fig. 2.9).  

A summary of some experimental results using hollow fiber PRO membrane are 

illustrated in Table 2.3. 
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Fig. 2.9: SEM of the cross-section and surface morphologies of the PES hollow fiber 
supports developed in [67]. 

 

Table 2.2: Summary of experimental results in the literature using flat-sheet PRO 
membranes. 

Membrane Feed 
solution 

Draw 
solution 

Pressure 
(bar) 

Power density 
(W/m2) 

Ref Year 

CTA *DI 1M 9.7 5.1 [39] 2009 

CTA 0.04M 1M 9.7 4 [39] 2009 

CTA DI 1M 9.7 5.1 [39] 2009 

CA DI 1M 8.2 1.6 [51] 2009 

CA 0.1M 1M 13 3.8 [59] 2012 

CA 0.1M 2M 13 6.7 [59] 2012 

CA DI 1M 8 2.25 [54] 2012 

CTA 0.5M 1M 9.3 0.73 [58] 2013 

CTA 0.5M 2M 21.6 2.1 [58] 2013 

TFC DI 0.5M 12 10 [18] 2011 

Matrimid TFC DI 1M 15 12 [21] 2013 

PAN-TFC DI 0.6M 10 2.6 [56] 2013 

Matrimid TFC DI 0.6M 13 9 [21] 2013 

PAN-mTFC DI 0.6M 10 8.0 [57] 2014 

PAN-pTFC DI 0.6M 8.3 6.2 [57] 2014 

TFC (FO) DI 0.6M 48 57 [68] 2014 

*DI: deionized water      
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Table 2.3: Summary of experimental results in the literature using hollow fiber PRO 

membranes. 

 

4.4 Integration of PRO with desalination (hybrid PRO) 

The PRO process can be applied to various sources of feed and draw solutions, not 

only fresh and seawater, but also pretreated seawater and concentrated brine 

(SWRO–PRO hybrid process), or wastewater effluents and concentrated brine 

(SWRO–PRO–WWT hybrid process) [70]. PRO hybridization with desalination 

technologies, especially FO and RO, has been found to be very promising, with the 

potential of reducing the cost of seawater desalination as well as the 

environmental impact due to brine discharge [71]. In many countries, especially in 

the United States, the combination of PRO with other types of desalination 

processes is being actively investigated, with the RO-PRO hybrid process getting 

the most attention.  

In 2010, Japan launched the Megaton water system (see Fig. 2.10). As part of the 

project, a prototype RO-PRO hybrid plant was built and operated.  Recycled water 

was supplied from a regional sewage treatment facility and concentrated brine 

from a seawater reverse osmosis [SWRO] plant,using PRO Toyobo hollow fiber 

modules. Studied by Saito et al. [72], the prototype PRO plant got the maximum 

output power density of 13.8W/m2 at 30 bars of hydraulic pressure difference, 

corresponding to a 38% permeation of pure water into the brine. Saito et al. tested 

the possibility of decreasing the concentration polarization by increasing the 

number of orifices of the membrane module: they were increased from 3 (feed 

inlet, concentrated brine outlet, and the permeate outlet) to 4.The fourthorifice, 

was used as purge for feed water discharge, decreasing the effect of internal 

Membrane Feed 
water  

Draw water  Pressure (bar) Power density 
(W/m2) 

Ref Year 

PES-TFC 0.04M 1M 9.0 10.6 [62] 2012 

PEI-TFC 0.001M 1M 15 20.9 [63] 2013 

Matrimid-TFC *DI 1M 15 16.5 [64] 2014 

PES TFC DI 0.6M 6 1.62 [65] 2014 

P84 TFC DI 1M 21 12 [66] 2014 

Modified PES-TFC DI 1M 20 24.3 [67] 2014 

*DI: deionized water 
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concentration polarization by enhancing leaked salt flushing away from the 

membrane surface. 

 

Fig. 2.10: Schematic of Mega-ton RO-PRO hybrid [84]. 

 

In another study realized by Feinberg et al. [73], a theoretical comparison of RO-

PRO and RO-RED system was performed. However this study considered only 

thermodynamically reversible PRO and did not consider effects due to 

concentration polarization and pressure drops along the membrane module. An 

investigation was presented by Kim et al. discussing four RO-PRO hybrid 

configurations systems for power generation and seawater desalination using 

different salinity gradient resources [74]. These configurations are illustrated in 

Fig. 2.11. According to Kim et al. RO and PRO are operated for different purposes 

(to produce water and energy, respectively) and one requires a proper criterion to 

compare the different processes. Thus, Kim et al. introduced a new indicator 

named the water and energy return rate (WERR) to evaluate these hybrid systems, 

as follows: 

 

𝑊𝐸𝑅𝑅 = PriceElectiricity(𝑊𝑃𝑅𝑂 − 𝑊𝑅𝑂) + PriceWater𝑄𝑝,𝑅𝑂  (2.24) 

 

where PriceElectiricity and PriceWater are the electricity and water prices, respectively, 

𝑊𝑃𝑅𝑂 and 𝑊𝑅𝑂are the energy generated by PRO and the energy consumed by RO, 

respectively, and𝑄𝑝,𝑅𝑂 is the RO permeate flow. The WERR unit is $/min: a higher 

WERR value indicates a higher benefit obtained by the hybrid processes. Based on 

a previously validated RO process model and modified a model of a pressure-
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retarded osmosis PRO process to properly consider the spatial distribution of 

concentration and velocity based on a mass balance principle, Kim et al. claimed 

that hybrid systems that use seawater as a feed water for RO are more energy 

price sensitive. Also, the decrease in the size of RO plant decreases the WERR value 

while the size of PRO plant has no significant impact on the WERR value. 

 

 

Fig. 2.11: Schematic of four RO-PRO hybrid systems proposed by Kim et al. [74] 

Next, Achili et al. investigated the feasibility of a coupled RO-PRO system using a 

pilot-scale RO-PRO system [75]. Three spiral-wound RO membrane modules were 

installed into high-pressure vessels in the small-scale pilot system. Each module 

had an active membrane surface area of 2.8 m2. The membrane modules were 

arranged in series so that the concentrated brine leaving the first module was the 

feed solution for the subsequent module. The hybrid system is presented in Fig. 

2.12. A spiral-wound TFC PRO membrane module was used. The module has an 

active membrane surface area of approximately 4.18 m2 and was installed into a 



Chapter 2: State of the art 

 

34 

 

high-pressure vessel in the small-scale pilot system. Seawater is pressurized in a 

pressure exchanger (PX) before going to the RO system for desalination. In the RO 

system, seawater feed splits into two flows: a freshwater permeate and brine 

concentrate. The pressurized brine concentrate goes first to Energy Recovery 

Device (ERD) to reduce its pressure to a desirable level for the PRO process. After 

leaving the EDR, brine concentrate enters the PRO system as the high salinity or 

the draw solution flow while a low flow stream or feed flow is wastewater effluent. 

In the PRO module, freshwater permeates across the membrane from the low 

salinity to the pressurized high salinity stream as a result of osmotic pressure 

gradient. A pressure exchanger is installed on the discharge side of the diluted 

draw solution to exchange energy with the seawater feed to the RO membrane 

system. According to Achili, the RO-PRO system has several advantages: compared 

to a standard RO-PX system, RO energy consumption is further reduced with 

energy production by PRO, the brine generated during the RO process is diluted 

back to seawater concentration.  RO brine is good draw solution compared to other 

draw solution sources for three reasons: first, among other readily available draw 

solutions, RO brine is an abundantly available, low-cost residual from existing 

commercial systems, second, RO brine has production, and third, the brine 

entering the PRO subsystem is relatively free of foulants because it receives prior 

treatment by the RO pretreatment system, which eliminates additional energy 

expenditure.  Without the ERDthe measured energy consumption of the RO 

membrane system was 3.82 kWh/m3 (with 20% of recovery) that decreased to 2 

kWh/m3 with the ERD (with 30% recovery). 
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Fig. 2.12: Schematic of RO-PRO hybrid adopted by Achili et al. [75] 

 

Using the same RO-PRO system adopted by Achili et al. [75], Prante developed a 

model the specific energy consumption of a RO-PRO system using RO conditions at 

the thermodynamic restriction and a novel module-based PRO model [76]. The 

minimum net specific energy consumption of the modeled system was 1.2 kWh/m3 

for a 50% RO recovery. Under an RO specific energy consumption of 2.0 kWh/m3, 

the RO-PRO system could achieve theoretically a 40% of energy reduction. 

Lin et al. investigated a closed-loop system that combines membrane distillation 

(MD), which generates concentrated and fresh water streams by thermal 

separation, and PRO, which converts the energy of mixing to electricity by a hydro-

turbine [77]. Fig. 2.13 shows the different compounds of PRO-MD hybrid system. 

Results indicate that the hybrid PRO-MD system can theoretically achieve an 

energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold 

working temperatures of 60 and 20 °C, respectively, and a working solution of 1M 

NaCl. Of course, when mass and heat transfer kinetics are limited, conditions that 

more closely represent actual operating conditions, the practical energy efficiency 

will be lower than the theoretically achievable efficiency. 

Streams S10 and S13 enter the PRO module as the high concentration draw 

solution and distilled water feed solution streams (“D” and “F” in Fig. 2.13, 

respectively) in co-current mode with the draw solution chamber under a constant 
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hydraulic pressure, pPRO. The PRO system generates power when a portion of the 

exit draw solution stream (S16), at the PRO working pressure (pPRO), is 

depressurized through the hydro-turbine to become S19 at atmospheric pressure 

(p0). To maintain continuous operation, a pressure exchanger (PX) is employed to 

exchange the heightened pressure of S14 to the incoming draw solution stream S8. 

 

 

Fig. 2.13: Schematic diagram of a PRO-MD hybrid system for harvesting low-grade 
heat energy (HX: Heat exchanger, PX: Pressure exchanger, TB:turbine. [77] 

 

Altaee et al. [78] proposed an integrated PRO-RO system for power generation and 

seawater desalination (Fig. 2.14). Several concentrations of feed and draw 

solutions were studied. Results showed that the increase in the feed solution 

concentration leads to a decrease of the permeate flow rate. Moreover, the study 

showed that significant increase in the permeate flow rate was achieved by 

increasing the draw solution flow rate, while increasing the feed solution flow rate 

had a negligible impact on the permeate flow rate. Later, another configuration 
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was investigated by Altaee et al. [79] that combined Forward Osmosis with 

Pressure Retarded Osmosis. Two configurations were studied: the PRO-FO and FO-

PRO systems shown in Fig. 2.15, using hypersaline solution as draw solution and 

wastewater effluent as feed. The study showed that the efficiency of the PRO-FO 

design was higher than that of the FO-PRO design in terms of the power 

generation. They also tested the effect of the feed solution flow rate, and the results 

revealed that in this specific case its effect on the performance of FO membrane 

was negligible. 

 

Fig. 2.14: Schematic diagram of the PRO–RO system for combined power 
generation and seawater desalination studied by Altaee et al. [78] 
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Fig. 2.15: Schematic diagram of the FO-PRO system for combined power 
generation and water treatment desalination studied by Altaee et al. [79] 

He et al. investigated the feasibility of a reverse osmosis desalination system 

powered by a stand-alone pressure retarded osmosis unit [81] (Fig. 2.16). A 

Feasible Condition number (FC) was introduced to study the feasibility of the 

system. This number takes into consideration the efficiency of the components in 

the hybrid RO–PRO: 

 

𝐹𝐶 =
∆𝑃𝑃𝑅𝑂[(1−𝑌)(𝜂𝐻𝑇−

𝜂𝐸𝑅𝐷
𝜂𝐻𝑃

)+𝑌𝑃]

∆𝑃𝑃𝑅𝑂[
1−𝜂𝐸𝑅𝐷(1−𝑌)

𝜂𝐻𝑃
]

  (2.25) 

 

where 𝜂𝐻𝑃, 𝜂𝐸𝑅𝐷 and 𝜂𝐻𝑇  are the efficiencies of HP, ERD, and  HT, respectively 

andY is the RO water recovery rate. A high value of FC means better feasibility of 

the system. The results obtained showed that lower RO water recovery rates and 

higher ratio of the PRO feed volumetric flow rate to the combined PRO feed and 

draw flow rates improved the feasibility of the hybrid system. To achieve the 

optimum FC numbers at low water permeation rates higher applied hydraulic 

pressureis required, but lower membrane area. Unfortunately the study did not 
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take into consideration the effect of the concentration polarization and the salt 

reverse flux on the performance of the RO-PRO system, which would affect the 

results. 

 

 

Fig:2.16: Schematic diagram of a RO-PRO hybrid system adopted by He et al. [81]  

 

 

In another study, He et al. [82] discussed the performance of a two-stage PRO 

design. Four configurations were studied and compared to a single-stage PRO 

performance. According to different flow schemes between the two PRO stages in a 

“TwoPRO”, the four configurations were defined as: CDCF, DDDF, CDDF and DDCF 

(Fig. 2.17) in which ‘D’ and ‘F’ in each PRO module represent the draw and feed 

solutions flow channel, respectively, ‘C’ correspondsto continuous treatment 

(which means the solution is treated continuously by the two stages), and ‘D’ to 

divided treatment (in which the solution is divided before it flows into the first 

stage and treated separately in each stage).  
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Fig. 2.17: Schematic diagram of the four possible configurations of the “TwoPRO” 

process proposed by He et al. [82]. 
 

For example, in the configuration DDCF, the draw solution is first divided into two 

branches that flow separately into the two stages.  In the case of CDCF, both feed 

and draw solutions are connected in series, and the salinity gradients are 

continuously treated in two stages. It was found that CDCF has advantageous 

energy capacity in all flow rates. The maximum energy surplus of the configuration 

CDCF was reached between the flow ratios of 0.5 and 0.6.  

For the configuration DDDF, two streams of draw and feed solutions are divided 

from the beginning and treated separately in two independent PRO modules. It 

was shown that this configuration had worse performance than that of the single-

stage PRO plant in terms of extractable energy. 
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In the configurations CDDF and DDCF, only one stream, either the draw or feed 

solutions needs to be considered in the flow distribution. Results showed that 

CDDF and DDCF have advantageous energy capacity under fixed dimensionless 

flow rate compared to that of the single PRO. 

 
Lee et al. [83] investigated the integration of PRO with a multi-stage vacuum 

membrane distillation (MVMD) to produce power and freshwater.  Fig. 2.18 shows 

the configuration adopted by them. The MVMD system employs a recycling flow 

scheme (MVDM-R) for the continuous production of both distillate water and 

highly concentrated brine. The concentrated brine that is produced from the 

MVMD-R system is then used as a draw solution for power generation in the PRO 

system, with river water as feed. A power density of 9.7W/m2 was achieved under 

feed and draw solutions flow rates of 0.5 kg/min and a constant hydraulic pressure 

difference of 13 bars. 
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Fig. 2.18: Schematic of the hybrid MVMD-R-PRO system proposed by Lee et al. [83]. 

 

 

 

4.5 PRO limitations and suggested solutions 

As other pressure-driven processes, PRO is limited by concentration polarizations, 

reverse salt diffusions, and other factors that reduce the water fluxand the 

membrane durability. They are now discussed. 

 

4.5.1 Membrane fouling 

Membrane fouling is caused by convective or diffusive transport of suspended or 

colloidal matter or by biological growth (so-called bio-fouling). An existing fouling 

layer increases the overall resistance to mass transfer, so the overall performance 
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decreases significantly. In addition, membrane fouling increases pressure losses 

along the membrane[85]. 

The first published study of PRO membrane fouling was realized by She et al. [86] 

in 2013. The investigation showed the important effect of the bivalent salts flux 

diffusion on the membrane fouling. In fact, the diffusion of calcium and magnesium 

from the draw solution to the feed solution increases the fouling process due to the 

fact that those ions form interactions with organic foulants, which enhance the 

fouling. The increase of the draw solution concentration leads to an increase of the 

salt diffusion, and therefore it increases the fouling. For that, She et al. claimed that 

the concept known in RO as “the critical flux” can be used in PRO as “the critical 

draw solution concentration”. 

A study made by Thelin et al. [87] has experimentally shown that the decline of 

water flux does not correlate with the accumulated Natural Organic Matter (NOM) 

and was independent of the concentration of NOM in the feed. Also, it was noted 

that the rate of flux decline as a function of accumulated NOM load depends on the 

type of membrane. The study of the effect of the ionic strength revealed that 

although it has an impact on the fouling propensity, the ionic strength effects 

werenot enough to explain the differencesin fouling propensity for different 

membrane types. Thus, Thelin et al. claimed that there is a strong correlation 

between PRO membrane characteristics and the fouling propensity. Therefore, 

they proposed that the mechanism of fouling is due to NOM accumulation within 

the porous support and the cake formation at the surface of the support membrane 

(Fig. 2.19). To face the problem of organic fouling, the authors suggested reducing 

the fouling potential of the feed water by pretreatment, mitigating the fouling 

propensity of the membrane by improving structural properties and reducing its 

affinity towards foulants in the feed water, and mitigating the development of 

fouling backwashing and chemical cleaning. 
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Fig. 2.19: NOM Cake layer formation in the surface of PRO membrane porous layer. 

 

Later, Yip and Elimelech studied the effect on PRO performance of the Natural 

Organic Matter fouling (NOM) and backwashing [88]. They claimed that NOM is 

able to pass throw the porous layer and to be blocked in the active-porous 

interface. Thus, two cake layers can be formed: i) in the surface of the support 

layer, ii) in the active-porous interface. Results revealed that the NOM deposited in 

the membrane cause a severe increase in hydraulic resistance, thus lowering water 

permeability and detrimentally reducing productivity of PRO. The study of 

backwashing showed that this operationrestores part of the initial membrane 

performance thanks to its ability to remove the NOM deposed in the active–porous 

layer (Fig. 2.20).  

Chen et al. [89] investigated the effect of the hydraulic pressure on PRO fouling by 

gypsum scalants, sodium alginate, and the combined foulants, using hollow fiber 

membrane. Significant alginate fouling was observed under ultrahigh hydraulic 

pressures (ΔP>18 bars), whereas the gypsum scaling was inhibited. Results 

indicated that the reverse salt flux resulted in a faster rate of alginate fouling but a 

limited gypsum scaling. Combined fouling was severe with the co-existence of 

gypsum crystals and alginate under 0 bars. Chen et al. attributed this behavior to 

the fact that the fouling could be enhanced by a high reverse salt flux under 18 bars 

because the reverse sodium ions induced significant concentration polarization 

near the membrane surface and calcium ions bridged alginate gelation.  In the 

combined fouling experiments, the membranes were conditioned by one of 

Jw 

Cake formation 

Support layer Active layer 

PRO module 
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foulants followed by the other; Chen et al. suggested that such conditioning could 

increase the rate of combined fouling because of the change in membrane surface 

chemistry. The study of the co-existence of gypsum crystals and alginate under 0 

bars led to the synergistic combined fouling and resulted in a greater flux decline 

than the sum of individual foulings. However, under high pressure PRO tests, 

gypsum-alginate synergistic fouling was not observed, because the increased 

reverse salt flux inhibited the formation of gypsum crystals. Consequently, Chen et 

al. concluded that alginate fouling could be the dominant fouling mechanism for 

both alginate conditioning and then scalants fouling, and scalants conditioning and 

then alginate fouling PRO processes under 8 bars and 18 bars. Thus, the removal of 

alginate type foulants from the feed water stream may become necessary for good 

PRO performance under high pressures. We must point out that a recent study 

revealed that the use of thick feed spacers reduces biofouling of a FO membrane 

[90]: The result could be extended to PRO membranes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.20: Effect of the backwashing on reducing the NOM fouling in PRO 
membrane. 

 

4.5.2 Membrane scaling 

Scaling of the membrane is caused by super-saturation of inorganic compounds 

concentrated on the feed side: Super-saturated salts precipitate on the membrane 

surface building a thin layer, which hinders mass transfer through the membrane 

[85]. 
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PRO membrane scaling is not yet well studied: only one published paper was found 

treating this subject: Zhang et al. [91] investigated the role of membrane scaling in 

reducing the PRO performance. It was found that the chemistries of the feed and 

draw solutions play a determinant role in membrane scaling. The existence of 

precursor ions (i.e., Ca2+ and SO42-) may trigger the gypsum precipitation because 

of the migration of these ions from the draw solution to the feed solution by means 

of salt reverse flux. Hence, the increase of operating pressure leads to the increase 

of salt reverse diffusion; therefore, the risk of gypsum precipitation increases. They 

suggested that if scaling precursors enter the porous support layer either by 

convection from the bulk feed solution or by diffusion from the draw solution, the 

internal concentration polarization of both convected and reverse diffused scaling 

precursors would lead to an elevated saturation index inside the porous support 

layer, generating internal scaling. Moreover if the bulk feed solution were 

oversaturated, external scaling can also occur (See Fig. 2.21). As a solution, the 

authors claimed that the orientation -active layer facing the feed solution- can 

reduce the concentration of scaling precursor. However, it is not clear how this will 

affect the power density and the overall performance. As an alternative, controlling 

the salt reverse diffusion by providing a good mechanical stability of the PRO 

membranes can reduce the risk of scaling. 

 

 

Fig. 2.21: PRO scaling mechanisms. The subscript (i) refers to the precursor (i)  
[91]. 
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4.5.3 Concentration polarization 

As mentioned before, Concentration Polarization is one of the major factors that 

affect the performance of PRO process. Several works had been realized to study 

the impact of this phenomenon on the water flux and the power density 

[17,39,58,59]. It was noted that the concentration polarization depends on the 

hydrodynamics, the membrane orientation, the membrane design, and the 

operating conditions (temperature, pressure, solutions concentrations, solution 

composition, etc.). In general the internal concentration polarization ICP is more 

severe than the external concentration polarization ECP. To reduce the effect of the 

ICP, it is necessary to build membranes with the thinner support layer that is 

possible. ECP can be mitigated by increasing the cross flow velocity and the 

operating temperature. 

 

4.5.4 Membrane deformation 

One of the main causes of reduced performance of the PRO process is the 

membrane deformation caused by the hydraulic pressure. Some investigations 

have shown that the membrane deformation reduces significantly the water flux 

[40,59], with some membranes collapsing at high pressures. Using spacers with 

high opening size aggravates the membrane deformation. As presented in the 

previous section, several researches are working in the development of robust PRO 

membranes that withstand high pressures. In general, the use of moderated 

opening size of thick spacers can reduce membrane deformation. 

 

4.6 PRO cost 

Theoretically, PRO can be a competitive source of energy compared to other 

renewable energies; for example, compared with other forms of ocean energy, 

osmotic power cost is similar to ocean energy sources, such as tidal energy [92]. In 

fact, under a constant supply of feed and draw solutions, osmotic power plants 

could operate continuously for more than 8000 h annually (24 hours/day, 

7days/week) [93]. Experimental results at laboratory scale have showna good 

performance. However, the cost perspective for full-scale PRO power plants is still 

uncertain due to the absence of large-scale plants to validate cost assumptions. It is 

therefore only possible to make projections of costs based on current knowledge 
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and suppositions about the development of the key components of these 

technologies. Key components affecting the capital, operation, and maintenance 

costs are the membranes (including replacement over the life-time of the project), 

the pre-treatments and the pumping of water. It has been estimated that 

membranes would account for up to 30% of total capital costs because the PRO 

membrane would cost three times morethan other commercial membranes [94]. 

Other study has shown that the intake and outfall systems, pre-treatment facilities, 

and membranes all combined would account for around 75% of the cost [90]. 

Nowadays, the price of the commercialized membranes is high, affecting viability 

of the process. The current cost of the membranes is around 5€/m2 but 

perspectives reported that this price would decrease to 2 €/m2 within a few years. 

Fig. 2.22 shows the decrease of membranes price since early 1990’s till now. 

However, the membrane price is not only the factor that should be taking into 

consideration; its performance and durability should are important factors. Cheap 

membranes with low durability and performance are not beneficial for the process. 

As a comparison, Achili et al. [96] showed that if the membrane durability were 10 

years, the revenue would be almost 10 times than that of a membrane of only 1 

year of durability. Concerning the membrane performance, the difference between 

the membrane costs for a 1W/m2 PRO plant and for a 5W/m2 PRO plant would be 

approximately 500 million$ for a 20MW capacity power plant, assuming a cost per 

unit area of installed membrane of 30$. 

Another important factor that is able to affect the energy production price is the 

power plant capacity. Kleiterp [95] analyzed the capital and unit energy costs for 

both 25 and 200MW osmotic power plants in the Netherlands using a membrane 

output of 2.4W/m2. Perspectives revealed that a unit energy cost of 1.21$ / kWh 

resulted from the 25MWosmotic power plant analysis, and 1.0$/kWh from the 200 

MW plant. 

Several studies revealed that the energy production is affected by the nature of the 

sources used [95,97,98]. As an example: Tanioka et al. [97] reported that the 

energy cost using freshwater vs brine is 0.16€/kWh, whereas, Dinger et al. [98] 

reported a cost of 0.18$/kWh using freshwater vs seawater. 

It should be noted that the cost depends also on the nature of the installation: 

stand-alone PRO plant cost should be higher compared to hybrid installation. Cost 
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projections for the year 2020, vary between 0.08 €/kWh and 0.15 /kWh [99]. On 

the other hand, costs for hybrid installations are estimated to be 0.11€/kWh [99]. 

A detailed cost calculations made by Stenzel [100] based on simulations of plants 

near existing installations in Germany, demonstrate that besides the costs of 

membranes and pre-treatment of water, of particular relevance are the local site 

conditions, for example to what extent the plant can use the already available 

infrastructure. 

The performance of PRO membranes is constantly improving: Researchers are 

producing membrane with high performance under bench-scale tests 

[56,57,67,68]. Without doubt, this improvement will decrease the energy cost due 

to considerable contribution of the membrane cost in the energy production cost. 

The development of desalination processes enhances the development of PRO 

process because of the resemblance between the two techniques in terms of 

principles and components. Consequently, the development of desalination 

process and equipment (pressure exchangers, spacers, pumps, vessels, etc.) can be 

useful for PRO with small modifications for process adaptation.  

Other important factors are the pre-treatment and pumping: they could require a 

relatively large amount of energy, with a high cost. These costs need to be brought 

down to make the installations more efficient: Hydro-Quebec Canada and Statkraft 

concluded a memorandum of understanding with the purpose to reduce these 

costs.   

The Levelized Cost Of Energy(LCOE)primary metric for utilities to evaluate the 

cost of produced electricity. It is calculated by accounting for all of a system’s 

expected lifetime costs (including construction, financing, fuel, maintenance, taxes, 

insurance and incentives), which are then divided by the expected power output 

(kWh) during its lifetime [101]. As a financial tool, LCOE is very valuable for the 

comparison of various generation options. A relatively low LCOE means that 

electricity is being produced at a low cost, with higher likely returns for the 

investor [101]. Statkraft estimated that the future LCOE for salinity gradients 

power may fall in the same range as other more mature renewable technologies, 

such as wind, based on their current hydropower knowledge, general desalination 

(reverse osmosis) engineering and a specific membrane technology [3]. Achieving 

competitive costs will, however, be dependent on the development of reliable, 
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large-scale and low-cost membranes. Statkraft estimated that investment costs will 

be much higher than other RE technologies, but that capacity factors could be very 

high, with 8,000 hours of operation annually [3]. A recent study developed by 

Naghiloo et al. [109] investigating the feasibility of 25 MW osmotic power plant 

installation on Bahmanshir River (Iran), found that the capital cost to build the 

plant was 117.6 M€ for a net energy production is 138.75 GWh/yr, assuming an 

efficiency of 63.3%. Naghiloo et al. found that modeling results indicate that for a 

15 year return on investment, an annual increase in purchase price of electricity 

10% and constant interest rate of 6%, the sale price of electricity should be 0.41 

€/kWh, quite expensive compared to other renewable sources (0.09€/kWh). 

According to Naghiloo et al., this high price was due to the high capital cost of the 

intake and outfall system (61.5% of the cost), and the pre-treatment (28.4%). 

Thus, to make this installation commercially viable, intake and outfall systems 

costs, pretreatment system costs should be reduced. 

Table 2.4 summarizes the energy production costs for different PRO power plants 

developed in the literature. 

 

 

Fig. 2.22: Decrease of membrane price [95]. 
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Table 2.4: Estimated energy production cost for different PRO power plants. 

Feed solution Draw solution 
Energy cost 

($/kWh) 
Ref 

RO Desalination brine brine from Dead Sea 0.07 [32] 

river water brine from Great Salt Lake 0.09 [34] 

freshwater Seawater 0.18 [98] 

freshwater seawater 0.09–0.16 [92] 

freshwater brine from desalination 0.16 [97] 

freshwater  seawater 0.07–0.12 [95] 

freshwater  seawater 0.06 [107] 

freshwater  seawater 0.045 [93] 

freshwater brine from desalination 0.13 [100] 

freshwater  seawater 0.33 [100] 

freshwater  seawater 0.13-0.26 [104] 

river water Persian Gulf 0.47 [109] 

 

 

4.7 Environmental impact 

PRO is a renewable energy source that does not produce emissions of CO2 during 

operation. Mono nitrogen oxides (NOX) and carbon monoxide (CO) emissions are 

also absent and the installations are not noisy [94]. The mixing of seawater and 

freshwater is a process that occurs in nature all over the world. Interestingly, most 

rivers around the globe run into the ocean in a city or an industrial area. This 

means that most of the osmotic power potential can be utilized without 

constructing power plants in natural areas.  

It was demonstrated in previous study that the cumulative rejection of the 

desalination units brine into the sea can induce bad effects on the local aquatic 

environment [102,103]. As shown in the previous section, PRO process can be 

coupled to desalination plant by using the desalination plants brine as a draw 

solution. Thus, this brine will be diluted before being released into the sea, which 

mitigates its impact on the nature. On the other hand, in heavily industrialized 

areas, it is possible that an osmotic power plant can improve the environmental 

conditions by the use of industrial rejected brines [94]. In addition, osmotic power 
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plants are usually described as requiring a relatively small footprint area and can 

be constructed partly or completely underground and would thus fit very well into 

the local environment [94].The environmental impact of power plants located at 

the mouths of rivers can be minimized, thereby respecting the ecological 

conditions of estuaries and rivers. An environmental optimization and pre-

environmental impact assessment of an osmotic power plant located at an river 

outlet has  compensated by a combination of environmental flow requirements for 

the river and the osmotic power plant and environmental engineering of intake 

and outlet of brackish water. 

Nonetheless, some studies have pointed out that PRO power plantscould have 

some effects on the local environment. In fact, like RO plants, the problems of 

concentration polarization, fouling and scaling require chemical cleaning that 

affects the properties of the brackish water released into the environment. 

Hopefully, a biological investigation made by Statkraft during the last 3 years has 

shown no impact of the discharge water of their prototype on the local benthic 

communities [104]. Another study showed a small effect on the surface 

temperature of the water where the PRO brackish will be released due to 

differences in temperatures [105]. Another important environmental impact that 

should be taken into account: the large amount of fresh water that can be used by 

PRO power plants. Investigation reports said that only around 2.5% of the water 

glob is a freshwater when only 1.5% is directly accessible for human uses, and 

70% of it is used for agricultural issues [106]. The intensive use of fresh water for 

power generation can enhance water scarcity in the future. 

Fortunately, PRO could reduce global greenhouse gas emissions by 2741 megatons 

by 2030 under accelerated environmental policies, according to the International 

Energy Agency [2]. European Union leaders agreed on a binding target of cutting 

emissions 40% on 1990 levels by 2030 [8]. Annual coal-fired generation is 

projected to double from 7,400 TWh in 2006 to 9,500 TWh in 2015 and 13,600 

TWh in 2030 [2,80]. Replacing current and planned coal-fired power plants with 

salinity power plants (40% of energy conversion) could reduce global greenhouse 

gas emissions by 10 Pg CO2-eq/year (~ 1010 tonnes/year). This means a potential 

reduction of 40% of current global energy-related greenhouse gas emissions [109]. 
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5. Final consideration and Conclusions 

The word is facing the economical and environmental effects of fossil fuels, so the 

development of alternative energy sources is a necessity. This chapter has shown 

that Pressure Retarded Osmosis can be part of the solution thanks to its ability to 

generate a constant supply of power and its low environmental impact.  

Since 1974 until now, PRO technology has been rapidly improving and has become 

the interest of several research groups. In the theoretical level, the process is being 

extensively studied: basic mathematical models have already been developed to 

imitate the power density produced by PRO, presenting good correlation with 

experimental results at laboratory level. Experimentally, the technique is 

improving especially with the development of membrane fabrication: Different 

types of membranes are being used such as cellulose-based flat-sheet membrane, 

thin film composite membrane, and hollow fiber membrane.  

PRO is financially viable when minimum power density of 5W/m2 is produced. 

This value is reachable at laboratory scale, but, unfortunately this minimum of 

power density is not yet accessible for large scale power plant due to the fact that 

PRO membranes with required characteristics are not commercialized.   

Like any other osmotic membrane process, many operation problems can be faced 

in PRO such as fouling, scaling and membrane deterioration. Several precautions 

should be taken to mitigate these problems such as the optimization of operating 

conditions and the improvement of the membrane characteristics. 

Many reports focused on the perspectives of the energy cost using pressure 

retarded osmosis. In fact, the absence of operating full scale PRO power plant made 

the estimation of energy cost uncertain. The published studies reported that the 

energy cost is affected by several factors such as the membrane cost and 

performance, the plant capacity and location, the chemical solutions required, and 

the cost of pretreatment and pumping. Reducing the energy cost is one of the 

important challenges to make PRO competitive with other renewable energies. 

Ecological studies have revealed that PRO has a low impact on the environment. 

Moreover, PRO can be also useful to reduce the environmental impact of brine 

rejected by the desalination units and industrial zones. A good political strategy to 

reduce the cost and control the environmental impact can make PRO the energy 

source of the future.  
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Chapter 3: Water flux and power density in 

PRO 
 

1. Introduction 

As it has been seen in previous chapters, Pressure Retarded Osmosis is based on 

the osmotic transport of water across a semi-permeable membrane from a low 

salinity feed solution (e.g. river water or WWTP effluent) into a high salinity 

solution (e.g. seawater or brine) [1,2]. The draw solution side is pressurized at a 

specific value to obtain power by depressurizing the water permeated through the 

membrane.  

This chapter concentrates on developing models that make possible to predict the 

performance of PRO. The exact description of the mass transport is very important 

to evaluate the membrane performance, taking into account all negative effects 

that reduce the performance, such as the Internal Concentration Polarization (ICP), 

caused by the membrane porous layer, and the External Concentration 

Polarization (ECP), building up in the fluid boundary layers on both sides of 

membrane [3].  

In PRO salts are transported towards the low concentration solution (due to the 

chemical potential difference on the two sides of membrane), while water is 

transported in the opposite direction (due to the osmotic pressure difference). 

This clearly differs from Reverse Osmosis, where these flows are in the same 

direction, so PRO models must take this into account: PRO operating conditions 

and PRO membranes are therefore different from RO.  

Several models have been developed to reproduce the water and salt fluxes 

across the membrane [3,4,5,8,9]. Most of them apply the well-known diffusion-

convection water transport equation [6] and neglect the effect of the external 

concentration polarization that occurs in the feed solution side. This assumption 

is acceptable when the feed solution is negligible, but not when the concentration 

of the feed solution is significant (e.g. seawater or WWTP effluents). Moreover, 

the developed models the effect of the pressure on the reverse salt flux Js is 

neglected; however it has been shown that the applied pressure has a strong 

effect on the salt diffusion, and therefore the water flux [5]. 
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Thus, in this chapter, a mathematical model is developed to simulate the water 

flux in PRO. The model was developed by using the minimum of assumptions, so 

it takes into consideration the effect of the Internal Concentration Polarization 

(ICP), the External Concentration Polarization on both sides of the membranes, 

and the effect of pressure on the salt flux diffusion. This model was validated and 

tested at lab scale, under different operating conditions to show its consistency.  

An important operating parameter is also studied here in detail: the temperature. 

For that, a mathematical model was developed to describe the distribution of the 

temperature inside the membrane depending on the bulk temperatures. After 

that, the effect of the temperature on the water flux and the power density was 

studied, using experimental results and the developed models. 

 

2. Modeling 

2.1 Basic models for water and salt fluxes 

In an osmotically driven membrane process, the water permeation flux Jw across 

an ideal semipermeable thin film that allows water passage but rejects solute 

molecules or ions is related to the water permeability A, the effective osmotic 

pressure difference Δπm and the trans-membrane hydraulic pressure difference 

ΔP as follows[11]:  

 

𝐽𝑤  =  𝐴 (∆𝜋𝑚 − ∆𝑃)                                                                                               (3.1)                

 

The effective osmotic pressure difference can be evaluated from: 

 

∆𝜋𝑚  = 𝜋𝐷,𝑚– 𝜋𝐹,𝑚              (3.2)

  

where πD,m and πF,m are the osmotic pressure at the surface of the active and 

support layers, respectively (see Fig. 3.1). 

On the other hand, salts permeate across the membrane from the draw solution 

into the feed solution, in the opposite direction of the water flux. This so-called 

reverse salt flux Js, is described as follows [12]: 

 

𝐽𝑠 = 𝐵(𝐶𝐷,𝑚 − 𝐶𝐹,𝑚) (3.3) 
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where B is the salt permeability coefficient of the membrane active layer and CD,m 

and CF,m are the solute concentrations at the interface of the active and support  

layers, respectively. A typical concentration profile through the membrane is 

shown in Fig. 3.1. 

The specific salt flux in PRO, defined as the ratio of salt flux to water flux Js/Jw, is 

affected by the intrinsic transport properties of the membranes, as follows [13]: 

 

𝐽𝑠

𝐽𝑤
= 

𝐵

𝐴𝛽𝑅𝑇
(1 +

𝐴𝛥𝑃

𝐽𝑤
)       (3.4) 

 

where β is the van’t Hoff coefficient, R is the universal gas constant, and T is the 

absolute temperature. 

 
 
 
    

 Js 

 

Δ                               

 

 

 
Fig.3.1: Concentration profile through the membrane,with directions of the water 
flux Jw and salt flux Js. The membrane module is under counter-current cross-flow 

mode. 
 

2.2 Concentration polarization 

In osmotically driven membrane processes, concentration polarization is caused 

by the concentration difference between the feed and draw solutions through an 

asymmetric membrane, with the profile for a PRO membrane illustrated in Fig. 3.1. 

Both external concentration polarization (ECP) and internal concentration 

polarization (ICP) take place in PRO processes [14,20]. Generally, ECP occurs at the 

surface of the dense active layer of the membrane and ICP occurs within the 
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porous support layer of the membrane. They are now described following [15,21]. 

2.2.1 Internal concentration polarization (ICP) 

When a non-ideal composite membrane is operated in a typical PRO process (with 

the active layer facing the draw solution), water flows from the feedside through 

the support and active layers into the draw solution (flux Jw), while salts permeate 

from the draw side across the membrane skin and the support layer into the feed 

solution (flux Js). Therefore, there exists a salt gradient in the membrane support. 

This salt gradient will result in concentrative internal concentration polarization 

ICP and lower the osmotic driving force for water flow across the membranes 

[16,20]. Internal concentration polarization (ICP) occurs when the thin film is 

supported by a porous substrate. Based on the mass balance in the porous 

substrate layer, Lee et al. [17] developed a theoretical model for the PRO process 

which indicated that membranes with high water permeation and high salt 

rejection are essential for high PRO performance. Assuming for simplicity a single 

solute (salt) in the draw side, the mass transport of this salt into the membrane 

support, and in each of the boundary layers, will equal the sum of the convective 

and diffusive salt transports due to the gradient in salt concentration. Hence, the 

transport of salt can be described by [17]: 

 

𝐷𝑠.𝑙
𝑑𝐶(𝑥)

𝑑𝑥
− 𝐽𝑤𝐶(𝑥) = 𝐽𝑠           (3.5) 

       

where C(x) is the salt concentration at position x and Ds.l is the diffusion 

coefficient of the support layer defined as: 

 

𝐷𝑠.𝑙 =
𝜀𝐷

𝜏
                          (3.6)          

 

where D is the bulk diffusion coefficient, ε is the porosity and τ is the tortuosity of 

the support layer. 

 

Rearrangement of Eq. (3.5) gives: 
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(
1

𝐶+
𝐽𝑠
𝐽𝑤

)𝑑𝐶 =
𝜏

𝜀𝐷
𝐽𝑤𝑑𝑥                                 (3.7)

   

Integration of Eq. (3.7) over the support layer using boundary conditions: 

 

C(x=0) = CF,m 

C(x=ts)= Cicp 

 

where the distance x is measured from the interface between the support and 

active layers, Cicp is the solute concentration at the interface between the support 

and active layers, and ts is the thickness of the support layer (Fig. 3.1), gives 

 

𝐶𝑖𝑐𝑝 = (𝐶𝐹,𝑚 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝(𝐽𝑤𝐾) −

𝐽𝑠

𝐽𝑤
                       (3.8) 

 

whereK is the solute resistivity for diffusion within the support layer, defined as: 

 

𝐾 =
𝜏𝑡𝑠

𝜀𝐷
=

𝑠

𝐷
                          (3.9)

   

wheres is defined as the structure parameter of the support layer.This is a 

property of the support structure which provides a length scale of the 

concentration polarization in the support layer, analogous to the boundary layer 

thickness in external concentration polarization [18]. 

Referring to Eq. (3.8), Cicpclearly shows the effect of the external concentration 

polarization(created by the flux Js) on the feed solution sideCF,m. 

 

2.2.2 External concentration polarization (ECP) 

2.2.2.1 ECP on the draw solution side: 

The dilutive external concentration polarization (ECP) is the concentration 

polarization that results in the solute being diluted on the draw solution side of the 

membrane. The reverse draw solute flux on the side of the draw solution can also 

be derived using the same differential equation as in Eq. (3.5), albeit with different 

boundary conditions, assuming a steady-state condition. Thus, the boundary 
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conditions for ECPon the draw solution side are: 

 

C(x = 0) = CD,m 

C(x = δD)= CD,b 

 

where the distance x is now measured from the membrane surface of the active 

layer side and δD is the thickness of the draw boundary layer. 

Integration of Eq. (3.7) over the thickness of the draw boundary layer using these 

boundary conditions gives: 

 

𝐶𝐷,𝑚 = (𝐶𝐷,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘𝐷
) −

𝐽𝑠

𝐽𝑤
                                (3.10)

   

where kD is the mass transfer coefficient in the draw solution, calculated using 

 

𝑘𝐷 =
𝑆ℎ𝐷𝐷

𝑑ℎ
       (3.11)  

 

where DD is the diffusion coefficient of the solute in the draw solution, dh is the 

hydraulic diameter of the flow channel, and Sh is the Sherwood number, which 

hasbeen experimentally determined from correlations under several flow 

conditions as follows [19]:   

 

𝑆ℎ =  0.04 𝑅𝑒0.75𝑆𝑐0.33   (Turbulent flow)      (3.12)             

 

𝑆ℎ = 1.85 (𝑅𝑒. 𝑆𝑐
𝑑ℎ

𝐿
)     (Laminar flow)                    (3.13) 

   

Where Re is the Reynolds number, Sc is the Schmidt number and L is the length of 

the channel. These Reynolds and Schmidt numbers are calculated as follows:  

 

𝑅𝑒 =
𝑣.𝑑.𝜌

𝜂
=

𝑣.𝑑

𝜇
       (3.14) 

 

𝑆𝑐 =
𝜇

𝜌𝐷
                    (3.15) 
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where v is the velocity of the solution, d is the diameter of the pipe, 𝜌 is the density 

of the solution, η the dynamic viscosity of the solution and 𝜇 its cinematic viscosity. 

 

 

2.2.2.2 ECP on the feed solution side 

To derive a model for the ECP on the feed solution side a similar process can be 

followed, but using the boundary conditions 

 

C(x = 0) = CF,b 

C(x = δF)= CF,m 

 

where the distance x is now measured from the feed boundary layer side and δF is 

the thickness of the feed boundary layer. 

Integration of Eq. (3.7) over the thickness of the feed boundary layer using these 

boundary conditions gives: 

 

𝐶𝐹,𝑚 = (𝐶𝐹,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝 (

𝐽𝑤

𝑘𝐹
) −

𝐽𝑠

𝐽𝑤
                    (3.16) 

  

where kF is the mass transfer coefficient in the draw solution, which is calculated 

using: 

 

𝑘𝐹 =
𝑆ℎ𝐷𝐹

𝑑ℎ
                    (3.17)        

 

whereDFis the diffusion coefficient of the solute in the feed solution. 

 

2.3 Model of the water flux Jw 

As shown in Eq. (3.1), Δπm is the effective pressure that takes into consideration 

ICP and ECP on both sides of the membrane. As we have assumed for simplicity 

that there is only one type of solute in the system, which means that the solute 

concentration is proportional to the osmotic pressure. Thus, we consider that: 

 

𝜋𝐷,𝑚 = 𝛽𝑅𝑇𝐶𝐷,𝑚                    (3.18) 
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𝜋𝑖𝑐𝑝 = 𝛽𝑅𝑇𝐶𝑖𝑐𝑝        (3.19) 

 

𝜋𝐹,𝑚 = 𝛽𝑅𝑇𝐶𝐹,𝑚         (3.20) 

 

It was mentioned in Eq. (3.8) that Cicp shows the effect of the external 

concentration polarization on the feed solution side, so we can consider that the 

effective osmotic pressure governing the mechanism is as defined in [17]: 

 

∆𝜋𝑚 = 𝜋𝐷,𝑚 − 𝜋𝑖𝑐𝑝          (3.21) 

 

So, substituting CD,m in Eq. (3.18) with its expression developed in Eq. (3.10),  

substituting Cicp in Eq. (19) with its expression developed in Eq. (3.8), and 

substituting the ratio Js/Jw with its expression presented in Eq. (3.4) , Jw can be 

written using Eq. (3.1) as follows: 

 

𝐽𝑤 = 𝐴 [(𝜋𝐷,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘𝐷
) − [𝜋𝐹,𝑏 +

𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤

𝑘𝐹
) − ∆𝑃]  (3.22) 

             

The power density W, defined as the osmotic energy output per unit membrane 

area, can be calculated by the product of the trans-membrane pressure ΔP and 

the water flux Jw permeating across the membrane, as follows: 

 

𝑊 = 𝐽𝑤∆𝑃 = 𝐴 [(𝜋𝐷,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘𝐷
) − [𝜋𝐹,𝑏 +

𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤

𝑘𝐹
) − ∆𝑃] ∆𝑃 

         (3.23)                

 

2.4 Model of the temperature profile through the membrane 

In parallel to the water transport in PRO heat is transferred through the 

membrane: A temperature difference is created at membrane interfaces due to 

the difference of temperatures at each side of the membrane. The resultant 

temperature gradient across the membrane, translates into non-homogenous 

conditions, which in turn, affect the water transport across the membrane. Heat 



Chapter 3: Water flux and power density 

 

73 

 

transfer also occurs between bulk solutions and membrane surface. 

In this section, a model that describesthe effect of the different temperatures on 

the membrane parameters is studied, and therefore its effect on the power 

density is evaluated. It is important to consider the temperature at each part of 

the process, so we consider that temperatures in the bulks are not the same (TF,b≠ 

TD,b), with the temperature profile presented in Fig. 3.2.This temperature 

difference induces heat transfer by convection in the opposite direction. In 

addition, there are two boundary layers adjoining the membrane and heat is 

transferred between the bulk and the membrane interface. We also assume that 

the heat transfer through the membrane is by conduction, that the heat fluxes are 

unidirectional and perpendicular to the surface of the membrane, that there is no 

gap between the active and support layers and that there is no discontinuity of 

temperature at the interfaces. 

 

 Heat flux 
 
 
    

  

  

 Js Jw 

22 

 

Fig.3.2: temperature profile over the membrane, when TD,b>TF,b. TD,m: 
temperature of the active layer (side in contact with the draw solution), Ticp: 

temperature of the limit surface between the active and the support layers. TF,m: 
the temperature of the support layer (side in contact with the feed solution).  

 
 

The support layer of the membrane is, in fact, not dense, but it is a porous layer 

characterised by a porosity which affects the mode of heat transfer across the 

media. Thus, to calculate the heat transfer rate in the support layer some 

assumptions are taken into consideration:   

We assume that the porous medium is rigid,uniform, isotropic and fully saturated 
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with the solution. The thermo-physical properties of both solute and solution are 

constant, that the phases are in local thermal equilibrium, and that the thermal 

dispersion is negligible.  

The equation of energy conservation is then given by [22]:  

 

𝑑(𝑢𝑇)

𝑑𝑥
=

𝑑

𝑑𝑥
(

𝜆𝑠.𝑙

𝜌𝑐𝑝

𝑑𝑇

𝑑𝑥
)         (3.24) 

 

where 𝜌 and cp are the density and specific heat capacity of the feed solution, 

respectively. The effective thermal conductivity of the support layer λs.l is given by 

[21]: 

 

𝜆𝑠.𝑙 = (1 − 𝜀)𝜆𝑠 + 𝜀𝜆𝐹        (3.25)  

 

where λs and λF are the thermal conductivity of the material that constitutes the 

support layer and of the feed solution, respectively. 

The velocity of the water can be calculated using the Darcy’s law in the presence 

of a pressure gradient. In the axial orientation, the velocity is then [23]: 

 

𝑢 =
𝜑

𝜇

𝜕𝑃

𝜕𝑥
=

𝜑

𝜇

𝜕(∆𝜋𝑚−∆𝑃)

𝜕𝑥
        (3.26) 

   

where the permeability 𝜑 is given by [29,31]: 

 

𝜑 =
𝜀3𝑑𝑝

2

150(1−𝜀)2
          (3.27)        

 

where dp and ε represent, respectively, the diameter of the pores and the porosity 

of the support layer. 

As the heat flux is 𝑄 = −𝜆𝑠.𝑙
𝜕𝑇

𝜕𝑥
  and the boundary conditions for the temperature 

are 

 

T(x=0) = TF,m  

T(x=ts)= Ticp 
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Then, integration of the energy conservation Eq.(3.24) over the support layer 

gives 

 

𝑇𝑖𝑐𝑝 − 𝑇𝐹,𝑚 =
𝑄

𝑢𝜌𝑐𝑝
𝑒𝑥𝑝 (

𝑢𝜌𝑐𝑝

𝜆𝑠.𝑙
𝑡𝑠)        (3.28)  

We then introduce the following parameters [22,24]: 

 

𝑁𝑢 =
𝑄

(𝑇𝐹,𝑚−𝑇𝑖𝑐𝑝)

𝑡𝑠

𝜆𝑠.𝑙
      (Nusselt number) 

 

𝑅𝑒𝑥 =
𝑢𝜌𝑡𝑠

𝜇
 (Local Reynolds number) 

 

𝑃𝑟 =
𝜇𝑐𝑝

𝜆𝑠.𝑙
 (Local Prandtl number) 

 

Using these parameters Eq. (3.28) can be rearranged to be: 

 

𝑇𝐹,𝑚 − 𝑇𝑖𝑐𝑝 = −
𝑄

𝑅𝑒𝑃𝑟

𝑡𝑠

𝜆𝑠.𝑙
exp (𝑅𝑒𝑥𝑃𝑟𝑥)       (3.29) 

 

Thus, the thermal conductivity of the support layer hs.lis: 

 

ℎ𝑠.𝑙 =
𝜆𝑠.𝑙

𝑡𝑠
𝑅𝑒 𝑃𝑟 𝑒𝑥𝑝(𝑅𝑒𝑥𝑃𝑟𝑥) = 𝑁𝑢𝑥

𝜆𝑠.𝑙

𝑡𝑠
       (3.30)  

 

where 𝑁𝑢𝑥  is the local Nusselt number. At steady-state conditions, the heat 

transfer equation is as follows: 

 

𝑄 = ℎ𝐹(𝑇𝐹,𝑏 − 𝑇𝐹,𝑚)  

= 𝐽𝑤𝜌𝑤𝐶𝑝(𝑇𝐹,𝑏 − 𝑇𝐷,𝑏) − ℎ𝑠.𝑙(𝑇𝑖𝑐𝑝 − 𝑇𝐹,𝑚) − 𝐽𝑠𝜌𝑠𝐶𝑝(𝑇𝐷,𝑏 − 𝑇𝐹,𝑏) − ℎ𝑎.𝑙(𝑇𝐷,𝑚 − 𝑇𝑖𝑐𝑝)  

= ℎ𝐷(𝑇𝐷,𝑚 − 𝑇𝐷,𝑏)                      (3.31) 

          

where 𝜌𝑤 and 𝜌𝑠 are the densities of the feed and draw solutions, respectively, hD 

and hF are the heat transfer coefficients in the feed and in the draw boundary 
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layer, respectively, defined as: 

 

ℎ𝐷 =
𝜆𝐷

𝛿𝐷
𝑆 (3.32) 

 

ℎ𝐹 =
𝜆𝐹

𝛿𝐹
𝑆 (3.33) 

with 𝜆𝐷 the thermal conductivity coefficient of the draw solution and Sthe surface 

of the membrane.  

Finally, the thermal conductivity of the active layer ha.l is defined as: 

 

ℎ𝑎.𝑙 =
𝜆𝑎.𝑙

𝑒
. 𝑆           (3.34) 

 

where e is the thickness of the active layer. 

 

Rearranging Eq. (3.31) gives explicit expressions for TD,m and TF,m : 

 

𝑇𝐹,𝑚 =
ℎ𝐹𝑇𝐹,𝑏(1+

ℎ𝑎.𝑙
ℎ𝐷

)−𝐽𝑤𝜌𝑤𝑐𝑝(𝑇𝐹,𝑏−𝑇𝐷,𝑏)+𝐽𝑠𝜌𝑠𝑐𝑝(𝑇𝐷,𝑏−𝑇𝐹,𝑏)+(ℎ𝑠.𝑙−ℎ𝑎.𝑙)𝑇𝑖𝑐𝑝+ℎ𝑎.𝑙𝑇𝐷,𝑏

ℎ𝐹(1+
ℎ𝑎.𝑙
ℎ𝐷

)+ℎ𝑠.𝑙

(3.35) 

      

𝑇𝐷,𝑚 =
ℎ𝐷𝑇𝐷,𝑏(1+

ℎ𝑠.𝑙
ℎ𝐹

)+𝐽𝑤𝜌𝑤𝑐𝑝(𝑇𝐹,𝑏−𝑇𝐷,𝑏)−𝐽𝑠𝜌𝑠𝑐𝑝(𝑇𝐷,𝑏−𝑇𝐹,𝑏)+(ℎ𝑎.𝑙−ℎ𝑠.𝑙)𝑇𝑖𝑐𝑝+ℎ𝑠.𝑙𝑇𝐹,𝑏

ℎ𝐷(1+
ℎ𝑠.𝑙
ℎ𝐹

)+ℎ𝑎.𝑙

  (3.36) 

  

Ticp is not exactly the arithmetic mean of TD,m and TF,m because of differences 

between the characteristics of the material of each layer and its width. Taken 

these into consideration, Ticp can be reasonably approximated as: 

𝑇𝑖𝑐𝑝 =
𝑒.ℎ𝑎.𝑙.𝑇𝐷,𝑚+𝑡𝑠.ℎ𝑠.𝑙.𝑇𝐹,𝑚

𝑒.ℎ𝑎.𝑙+𝑡𝑠.ℎ𝑠.𝑙
  (3.37) 

Solving the system of equations formed by (3.35), (3.36) and (3.37) gives explicit 

values of TD,m, Ticp and TF,m. 
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3. Materials and methods 

In order to validate the model developed in the last section, results from 

experiments with two membranes were used. All model parameters and 

experimental conditions for the verification are summarized in Tables 3.1, 3.2 and 

3.3. 

3.1 Solution chemistries 

Certified ACS-grade NaCl (Fisher Scientific) was used to prepare both feed and 

draw solutions. Mass and velocities were obtained from provided Labview 

software. Operating temperatures, osmotic pressures, viscosities, and diffusion 

coefficients of solutions were calculated and are shown in Tables 3.1 and 3.2. 

3.2 Membranes 

Two flat-sheet cellulose acetate membranes were used in the experiments: 

Commercial FO membrane (TCA) from Hydration Technology Innovations, Albany 

OR, called here HTI membrane [27] and a membrane developed by Fraunhofer 

Institute for Interfacial Engineering and Biotechnology, called here IGB membrane 

[28]. The physical characteristics of this IGB membrane are similar to other 

commercially available semi-permeable membranes. 

3.3 PRO bench-scale 

The laboratory equipment is reported in Fig. 3.3. The test unit had a channel on the 

feed side of the membrane to allow the feed solution to flow tangentially to the 

membrane. This channel was 40mm long, 25mm wide and 2.5mm deep, with an 

effective membrane area of 18cm2. Mesh spacers placed in the feed channel 

supported the membrane and enhanced the turbulence in the feed stream. The 

feed solution was contained in a 5 litre reservoir. A high-pressure positive 

displacement pump was used to recirculate the feed solution at selected velocities. 

Purge was collected in a 5 litre container. Each container was placed on an 

analytical balance. Temperatures werecontrolled using thermostatic baths. The 

flux through the membrane was calculated based on the change of weight in the 

containers. The conductivities were also recorded. 
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Table 3.1: Characteristics of 8.55mM NaCl feed solution at different operating 

temperatures.  

TF (°C) DF (m2/s) ηF(Pa.s) πF,b(bar) 

20 3.80×10-9 1.02×10-3 0.38 

30 4.93×10-9 7.89×10-4 0.39 

40 6.23×10-9 6.53×10-4 0.40 

 

Table 3.2: Characteristics of two NaCl draw solutions at different operating 

temperatures.  

 1.026M 0.6M 

TD (°C) DD(m2/s) ηD(Pa.s) πD,b(bar) DD(m2/s) ηD(Pa.s) πD,b(bar) 

20 3.43×10-9 1.11×10-3 45.4 3.56×10-9 1.07×10-3 26.3 

30 4.33×10-9 9.1×10-4 46.9 4.78×10-9 8.60×10-4 27.2 

40 5.79×10-9 7.02×10-4 48.5 5.92×10-9 6.95×10-4 28.1 

 
 
Table 3.3 :Parameters used for modelling. 

Parameter TCA FO Membrane  IGB membrane 
Water permeability coefficient A 3.56×10-13  m/s/Pa 1.06×10-12 

m/s/Pa 
Salt permeability coefficient B 5.90×10-9 m/s 2.62×10-8  m/s 
Solute resistivity K 1.52×105 s/m 1.52×105  s/m 
Mass transfer coefficient (draw side) kD 1.17×10-4 m/s 1.17×10-4 m/s 
Mass transfer coefficient (feed side) kF 1.19×10-4 m/s 1.19×10-4  m/s 
Diffusion coefficient in the draw solution DD 4.25×10-9 m2/s 4.25×10-9 m2/s 
Diffusion coefficient in the feed solution DF 4.35×10-9 m2/s 4.35×10-9 m2/s 
Porosity of the support layer ε 80 % 80 % 
Thickness of the active layer e 10-20 µm [26] 100 nm 
Thickness of the support layer ts 50µm [29] 12 µm 

 
 
Table 3.4: Experimental conditions. 

 

 

 

 

 

Variable Values 
Temperature 20˚C 
Concentration of the feed bulk CF,b 8.55 mM (≈0.5g/l) 
Concentration of the draw bulk CD,b 0.6 M (≈ 35g/l) 
Dynamicviscosity of the feed solution ηF 8.91×10-4Pa.s 
Dynamic viscosity of the draw solution ηD 9.11×10-4Pa.s 
Density of the feed solution ρw 997.4 kg/m3 
Density of the draw solution ρs 1034 kg/m3 
Hydraulic diameter dh 9.46×10-4 m 
Length of the channel 0.070m 
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Fig.3.3:Schematic of laboratory bench-scale PRO system. 

 

4. Results and discussion  

Using the experimental system and the modelling parameters presented in 

Section 3, the model developed is now discussed. 

4.1 Model validation 

In order to validate the model developed in the Section 2, results from 

experiments on the PRO bench-scale system presented in Section 3 are now 

discussed. Solutions characteristics, model parameters and experimental 

conditions are summarized in Tables 3.1, 3.2 and 3.3, respectively.  

The predicted results of the model proposed in Eqs. (3.22) and (3.23) is 

compared with the experimental data in Figs. 3.4, 3.5 and 3.6, that show the 

comparison for water flux Jw, power density W and reverse salt flux Js, 

respectively. It can be seen clearly that the model presented in Eq. (3.22) 

describes the experimental results closely for both membranes. Effectively, the 

maximum specific power is obtained for a hydraulic pressure around half of the 

osmotic pressure, as expected. 

Compared to the other models, the model proposed here takes into consideration 
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the mass transfer coefficient of the feed solution, which can be significant in 

terms of internal concentration polarization when the concentration of the feed 

solution is not low (for instance when the feed is seawater and the draw is brine) 

and the solution temperature is significantly high [37]. Clearly, the model shows 

that the concentration at the surface of the support layer and the concentration 

on the feed bulk are different; thus, the effective osmotic pressure will be 

significantly different from the case when the two concentrations are the same 

especially in the case of non-fresh water in the feed side. 

It can also be appreciated in the experimental results that the performance of the 

IGB membrane is better than the HTI membrane (as predicted by the proposed 

models). In fact, the water permeability coefficient A of the IGB membrane is 

around four times that of the HTI membrane. Nonetheless, the HTI membrane 

presents better attenuation of the reverse salt flux (six times smaller). It must be 

pointed out that the results for the HTI membrane are consistent with previous 

results when tested in similar conditions (such as the 35g/l as draw solution, 0 

g/l as feed solution tested in [8]). The obtained power density is similar, taking 

into account that the feed solution concentrations are slightly different (a more 

realistic 0.5 g/l is used as feed solution for the current study, which leads to an 

internal polarization concentration). 

 

 
Fig. 3.4: Simulation using Eq. (3.22) and experimental results of the water flux 

(Jw) in PRO process as a function of the applied pressure (∆P).  
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Fig. 3.5: Simulation using Eq. (3.23) and experimental results of the power 
density (W) in the PRO process as a function of the applied pressure (∆P).  

 
 
 
 
 
Table 3.5: Comparison of the proposed PRO water flux model with previous 
models. 

Model Model equation and assumptions 

Achilli et al. [8] 

𝐽𝑤 = 𝐴(𝜋𝐷,𝑏𝑒𝑥𝑝 (−
𝐽𝑤
𝑘

)
1 −

𝜋𝐹,𝑏

𝜋𝐷,𝑏
𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤

𝑘
)

1 +
𝐵

𝐽𝑤
[𝑒𝑥𝑝(𝐽𝑤𝐾 − 1)]

− ∆𝑃) 

 

CF,m=CF,b ; kD=kF=k; π=ᵦRTC; 
𝐶𝐹,𝑏

𝐶𝐷,𝑚
=

𝜋𝐹,𝑏

𝜋𝐷,𝑚
 

Prante et al. [25] 

𝐽𝑤 = 𝐴 (
𝜋𝐷,𝑏𝑒𝑥𝑝 (−

𝐽𝑤

𝑘
) − 𝜋𝐹,𝑏𝑒𝑥𝑝(𝐽𝑤𝐾)

1 +
𝐵

𝐽𝑤
[𝑒𝑥𝑝 (𝐽𝑤𝐾) − exp (−

𝐽𝑤

𝑘
)]

− ∆𝑃) 

 
CF,m=CF,b; kD=kF=k;  π=ᵦRTC 

Proposed model 

𝐽𝑤 = 𝐴 [(𝜋𝐷,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
))𝑒𝑥𝑝 (−

𝐽𝑤
𝑘𝐷

⁄ ) − [𝜋𝐹,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤
𝑘𝐹

⁄ ) − ∆𝑃] 

 
 

CF,m ≠ CF,b;  kD ≠ kF;  π=ᵦRTC 
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4.2 Effect of the concentrations of feed and draw solutions 
 

Several types of draw and feed solutions could be used in PRO, as long as a 

sufficient osmotic pressure difference is achieved to guarantee the functioning of 

the process [29]. However, the power produced is not economically viable if it is 

lower than 5 W/m2 [7]. This criterion requires a good choice of feed and draw 

solution, in order to exceed this minimum value.  

Thus, the effect of the  concentrations of these solutions is now studied: 

combinations of four feed solutions with different concentration (8.55mM, 55mM, 

0.2M, and 0.3M of NaCl) and two different draw solutions (0.6M and 1.026 M of 

NaCl) were tested. To reduce the number of experiments, when testing feed 

solutions the concentration of the draw solution was always 0.6M, whereasfor 

draw solutions tests, the feed solution was maintained at 8.55mM. All solutions 

were tested under the same flow rate (FR=50ml/min). The water flux model Eq. 

(3.22) was solved numerically to determine the theoretical water flux Jw and the 

corresponding power densities were calculated over a range of hydraulic pressure 

differences. 

Fig. 3.6 and 3.7 present the model and experimental results with the IGB PRO 

membrane. As expected, the power density values decrease as the concentration of 

the feed solution becomes higher (Fig. 3.6), due to the decrease of the osmotic 

pressure difference. Theoretically, the power density reaches a maximum when the 

applied pressure ∆P is half of the osmotic pressure difference [8], and reaches a 

minimum when the applied pressure is close to the osmotic pressure difference. In 

reality, maximum power density occurs at ∆P =
∆𝜋

2
: The ICP effect is accentuated on 

the surface of the membrane while increasing the concentration of the feed 

solution.  

Fig. 3.6 shows also that increasing the concentration of the feed solution from 

8.55mM to 55mM leads to a decrease of the power density of about 60%. On the 

contrary, Fig. 3.7 shows that when the concentration of draw solution was 

increased from 0.6 to 1.026M NaCl, the power density significantly increased 

(about 40 %). With a draw solution concentration around 1M, a significant power 

density could be produced (W> 5W/m2). Using draw solutions with high 



Chapter 3: Water flux and power density 

 

83 

 

concentration, the water flux increases significantly and therefore the power 

density also increases. 

 

 
Fig 3.6: Modeled and experimental power density for different feed solution 

concentrations as a function of applied pressure (CD,b= 0.6 M, temperature T = 

20°C, flow rate: FR= 50ml/min). 

 

 
Fig 3.7:  Modeled and experimental power density for different draw solution 

concentrations as a function of applied pressure (CF,b= 8.55mM, T = 20°C, FR= 

50ml/min). 
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4.3 Effect of the flow rate velocity  

In this section, the effect of the flow rate velocity (FR) is studied. The process was 

experimentally operated under different flow rates (25, 50, 100, and 150 ml/min): 

The feed flow rate was the same as the draw during all the experiments. The 

concentration of the draw solution was 1.026M whereas the concentration of the 

feed solution was 8.55mM. The experiments were carried out using the IGB 

membrane. The power density was measured and modeled as shown in Fig. 3.8.  

Fig. 3.8 shows that by increasing the operating flow rate, the energy increases 

remarkably. It can be seen also that the increase of the power density is quite 

important when the FR was increased from 25 to 50ml/min, compared with the 

increase of the power density when the FR was raised from 100 to 150ml/min. 

This power density converges to a limit value for high FR. This behavior can be 

explained according to film theory: the flow changes the thickness of the mass 

transfer boundary layer at the surface of the membrane [30]. When the FR is high, 

the boundary layer is thinner, which results in a higher rate of mass transfer and, 

consequently, to reduce the external concentration polarization.  

 

 

 
Fig. 3.8: Modeled and experimental power density versus the applied pressure for 

different flow rates. The draw solution concentration was equal to 1.026M; the 

feed solution concentration was equal to 8.55mM. The draw solution flow rate was 

equal to the feed solution flow rate. T = 20°C.  
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4.4 Effect of the bulk temperatures on the membrane temperature distribution 

In Section 2 a model for the temperature in each part of the membrane was 

developed. Thus, solving Eqs. (3.35), (3.36) and (3.37) gives the temperature 

distribution over the membrane. The parameters used to calculate the 

temperatures are presented in Tables 3.6 and 3.7 obtained from Eqs. (3.25), 

(3.30), (3.32), (3.33), (3.34), and Table 3.3. Fig. 3.9 presents the variation of the 

temperature in each part of the membrane for different bulks temperatures. The 

model was applied to HTI and IGB membranes taking into account the 

characteristics of each membrane. The concentration of the feed and draw 

solutions were CF,b= 8.55mM and CD,b = 0.6M, respectively. The bulks temperatures 

were swept from 20°C to 40°C.  

In Fig. 3.9, it can be seen that raising the temperature of the draw solution leads to 

a remarkable increase of the temperature in the draw boundary layer side and the 

temperature where the ICP occurs (Ticp). However, the temperature in the feed 

boundary side increases slightly. On the other hand, the increase of the feed 

solution temperature is followed by a prominent increase of the solution 

temperature at the feed boundary layer and a noticeable increase of Ticp. This result 

clearly shows that different solutions temperatures on either side of the membrane 

induce a variation of the temperature distribution, especially in the inner of the 

membrane. This non-homogenous distribution of temperature should affect the 

PRO process due to the strong correlation between the temperature, the osmotic 

pressure and the membrane properties.  

The effect of the temperature gradient on the membrane properties is studied in 

the next section. 

 

 

Table 3.6: Thermal conductivities of feed and draw solutions and IGB membrane. 

hD (W/m2/K) hF(W/m2/K) ha.l (W/m2/K) hs.l (W/m2/K) 

31.6 28.6 4806 3966 
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Table 3.7: Thermal conductivity coefficients of feed and draw solutions and IGB 

membrane. 

λs.l (W/m/K) λa.l (W/m/K) λD (W/m/ K) λF (W/m/ K) 

0.526 0.267 0.62 0.60 

 

 

Table 3.8: Different cases of bulk temperatures and operating scenarios. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3.9: Variation of the IGB membrane temperature with the water bulk 
temperature under different scenarios presented in Table 3.8.FR = 50ml/min, 

(CF,b= 8.55mM , CD,b = 0.6M). 
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4.5.1 Effect of the temperatures on the water permeability coefficient A 

The water permeability coefficient is an important parameter to determine the 

performance of a membrane. To study the effect of the bulks temperatures on A, 

experiments were carried out using the IGB membrane. The concentration of the 
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feed solution was maintained at 8.55mM, the draw solution at 0.6M and the flow 

ratesat 50ml/min for all scenarios. Table 3.8 resumes the different cases studied.  

The A value of the membrane at each ΔP was calculated by rearrangement of Eq. 

(3.22): 

 

𝐴 =  
𝐽𝑤

𝜋𝐷,𝑏+
𝐽𝑠
𝐽𝑤

𝛽𝑅𝑇

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

−(𝜋𝐹,𝑏+
𝐽𝑠
𝐽𝑤

𝛽𝑅𝑇)𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐹
⁄ )−∆𝑃

                   (3.38) 

 

 

From Fig. 3.10, it can be clearly seen that increasing the temperature of the bulks 

increases the water permeability coefficient A. This result is in coherence with a 

previous study presented in [35]. However, this study was limited to the effect 

under the same temperature in both sides of membrane. In the current study, a 

temperature gradient was created between the two sides to investigate the effect 

of the temperatures on the membrane properties. 

Fig. 3.10 shows the effect of the experimental variation of TD,b on the water 

permeability coefficient at different values of the feed bulk temperatureTF,b. 

There is only a slight increase of A when the draw bulk temperature TD,b is 

increased. Also, it can be seen that the increment of TF,b leads to a high increase of 

the water permeability. In fact, when TF,b = 20°C the water permeability is A = 

7.2×10-13 m/s/Pa at TD,b = 30°C, whereas when TF,b = 40°C the water permeability 

increases to A = 10.5×10-13m/s/Pa at TD,b = 30°C. 

The results show that the impact of the feed solution temperature on A is more 

important than that of draw solution temperature. Also, the modification of the 

physico-chemical parameters such as the viscosity, the density, the diffusivity 

and the osmotic pressure leads to better performance of the membrane [36]. The 

experimental results reinforce the hypothesis which suggests that the PRO 

membrane is physically modified during the process [10]. It should be pointed out 

that the use of the membrane at high temperature is limited by the thermal 

resistance of each manufacturing material. Morever, rising the temperature of the 

process increases the osmotic pressure of the treated solutions, thus, the driving 

force ∆πmincreases to a maximum, enhances the performance of the process. 
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In summary, operating at high operating temperatures with good control of the 

membrane parameters and solution characteristics would result in an improved 

performance of the PRO process. 

 
Fig. 3.10: Variation of the water permeability coefficient A with the bulk 

temperatures as described in Table 3.8. 

  

4.5.2 Effect on the salt permeability coefficient B 

The salt permeability coefficient is also a key parameter in PRO, as itreduces the 

performance of the process. Unfortunately, the preparation of membranes with 

zero salt permeability is not feasible, sothe aim is to keep B as low as 

possible.Thus, the effect Band its dependence with the operating parameters 

should be taken into account, so in this study the effect of the bulks temperatures 

on the salt permeability is experimentally studied using the IGB membrane. The 

concentration of the feed solution is maintained in all the experiments equal to 

8.55mM and the draw solution to 0.6M. The B value of the membrane at each case 

was calculated by rearrangement of Eq. (3.22): 

 

𝐵 =
𝐽𝑠

𝐶𝐷,𝑏+
𝐽𝑠
𝐽𝑤

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

−(𝐶𝐹,𝑏+
𝐽𝑠
𝐽𝑤

)𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐹
⁄ )

                   (3.39) 

 

As shown in Fig. 3.11, the increases in TD,b or TF,b are followed by an increase in 

the value of B.  According to Fig. 3.9, TF,b has a strong effect on rising the 

temperature of the separation layer material which causes an improvement of the 

membrane salt permeability. When the feed solution temperature is high, B is 
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high, which can be justified by the fact that for dense selective membranes, the 

increase of A is usually accompanied by the increase of B value, and vice versa, 

due to the intrinsic tradeoff between permeability and selectivity [41]. 

Unfortunately, the increased B value can elevate the reverse solute diffusion and 

the accumulation of the solute within the membrane support layer and in the 

bulk feed solution, which will adversely impact the PRO performance due to the 

enhanced ICP (This will be studied in Section 4.6.) 

 

 
Fig.3.11: Variation of the salt permeability coefficient B with the bulk 

temperatures as described in Table 3.9. 

 

4.5.3 Effect on the structure parameter s 

The structure parameter s governs the internal concentration polarization in 

osmotically driven membrane processes and is also an important parameter for 

membrane manufacturing. In many published papers, s is considered as a 

constant [8,11]. However, in practices takes different values depending on 

operating conditions (Temperature, Pressure, etc). A generalized equation 

describing the structure parameter is shown below by rearrangement of Jw in Eq. 

(3.22): 

𝑠 =
𝐷𝐹

𝐽𝑤
𝑙𝑛

[
 
 
 
 

𝜋𝐷,𝑏+
𝐵
𝐴

(1+
𝐴∆𝑃
𝐽𝑤

)

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

−
𝐽𝑤
𝐴

−∆𝑃

[𝜋𝐹,𝑏+
𝐵

𝐴
(1+

𝐴∆𝑃

𝐽𝑤
)]𝑒𝑥𝑝(

𝐽𝑤
𝑘𝐹

⁄ )

]
 
 
 
 

                    (3.40)  
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Thus, the structure parameter was experimentally studied at different values of 

the temperatures and the results are shown in Fig. 3.12. The explanation of the 

results is based on the fact that the increase of the temperature causes a 

dilatation of the polymer which constitutes the surface of the membrane: it 

becomes softer, so the pressure exerts a tangential force on the soft surface, and 

as a consequence the structure parameter decreases with the increasing of the 

temperature. Thus, the decrease of parameter s is due to a mutual and 

simultaneous action of two parameters: the temperature and the pressure.A 

similar behavior has been found with the increase of the pressure (only) [12,30]. 

However the simultaneous action of the temperature and the pressure is more 

important. In fact, the polymer network may expand due to high pressure, 

resulting in better connectivity and thus less tortuosity in the sponge-like 

structure. The increase of the temperature reduces the thickness of the substrate 

and expands its porosity which decreases the salt resistivity through the support 

layer, thus, reducing s leads to decrease the internal concentration polarization. 

As shown in Fig. 3.12-b, when the draw solution temperature was fixed and the 

feed solution temperature was varied s was strongly reduced compared to the 

opposite case shown in Fig. 12-a: for example, when TF,b = 40°C and TD,b= 20°C , s 

is around 5.55×10-4 m, in the opposite case (TD,b = 40°C and TF,b= 20°C), s is around 

6.15×10-4 m. This is due to the direct contact between the substrate and the feed 

solution, so the heat transfer is guaranteed by both convection and conduction. 

However, in the case of the draw solution, the existence of the active layer 

establishes a thermal barrier between the draw solution and the support layer, 

which reduces the thermal effect and minimizes the heating of the substrate by the 

draw solution.  
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Fig.3.12:  Variation of the structure parameter s with the bulk temperatures, as 

described in Table 3.8. 

 

 

4.6 Study of  the reverse solute diffusion 

This section discusses the effect of the temperatures on the reverse solute 

diffusion and thus on PRO performance. To guarantee a high flux across the 

membrane, osmotically driven processes require a high draw concentration to 

drive water permeation through the membrane. However, this condition induces 

an undesirable phenomenon that affects the performance of the process: the 

reverse salt flux occurs simultaneously with the water permeation, but in the 

reverse direction. It has been shown that this inevitable phenomenon reduces the 

performance of PRO due to its correlation with the ICP [42]. Moreover, it has been 

proved that high salt diffusion leads to a severe membrane fouling by enhancement 

of the ICP[43,44].  

The specific salt flux (Js /Jw), theoretically given by Eq. (3.4), can be useful to study 

the effect of the salt flux diffusion on PRO due to the fact that it is related to the 

water and salt fluxes. In PRO mode, Eq. (3.4) shows that the increase of the 

pressure leads to an increment of the ratio Js /Jw. Fig. 3.13-a and b present the 

experimental and simulated Js /Jwas a function of effective applied pressure and the 

temperature for all scenarios presented in Table 3.8. The simulation of Js /Jw is 

based on Eq. (3.4), with A and B valuesare considered variables as presented in 

Sections 4.5.1 and 4.5.2. The draw and the feed solutions were prepared using NaCl 

(draw solution concentration: 0.35M, feed solution concentration: 8.55mM). In FO 

5,2

5,6

6

6,4

6,8

20 30 40

s 
(m

)×
1

0
-4

 

Temperature of the feed bulk (°C) 

TD,b = 40°C

TD,b = 30°C

TD,b = 20°C

(a) 

5,2

5,6

6

6,4

6,8

20 30 40

s 
(m

)×
1

0
-4

 

Temperature of the draw bulk (°C) 

TF,b = 40°C
TF,b = 30°C
TF,b = 20°C

(b) 



Chapter 3: Water flux and power density 

 

92 
 

mode (∆P = 0), the specific salt flux is always 𝐽𝑠 𝐽𝑤⁄ = 𝐵 𝐴𝛽𝑅𝑇⁄  [32].A good 

correlation between experimental and simulated Js /Jw at low and high pressures 

was observed which confirms the hypothesis of membrane deformation that 

suggests the dependence of the specific salt flux to the operating conditions and 

the ratio (B/A) and as shown in Eq. (3.4). Experimental and simulated Js /Jw 

increased with temperature in both scenarios. However, a comparison between 

results from each scenario revealed a net difference when the temperature of the 

water bulk increases: when the feed solution temperature was increased but the 

draw solution bulk was maintained at 20ºC, Js /Jwdecrease from0.017 to 0.012 

(around 35% of reduction), whereas in the opposite case, Js /Jwdecreased from 

0.017 to 0.0076 (around 75% of reduction) which proves that the increase of the 

water flux induces more important diffusion of the salt comparing to the draw 

solution temperature. It should be pointed out that at that temperatures of 

scenario 1 (high TF,b), thesimulation overestimated the water flux (Fig. 3.13-c) 

which shows the existence of a limiting factor that reduces the performance of 

the membrane in this case. For scenario 2 (high TD,b), the simulation predicts 

precisely the water flux, so this unknownlimiting factor is less severe for low 

temperatures (Fig. 3.13-d). This is further consistent with experimental and 

simulated results of the power density that confirms the presence of the ICP due 

to the diffusion of the salt to the support layer, so the optimal hydraulic pressure 

to obtain the peak power density was reduced. In fact, diffusion of the draw 

solution causes the accumulation of the salt on the surface of the support layer, 

which leads to an increase of the concentration Cicp (Fig. 3.1); consequently, the 

effective osmotic pressure and the water flux are reduced: see Eqs. (3.19) and 

(3.21)and thus the performance of PRO is limited.  

In summary, the results revealed the strong relationship between the water flux 

and the salt diffusion: high temperature leads to a higher water flux, which 

unfortunately induces more severe solute diffusion. We suggest that this behavior 

is due a modification of the membrane structure:  the temperature acts upon the 

pores of the membrane and tends to enlarge them, followed by an increase of the 

water and salt fluxes. This seems to be consistent with the results shown in Section 

4.5. 
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It remains to note that the gap between the curves of the power density for the 

case when the draw solution temperature is increased (Fig. 3.13-f) is due to the 

increase of the osmotic pressure caused by the increase of temperature which 

leads to a different applied pressure for each studied case. 

 

 

  

 
Fig. 3.13: Experimental and simulated water flux, salt flux and power density for 

the IGB membrane at different operation cases following Table 3.8 (Experimental 

conditions: 8.55mM NaCl feed solution, 0.35 M NaCl draw solution, FR = 50 

ml/min.) 
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5. Conclusions 

In the current chapter,models reproducing the water and the power density in PRO 

for a flat sheet membrane were developed. These models were verified using 

experimental data, showing a good capability to predict the responses of the 

process. The effects of operating conditions were investigated: The effect on PRO 

performance of the solution concentrations, flow rates and temperatures were well 

predicted by the models.  

In particular, the impact of the bulks temperature on PRO performance was 

studied. It has been experimentally noted that the effect of the feed solution 

temperature is more important than the draw solution temperature: the water and 

salt permeability coefficients showed a higher dependency on the feed solution 

temperature, and the structure parameter s significantly decreased with the 

temperatures. Finally, it was observed that the high water flux resulting from the 

increase of feed solution temperature induced a drastic draw solution diffusion 

which generated a severe ICP. 
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Chapter 4: Effect of the Reverse Salt Flux on 

PRO 

 

 
1. Introduction 

Amain difference between solute flows in RO and PRO is that in RO the solute (i.e., 

the salts dissolved in the draw solution) flows in the same direction as the water 

flux, whereas in PRO the solute in the draw solution diffuses into the feed solution 

in the reverse direction to the water flux [2, 3], due to the concentration gradient.  

Although an ideal semi permeable membrane would prevent this so-called reverse 

salt flow, no membrane is perfect, and a small amount of dissolved solute is always 

transported across the membrane. This phenomenon has been investigated in 

several studies, such as [4,5,6]: it is considered a significant impediment to the 

application of osmotically driven membrane processes,as it creates Internal 

Concentration Polarization, which reduces the performance, as it was shown in 

Chapter 3. 

Significant efforts to improve PRO process have focused on tailoring the 

membrane structure to decrease the effects of limiting factors such as the Internal 

Concentration Polarization (ICP) [7,8], but further developments are still needed 

for successful commercial exploitation of these technologies.One area that has 

received limited attention, but could be a significant impediment to the viability of 

osmotically driven membrane processes is the reverse salt flux [9,28]. 

Thus, in this chapter, a mathematical model is developed to reproduce the reverse 

salt flux in PRO, following the same steps used to develop the water flux model in 

Chapter 3. Again, the model is developed trying to use the minimum number of 

assumptions, by takingexplicitlyinto consideration the effect on this flow of the 

Internal Concentration Polarization (ICP), of the External Concentration 

Polarization (ECP) on both sides of the membranes, and of pressure. The proposed 

model is then validated and tested at lab scale, and the effect of the operating 

conditions on the reverse salt flux is investigated.It is shown that if the reverse salt 

flux is not controlled the PRO performance would be reduced, and the energy costs 
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could be much higher than expected. As this phenomenon is non-evitable, the 

control of the salt diffusion isstudied. Further, the implications of the reverse salt 

flux on the performance of PRO power plants are discussed and some suggestions 

to improve the operation of the process by controlling the reverse salt flux are 

proposed. 

 

2. Theory 

2.1 Modeling the reverse salt flux  

 

As shown previously in Chapter 3, the water flux across a semi-permeable 

membrane in PRO is related to the water permeability the effective osmotic 

pressure difference Δπm and the transmembrane hydraulic pressure difference ΔP 

[11]:  

 

𝐽𝑤  =  𝐴 (∆𝜋𝑚 −  ∆𝑃)            (4.1)                   

 

where 

 

∆𝜋𝑚  = 𝜋𝐷,𝑚– 𝜋𝐹,𝑚              (4.2) 

 

With πD,m and πF,m the osmotic pressure at the surfaces of the active, and support 

layers, respectively. 

In PRO, the power that can be generated per unit membrane area is equal to the 

product of the water flux and the hydraulic pressure differential across the 

membrane: 

 

𝑊 = 𝐽𝑤∆𝑃 =  𝐴 (∆𝜋𝑚 −  ∆𝑃)∆𝑃 (4.3) 

 

The maximum of energy generated by PRO is reached when the applied pressure 

difference∆𝑃 is half of the effective osmotic pressure difference between the draw 

and the feed solutions:∆𝑃 =
∆𝜋𝑚

2
  ; then, the theoretical maximum power that can 

be produced is [12]: 

 

𝑊𝑚𝑎𝑥 = 𝐴
∆𝜋𝑚

2

4
 (4.4) 
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The Internal and External Concentration Polarizations are now characterized for 

flat sheet membranes (at bench scale); a parallel approach can be followed for 

other kind of membranes.  

 

 

 

 

 

 

 

 

 

 

  

 

Fig.4.1: Concentration profile over the PRO membrane and directions of the water 

flux Jw and salt flux Js.CD,mand CF,mare the solute concentrations at the interface of 

the active and support  layers, respectively.Cicpis the solute concentration at the 

interface between the support and active layers. CD,band CF,b are the draw and feed 

bulk concentrations, respectively.  

 

a. The Internal Concentration Polarization (ICP) 

The ICP is an important factor affecting the water flux since it cannot be mitigated 

by enhanced shear stress [13]. ICP occurs when the thin film is supported by a 

porous substrate. In order to reveal the effects of ICP on the permeate flux, the 

solute mass balance within the porous media can be calculated from a mass 

balance: 

 

𝐷𝑠.𝑙
𝑑𝐶(𝑥)

𝑑𝑥
− 𝐽𝑤𝐶(𝑥) = 𝐽𝑠            (4.5)    
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where C(x) is the salt concentration at position x and Ds.l is the diffusion 

coefficient of in the support layer, defined as: 

 

𝐷𝑠.𝑙 =
𝜀

𝜏
𝐷              (4.6) 

 

where ε and τ are the porosity and tortuosityof the support layer, respectively, 

and D is the bulk diffusion coefficient, that can be calculated as follows [14]: 

 

𝐷 =  6.725 × 10−6 ×  exp (1.546 ×  10−4 ×  C −
2.513

𝑇
)   (4.7) 

 

Eq. (4.5) can be integrated over the support layer, respecting the following 

boundary conditions: 

 

{
𝐶(𝑥 = 0)  =  𝐶𝐹,𝑚

𝐶(𝑥 =  𝑡𝑠) =  𝐶𝑖𝑐𝑝
  

 

where the distance x is measured from the interface between the support and 

active layers, Cicpis the solute concentration at the interface between the support 

and active layers, and tsis the thickness of the support layer (Fig. 4.1). This 

integration gives: 

 

𝐶𝑖𝑐𝑝 = (𝐶𝐹,𝑚 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝(𝐽𝑤𝐾) −

𝐽𝑠

𝐽𝑤
                       (4.8) 

 

whereK is the solute resistivity for diffusion within the support layer, defined as: 

 

𝐾 =
𝜏𝑡𝑠

𝜀𝐷
=

𝑠

𝐷
              (4.9) 

 

where s is the structure parameter of the support layer.  
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b. External Concentration Polarization (ECP) 

ECP appears on both sides of the membrane surface and can inhibit water 

permeation due to decreased effective osmotic pressure on the draw solution 

side [15].The boundary conditions for the ECP on the draw solution side are: 

 

{
𝐶(𝑥 =  0)  = 𝐶𝐷,𝑚

 𝐶(𝑥 =  𝛿𝐷) = 𝐶𝐷,𝑏
  

 

where the distance x is now measured from the membrane surface of the active 

layer side and δD is the thickness of the draw boundary layer. Integration of Eq. 

(4.5) over the thickness of the draw boundary layer using the boundary 

conditions gives: 

 

𝐶𝐷,𝑚 = (𝐶𝐷,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘𝐷
) −

𝐽𝑠

𝐽𝑤
                    (4.10) 

   

where kD is the mass transfer coefficient in the draw solution calculated using: 

 

𝑘𝐷 =
𝑆ℎ𝐷𝐷

𝑑ℎ
                                               (4.11)    

 

where DDis the diffusion coefficient of the solute in the draw solution, dhis the 

hydraulic diameter of the flow channel, and Sh is the Sherwood number, 

experimentally determined from measurements at different flow conditions, as 

follows [13]:   

 

𝑆ℎ =  0.04 𝑅𝑒0.75𝑆𝑐0.33   (Turbulent flow)      (4.12) 

 

𝑆ℎ = 1.85 (𝑅𝑒. 𝑆𝑐
𝑑ℎ

𝐿
)     (Laminar flow)         (4.13) 

 

where Re is the Reynolds number, Sc is the Schmidt number and L is the length of 

the channel. The Reynolds and Schmidt numbers are calculated as follows: 
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𝑅𝑒 =
𝑢.𝑑.𝜌

𝜂
=

𝑢.𝑑

𝜇
                                  (4.14) 

 

𝑆𝑐 =
𝜇

𝜌𝐷
           (4.15) 

 

where u is the velocity of the water, d is the diameter of the channel, 𝜌 is the 

density of the water, η the dynamic viscosity of the water and 𝜇 is the cinematic 

viscosity of the water, that can be obtained from [15]: 

 

𝜇 = 1.234 × 10−6 𝑒𝑥𝑝 (0.00212 × 𝐶 +
1965

𝑇
)  (4.16) 

 

c. External Concentration Polarization on the feed solution side 

We define the boundary conditions for the ECP on the feed solution side as: 

 

{
𝐶(𝑥 =  0)  =  𝐶𝐹,𝑏

  𝐶(𝑥 =  𝛿𝐹) =  𝐶𝐹,𝑚
  

 

where the distance x is now measured from the feed boundary layer and δF is the 

thickness of the feed boundary layer. Integration of Eq. (4.5) over this thickness 

of the layer using the boundary conditions gives: 

 

𝐶𝐹,𝑚 = (𝐶𝐹,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝 (

𝐽𝑤

𝑘𝐹
) −

𝐽𝑠

𝐽𝑤
        (4.17) 

 

wherekF is the mass transfer coefficient in the feed solution, which is calculated 

using: 

 

𝑘𝐹 =
𝑆ℎ𝐷𝐹

𝑑ℎ
           (4.18) 

 

where DFis the diffusion coefficient of the solute in the feed solution. 
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As it has been already mentioned, the salts permeate across the membrane in the 

opposite direction of the water flux, from the draw solution into the feed solution. 

The effective reverse salt fluxJs is then [16]: 

 

𝐽𝑠 = 𝐵(𝐶𝐷,𝑚 − 𝐶𝑖𝑐𝑝)           (4.19)                                  

 

where B is the salt permeability coefficient of the membrane active layer and CF,mis 

the solute concentrations at the interface of the active layer. The effective osmotic 

pressure across the membrane is defined as the osmotic pressure along the active 

layer, described as follows: 

 

∆𝜋𝑒𝑓𝑓 = ∆𝜋𝑜𝑝𝑡 − ∆𝜋𝐼𝐶𝑃 − ∆𝜋𝐸𝐶𝑃 (4.20) 

 

where 𝜋𝑜𝑝𝑡, 𝜋𝐼𝐶𝑃 and 𝜋𝐸𝐶𝑃 are the osmotic pressure difference between the feed 

and draw bulks, the osmotic pressure loss caused by ICP, and the osmotic pressure 

loss caused by ECP, respectively. The osmotic pressures are calculated using van’t 

Hoff equation [29]: 

 

∆𝜋𝑜𝑝𝑡 = (𝐶𝐷,𝑏 − 𝐶𝐹,𝑏)𝛽𝑅𝑇 (4.21) 

 

∆𝜋𝐼𝐶𝑃 = (𝐶𝑖𝑐𝑝 − 𝐶𝐹,𝑚)𝛽𝑅𝑇 (4.22) 

 

∆𝜋𝐸𝐶𝑃 = (𝐶𝐷,𝑏 − 𝐶𝐷,𝑚)𝛽𝑅𝑇 + (𝐶𝐹,𝑚 − 𝐶𝐹,𝑏)𝛽𝑅𝑇 (4.23) 

 

where 𝛽 is the van’t Hoff coefficient (𝛽=2 for NaCl), R is the gas constant and T is 

the absolute temperature.  

 

The specific salt flux in PRO, defined as the ratio of salt flux to water flux, Js/Jw, is 

affected by the intrinsic transport properties of the membranes, as follows [17]: 

 

𝐽𝑠

𝐽𝑤
=  

𝐵

𝐴𝛽𝑅𝑇
(1 +

𝐴𝛥𝑃

𝐽𝑤
)          (4.24) 
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2.2 Reverse salt flux Js 

Substituting CD,mand Cicp in Eq. (4.19) by their expressions in Eqs (4.8) and (4.10), 

the reverse draw solute can be described as: 

 

𝐽𝑠 = 𝐵 [𝛼 (𝐶𝐷,𝑏 +
1

ø
(1 −

𝐴∆𝑃

𝐽𝑠
)

−1

) 𝑒𝑥𝑝 (−ø
𝐽𝑠

𝑘𝐷
) − 𝛼′𝛼′′ (𝐶𝐹,𝑏 +

1

ø
(1 −

𝐴∆𝑃

𝐽𝑠
)

−1

) 𝑒𝑥𝑝(ø𝐽𝑠𝐾)𝑒𝑥𝑝 (ø
𝐽𝑠

𝑘𝐹
)]   

(4.25) 

where𝛼,𝛼′ and 𝛼′′ are constants that depend on the operating  conditions, andcan 

be easily calculated using the following relations: 

 

ø =  
𝐴

𝐵
𝛽𝑅𝑇   (4.26) 

 

𝛼 = 𝑒𝑥𝑝 (ø
𝐴∆𝑃

𝑘𝐷
) (4.27) 

 

𝛼′ = 𝑒𝑥𝑝 (ø
𝐴∆𝑃

𝑘𝐹
) (4.28) 

 

𝛼′′ = 𝑒𝑥𝑝(−𝐾ø𝐴∆𝑃) (4.29) 

 

It should be pointed out that Eq. (4.25) expresses the reverse salt flux in terms of 

experimentally accessible quantities, and it incorporates some performance-

limiting phenomena of ICP and ECP which are generally neglected. In fact, in 

several PRO cases studied [14,15,16], the concentration of the feed solution is 

necessarily considered low so that the ECP is negligible. However, this 

assumption is not valid for feed solutions withhigh concentration, such as RO 

brine versus seawater. In addition, the model takes into consideration the 

difference between the mass transfer coefficients in both sides of the membrane, 

that in the literature are frequently considered to be the same, which does not 

reflect the reality: according to Eq. (4.18), the difference can be pronounced at 

certain solution characteristics and operating conditions (concentrations, 

temperature, laminar or turbulent flow, etc.). 
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3. PRO bench-scale and membranes 

To evaluate the reverse salt flux using the model in Eq. (4.25) and study its effect 

on producedpower, some laboratory equipments were carried out. A flat-sheet 

cellulose acetate membrane is used in the experiments, developed by Fraunhofer 

Institute for Interfacial Engineering and Biotechnology [10]: it is called here IGB 

membrane, and has similar characteristics to other commercially available semi-

permeable membranes. Certified ACS-grade NaCl (Fisher Scientific) was used to 

prepare both feed and draw solutions using deionized water. 

The laboratory equipment was reported in Chapter 3: The test unit had a channel 

on the feed side of the membrane to allow the feed solution to flow tangentially to 

the membrane. This channel was 170mm long, 70mm wide and 0.7mm deep, 

providing an effective membrane area of 0.013m2. Mesh spacers placed in the feed 

channel supported the membrane and enhanced the turbulence in the feed stream. 

A high-pressure positive displacement pump was used to recirculate the feed 

solution at selected velocities, with the temperature of the solutions controlled by 

electronic thermostatsand the salt concentration been determined by conductivity 

sensors. 

 

 

Fig.4.2: Comparison of the results predicted by the model developed in Eq. (4.25) 
with the experimental results for various NaCl concentrations. Feed solution is 

considered fresh water (CF,b= 0.0M, T = 20°C). 
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4. Effect of the operating conditions on the reverse salt flux 

4.1 Effect of the osmotic pressure difference 

In this section, the effect of the concentrations of the feed and draw solutions on 

the reverse salt flux is studied. It is normally assumed that the increase of the draw 

solution concentration leads to the increase of the water permeation enhancing the 

performance of PRO. Effectively, the difference of the osmotic pressures between 

solutions is key in the PRO process (See Eq. (4.4)): in fact the maximum of power 

produced is directly proportional to the square of this difference. However, the 

concentration affects also the salt flux as presented in Eq. (4.25). To study this 

effect, four feed solutions with different concentration were tested (8.55mM, 

55mM, 0.2M, and 0.3M of NaCl) against four different draw solutions (0.6M,0.7M, 

0.8M and 1.026 M of NaCl). To reduce the number of experiments, when testing 

feed solutions, the draw solution was always 0.6M. For draw solutions tests, the 

feed solution was equal to 8.55mM. All solutions were tested under the same flow 

rate (u=50ml/min).  

The model in Eq. (4.25) was also solved numerically to determine the theoretical 

salt flux Js in the range of concentrations chosen,keeping the other parameters in 

similar values which are summarized in Tables3.2 and 3.3 of the previous chapter. 

Fig. 4.3-a shows that the increase of the feed solution concentration leads to a 

decrease of the water flux. This result is logical, as the increase of the feed solution 

concentration decreases the osmotic pressure difference, and therefore, decreases 

of the water flux and the power generated. This result was demonstrated in several 

previous studies [17,18]. To determine whether the flux decline was due simply to 

the decreased osmotic driving force, or whether there is another factor that 

contributed to this behavior, several different feed solutions were used. When 

increasing the feed solution concentration, the salt flux decreased remarkably in 

the same manner as the water flux. This behavior can be explained by Eq. (4.24): 

the salt flux is then directly proportion to the water flux. 

Fig. 4.4 shows the proportion of the cause of osmotic pressure drop calculated 

from Eqs. (4.20), (4.21), (4.22) and (4.23). The contribution of each part on the 

optimum osmotic pressure difference πopt is well defined in Fig.4.1. The effective 

driving force πeff is the osmotic pressure along the active layer. It can be clearly 
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seen that the proportion of the ICP increases with the increase of the feed solution 

concentration (from 2% at CF,b = 8.55mM to 27% atCF,b = 0.3M ). In fact, the salt in 

the feed solution enters the porous structure of the support layer as it is 

transported by the water flux. When reaching the support layer side, the salt 

cannot penetrate more due to it is rejected by the dense active layer of the PRO 

membrane. Therefore, the accumulation of the salt in that location induces an 

increase in concentration within the porous layer; hence, the new feed solution 

created presents a concentration higher than the feed bulk concentration, which 

reduces the effective osmotic driving force. On the other hand, the ECP decreases 

with the increase of the feed solution concentration (from 4% to 2%) which means 

that the concentration on the surface of the active layer tends to reach the draw 

bulk concentration. This observation could be explained as follows: firstly, the 

increase of the ICP plays the role of repulsive force to the draw solute to maintain 

the effective draw concentration near the draw bulk concentration; secondly, the 

decrease of the water flux induces the decrease of the ECP since the water flux is 

the transporter of the salt from the feed solution to the active layer surface.  

In PRO, the driving force is directly related to the draw solution concentration, 

which explains the enhanced water flux when this concentration increases, as 

shown in Fig. 4.3-b. It can also be seen that the salt flux increases with the increase 

of the draw solution concentration. The proportion of the osmotic pressure drop 

due to the dilutive ECP also increases, which means that the concentration at the 

surface of the active layer CD,mtends to be smaller than at the draw bulk. The ECP 

became more important at high water flux.It could be said that dilutive ECP acts as 

a barrier to the draw solute permeating into the support layer; hence, decreasing 

ECP means that the draw solute can more easily diffuse into the feed solution, 

which explains the increase of the salt flux diffusion. In the experiments, the 

effective osmotic pressure was reduced from 6% to 9% when the draw 

concentration was raised from 0.6M to around 1M.  
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Fig. 4.3: Experimental Effects of the concentration of draw (b) and feed (a) 
solutions on the water flux Jw and the salt flux Js, and comparison with the 

predicted Js. 
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Fig. 4.4: Experimental proportion of the cause of osmotic pressure drop, as a 
function of the draw and feed concentrations. (Operating parameters in Table4.1). 
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4.2 Effect of the cross flow velocity 

The next study is the effect of the cross flow velocity:The velocities of draw and 

feed solutionsaffect the external CP, and the draw solution velocity may indirectly 

affect internal CP; therefore, both may impact the water flux. To study this effect 

the process was operated under four cross-flow velocities varying from 0.00535 

m/s to 0.0321m/s (that is, 25, 50, 100 and 150 ml/min): Under those conditions, 

the flow is considered to be laminar. During all the experiments the feed and draw 

solution flow rates were the same, the concentration of the draw was 1.026M and 

the concentration of the feed was 8.55mM. The experiments were carried out using 

the IGB membrane.  

Fig. 4.5 shows clearly that the increase of the cross-flow velocity increases the 

water and salt fluxes. This behavior can be explained as follows:  

 The first reason is given by film theory: the cross–flow velocity contributes to 

changing the thickness of the mass transfer boundary layer at the surface of the 

membrane. The boundary layer becomes thinner when the cross flow velocity 

is higher, which results in a higher rate of mass transfer.  

 The second reason is that permeated water is mixed faster in the bulk draw 

solution. However, the increase rate of Js is significantly higher than that ofJw 

(the salt flux was almost tripled when the water flux was increased 50%),which 

means thatsolute flux has increased more drastically at higher applied cross 

flows. 

Fig. 4.6 presents the proportion of the osmotic pressure at different cross-flow 

velocities calculated fromEqs. (4.20), (4.21), (4.22) and (4.23). At low cross-flow 

velocities, the contribution of the dilutive ICP in the pressure drop is higher. When 

the velocity increases the ECP decreases, so ECP is more pronounced at high water 

fluxesif PRO is operated at low cross-flow velocities. ECP can be minimized by 

increasing the cross-flow velocity and the turbulences at the membrane surface. 

On the other hand, it can be seen that the ICP increases slightly with the decrease 

of the ECP (increase of the velocity). This result means that the feed solute can 

more easily diffuse into the support layer when the barrier effect of the ECP is 

mitigated. The effect of the ICP, as mentioned in the previous section, is more 

important at high feed solution concentration. This effect can be more severe if the 

PRO is operating under high velocity and high feed solution concentration. 
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However, The results showed that increasing the velocity increases the salt flux 

diffusion,so, to design a power plant with low velocity may reduce the salt 

diffusion, but it will decrease the performance of the PRO (because the power 

density increases with the increase of the velocity and also the ECP decreases with 

the velocity). Moreover, it was shown in the previous paragraph that the salt flux 

diffusion affects the concentration polarization (ICP and ECP). Consequently, the 

influence of the cross-flow velocity on specific reverse salt flux provides 

helpful information in PRO design and optimization. 

 

 

Fig. 4.5: Effect of the cross-flow velocity on the salt flux Js and on the water flux Jw.      

ΔP = 23 bars. 
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4.3 Effect of the membrane orientation 

In PRO, two membrane orientations are normally used (See Fig. 4.7):  

 the active layer facing the draw solution (denoted here AL–DS), 

 the active layer facing the feed solution (denoted here AL–FS).  

In fact the orientation AL–DS is most widely assumed in the literature, due to the 

fact that the performance and the stability of the membrane are significantly 

better.  

The effect of ICP can be modeled by adopting the classical solution-diffusion theory 

for the dense rejection layer coupled with convection and diffusion transport of the 

solute in the porous support layer [34]. Concentrative ICP appears under AL–DS 

orientation, whereas the dilutive ICP appears under AL–FS. According to Lee et al 

[35], the water flux for PRO can be expressed as follows: 

 

𝐽𝑤 = 𝐾
(𝐴𝜋𝐷,𝑏−𝐴∆𝑃−𝐽𝑤)+𝐵((𝐴∆𝑃 𝐽𝑤⁄ )+1)

𝐴𝜋𝐹,𝑏+𝐵((𝐴∆𝑃 𝐽𝑤⁄ )+1)
   (AL – DS) 

 

𝐽𝑤 = 𝐾
𝐴𝜋𝐷,𝑏+𝐵((𝐴∆𝑃 𝐽𝑤⁄ )+1)

(𝐴𝜋𝐹,𝑏+𝐽𝑤+𝐴∆𝑃)+𝐵((𝐴∆𝑃 𝐽𝑤⁄ )+1)
(AL–FS) 
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Fig. 4.7: Schematics of membrane orientations in PRO process. The concentrative 

and dilutive ICPs are also shown. 
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In this section, the effect of the membrane orientation on the reverse salt flux and 

the power output is studied. For that, a 1M NaCl draw solution and two feed 

solutions (8.55 mM and 55 mM) were tested under both membrane orientations. 

From Fig. 4.8, it can be seen that the performance of PRO operated under AL–DS is 

better at high pressure and using low feed solution concentration: the water flux 

and the power density are much higher and the membrane seems to be more 

stable under these conditions (Fig. 4.8-a, -b , -e and -f). This is due to the severe ICP 

that occurs in the support layer when it is facing the draw solution, which proves 

that the dilutive ICP in AL–FS orientation is more severe than the concentrative ICP 

in AL-DS orientation.   However, the reverse salt flux for PRO under AL–FS is lower 

than PRO operated underAL–DS for the two studied feed solutions because of the 

remarkable difference between concentrative and dilutive ICPs in both cases. 

When the feed solution was 55 mM, the difference of PRO performance for the two 

orientations was not significant. Moreover, when operating at low pressure and 

under AL–FS orientation, the membrane seems to be stable in terms of water flux 

and reverse salt flux (Fig. 4.8-b and 4.8-d).  

These results explain the tendency of using the AL-DS orientation in PRO 

experiments, especially at high pressure to guarantee a high power 

density.However, it should be pointed out that the AL–FS orientation is stable at 

low pressures. On the other hand, it has been shown in a previous study that AL–FS 

orientation resist betterto fouling [32]. Moreover, it was shown here that the salt 

diffusion is lower for AL–FS, which means that the contribution of Js in membrane 

scaling and fouling is lower than AL–DS, especially using feed solutions that 

contain fouling and scaling precursors. As an example, the “Mega-ton RO-PRO” 

project in Fukuoka City- Japan is operating under AL–FS orientation, and seems to 

have good results [36]. 
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Fig. 10:  Effect of the membrane orientation on the water flux ((a) and (b)), the salt flux 

diffusion ((c) and (d)), and the power density ((e) and (f)). 1 M NaCl draw solution, T = 

20ºC for both feed and draw solution, cross-flow velocity of 50ml/min on both side of 

membrane.
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4.4 Effect of the draw solution composition 

In this section, the effect of the of draw solution composition is investigated. Six 

draw solutions were tested (sodium chloride, potassium chloride, magnesium 

sulfate, calcium chloride, calcium nitrate and glucose). These were prepared using 

concentrations that correspond to the osmotic pressure of sea water (≈ 27 bar). 

Fig. 4.9 shows the variation of the reverse salt flux and the water flux for each case 

tested.  

It can be clearly seen that the performance of PRO drastically changes with the 

type of chemicals composing the draw solution. The highest salt flux was found 

when the draw solution was based on potassium and sodium chlorides, and the 

lowest was for the calcium chloride and magnesium sulfate. This distinct behavior 

of the salt diffusion can be attributed to the ion size in aqueous solution.  

Since the ionic radius changes in aqueous solutions, it is necessary to take into 

account the hydrated radius. Table 4.1 shows the hydrated radius of the tested 

ions in aqueous solutions. From Fig. 4.9-a, it can be seen that there is a strong 

relationship between the salt diffusion and the hydrated ions: Sodium chloride and 

potassium chloride revealed a high passage through the membrane due to their 

small radius compared to the other entities. The lowest reverse salt flux occurs at 

the measurement of the MgSO4 and CaCl2 solutions, which are characterized by the 

bigger radius. However, CaCl2 lowest salt passage than MgSO4 despite the fact that 

its radius is smaller. Possibly, this behavior can be attributed to the interaction 

between the surface of membrane and the calcium, forming calcium acetate, which 

blocks the passage of the salt. 

Fig. 4.9-b shows the influence of the draw solution composition on the water flux. 

The highest water flux occurs with calcium salts, whereas the lowest water flux 

was observed with magnesium salt. As shown in Eqs. (4.10) and (4.11), the 

diffusion coefficient of the draw solution affects the external concentration 

polarization. In fact, the diffusion minimizes the difference of concentrations 

between the draw bulk and the draw boundary layer (CD,b and CD,m); when the 

diffusion coefficient is high, the external concentration polarization ECP is reduced 

and thus the water flux increases. Moreover, a possible penetration of the salts in 

the membrane, which causes internal concentration polarization ICP, especially 

when the salt is blocked in the inner structure of the membrane and cannot be 
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removed due to their size. Table 4.2 shows the diffusion coefficients in aqueous 

solution of the different ions investigated. 

The magnesium salt revealed the lowest water flux. This result can be explained by 

the fact that the magnesium salt has the lowest diffusion coefficient and the 

thickest hydrated radius, which leads to more severe internal and external 

concentration polarization compared to the other salts. Unexpected result for 

calcium salts was shown:  the highest water flux was observed for calcium chloride 

and a good performance was shown using calcium nitrate compared to the other 

entities despite its thick hydrated radius. This result may be attributed large 

hydrated nitrate radius, which reduces the salt flux and the relatively high 

diffusion coefficient, which minimizes the ECP. Calcium nitrate at a very low salt 

passage was measured, which contributes to increase the trans-membrane flux. 

Potassium and sodium chloride have high diffusion coefficients which lead to 

decrease the effect of ECP, and thus enhance the water flux. However, these 

entities have small ionic hydrated radius, which causes an increase in salt flux, and 

thus the water flux decreases. These two simultaneous and antagonist effects 

explain the behavior of water flux. 

 

 

 

Fig. 4.9: Experimental salt flux Js  and water flux Jw for different draw solution 

composition as a function of the applied pressure. 
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Table 4.1: Hydrated radius of studied ions [21] 

Ion Hydrated radius (10-12m) 

Na+ 178 

K+ 201 

Ca2+ 260 

Mg2+ 300 

Cl- 195 

NO3
− 340 

SO4
2− 300 

 

Table 4.2: Diffusions coefficients of tested salts [22,23,24,25,26]. 

Salt Diffusion coefficient (10-9 m2.s-1) 

NaCl 1.50  

KCl 1.90 

CaCl2 1.12 

Ca(NO3)2 1.08 

MgSO4 0.74 

 

 

4.5 Effect of the solutions temperature 

The effect of the temperatures of the solutions is now investigated. For this, a NaCl 

draw solution (0.35M) and a NaCl feed solution (8.55mM) were used. The 

experiments were realized under several temperature gradients between the two 

solutions.  

Table 4.3 presents the results obtained in the five experiments investigated. It is 

clear that the increase of a solution temperature leads to the increase of its osmotic 

pressure, following the van’t Hoff equation. Moreover, due to the heat convection 

and diffusion, the temperature inside the membrane depends on the temperature 

of the solutions in the bulks. In our study [29], a mathematical model was 

developed to quantify the temperature in each part of the membrane at different 

operating temperature. It was shown that the transport parameters (A, B and s) 

cannot be considered constants at different temperatures. In this section, the 



Chapter 4: Effect of the Reverse Salt Flux 

 

121 

 

values of A and B will be taken from [19] under the same conditions for simulation 

issues as described in Table 4.3. Fig. 4.10 shows the variation of the water and the 

salt fluxes under different bulks temperatures. As expected, the increase of the 

temperature leads to the increase of the water flux, which enhances the 

performance of the PRO, as shown in Fig. 10-a and 10-b. It can be seen that when 

the feed solution temperature was increased, the impact on the power density is 

quite significant (the power density jumps from 1.6 W.m-2 to 2.4 W.m-2). This result 

is consistent with the plots of the water flux: the performance of the PRO is higher 

at high feed solution temperatures. In the other case, the process shows an 

improvement with the increase of the draw solution temperature; however, the 

increase is much lower than with the feed solution temperature. Likewise, raising 

the temperature enhances the salt flux in both experiments.  

The specific salt flux (Js/Jw), theoretically given by Eq. (4.24), is very useful to study 

the effect of the reverse salt flux on PRO. Fig. 4.10-e and 4.10-f show the variation 

of this specific salt flux under different operating temperature. Experimental and 

simulated Js/Jw increased with temperature in both cases. The results revealed the 

strong relationship between the water flux and the salt diffusion: high temperature 

leads to a better water flux, which unfortunately induces more severe solute 

diffusion. We suggest that this behavior is due to a modification of the membrane 

structure: the temperature acts upon the pores of the membrane and tends to 

enlarge them which is followed by an increase of the water and salt fluxes. This 

seems to be consistent with the resulted water permeability coefficient A and salt 

permeability coefficient B presented in Table 4. Accordingly to prior studies 

[28,30], reverse diffusion of draw solutes can be significantly enhanced at higher 

applied pressure due to membrane deformation. Moreover, the proportion of the 

osmotic pressure drop reveals that the increase of the draw solution temperature 

induces more severe ICP compared to the feed solution temperature (Table 4.4). 

Despite the enhancement of the water flux, the increase of the solutions 

temperature induces a decrease of the effective osmotic pressure. This may be 

attributed to the penetration of the solute into the active layer because of the 

membrane deformation where the temperature in this location is then higher. It 

should be noted that the proportion of the osmotic pressure drop was calculated 
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respecting the Morse equation at the modeled temperature in each part of the 

membrane. 

 

 

 
Fig. 4.10: Experimental and simulated salt and water fluxes (a, b), power density (c, 

d) and specific salt flux (Js /Jw) (e, f) under different draw and feed solution 

temperatures. (Experimental conditions: 8.55mM NaCl feed solution, 0.35 M NaCl 

draw solution, u = 50 ml/min.) 
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Table 4.3: Temperatures, water permeability, salt permeability and proportion of 

osmotic pressure drop under different bulk solutions temperatures.

TF,b(˚C) TD,b (˚C) TF,m (˚C) TD,m (˚C) Ticp (˚C) A(m.s-1.Pa-1) B(m.s-1) 

20.0 20.0 20.0 20.0 20.0 1.06×10-12 2.62×10-8 

30.0 20.0 27.1 22.7 23.5 1.53×10-12 4.80×10-8 

40.0 20.0 37.4 24.4 25.8 1.97×10-12 5.16×10-8 

20.0 30.0 22.9 27.3 26.5 1.09×10-12 2.85×10-8 

20.0 40.0 24.8 35.6 34.2 1.14×10-12 3.13×10-8 

 

Table 4.4: Effective osmotic pressure and proportion of osmotic pressure drop 

under different bulk solutions temperatures. 

TF,b(˚C) TD,b (˚C) πeff(%) ICP (%) ECP(%) 

20.0 20.0 92.9 3 4.1 

30.0 20.0 88.8 5.5 5.7 

40.0 20.0 88.1 5.8 6.1 

20.0 30.0 88.6 7.1 4.3 

20.0 40.0 86.3 9.2 4.5 

 

 

 

5. Theoretical discussion of the ratio Js/Jw 

 

As it has been mentioned the specific salt flux Js /Jwcanbe useful to study the effect 

of the reverse salt flux on PRO. This is theoretically given by Eq. (4.24), where the 

reverse salt flux depends on two main parameters: the water flux and the applied 

pressure (water and the salt permeability coefficients can be considered constants 

in short time scales). The factor 1 +
𝐴∆𝑃

𝐽𝑤
 is fundamental to study the contribution of 

the pressure and the water permeability to the salt flux. Eq. (4.24) can be 

rearranged based on the operating conditions: 

 At high water flux and low pressure, the quantity 
𝐴∆𝑃

𝐽𝑤
 is much smaller than 

1.0, so Eq. (4.24) can be rearranged and the salt flux is approximately: 
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𝐽𝑠 ≈ 𝐽𝑤
𝐵

𝐴𝛽𝑅𝑇
  (4.30) 

 

 At low water flux and high pressure, the quantity 
𝐴∆𝑃

𝐽𝑤
 is much bigger than 

1.0, so Eq. (4.24) can be rearranged as follows: 

 

𝐽𝑠 ≈
𝐵

𝛽𝑅𝑇
∆𝑃. (4.31) 

 

Eq. (4.30) shows that the salt flux is directly proportional to the water flux, which 

means that the increase ofJs is mainly due to the water flux permeation when 

operating at high water flux and low pressure. In fact, Fig. 4.11 shows that more 

than 90% of the salt flux at low pressure is caused the water flux.  

In the other case, Eq. (4.31) shows that the salt flux is mainly caused by the applied 

pressure;this is consistent with the experimental results presented in Fig. 4.10-e 

and 4.10-f of the previous Section, where the Js/Jw ratio increased drastically at 

high pressures (A similar observation has already been presented in [27]). 

This result is validas long asA and B are constant during the process. 

Unfortunately, several studies mentioned that A and B are modified during PRO 

process because of membrane modificationsthat depended on the operating 

conditions [17,27,31]. According to the study reported in [29], the increase of the 

temperature enhances the salt permeability B, which means that the PRO process 

can suffer from high salt flux when operating at high pressure. She Q. et al suggest 

that high pressure is an important cause of membrane deformation [17]. These 

results confirm that, with non-ideal membrane, the reverse salt flux is inevitable 

because it is mainly caused by primordial factors of PRO process: the water flux 

and the applied pressure. Consequently, salt diffusion should be well controlled 

and the variation of B should also be minimized. To mitigate this, rigid membrane 

and well developed spacers can help to minimize the effect of the pressure and 

limit the risk of membrane modification. 
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Fig. 4.11: Distribution of the cause of the reverse salt flux in PRO as function of the 

applied pressure (The draw solution concentration is 1M; the feed solution 
concentration is 8.55 mM. The continuous line is the modeled salt flux under 

conditions presented in Table 4.1).  
 
 
 
 
 

6. Implications of the Reverse salt flux for full-scale power plants 
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power density produced is under 5W/m2 [27]. Experimental results clearly 
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pressure leads to the increase of salt reverse diffusion; therefore, the risk of 

2,38

2,42

2,46

2,50

0

20

40

60

80

100

0 10 20 30 40

P
ro

p
o

rt
io

n
 o

f 
th

e
 c

a
u

se
 o

f 
sa

lt
 f

lu
x

 
d

if
fu

si
o

n
 (

%
) 

Applied pressure (bar) 

J s 
(m

o
l/

m
2
/

s)
×

1
0

-5
 

Water contribution 

Pressure contribution 



Chapter 4: Effect of the Reverse Salt Flux 

 

126 
 

gypsum precipitation increases. On the other hand, the bivalent ions reverse salt 

flux contributes to membrane fouling. In fact, the diffusion of calcium and 

magnesium from the draw solution to the feed solution increases the fouling 

process due to the fact that those ions form interactions with organic foulants 

which enhance the membrane fouling [33].  

In summary, the effects of the reverse flux diffusion are:  

 to enhance ICP,  

 to cause membrane scaling, and 

 to aggravate membrane fouling. 

Therefore, those consequences will reduce the performance of PRO membrane in 

foul-scale power plants, and limit its durability. It should be noted that it is 

estimated that membranes account for up to 80% of total capital costs [6]; then, 

the durability of the membrane directly affects the viability of power plant. 

Consequently, the use of chemical cleaning and backwashing becomes a necessity 

to mitigate the effect of fouling and scaling, which increase the energy costs and 

affect the environmental impact of the process. It is also pointed out that pre-

treating the water to avoid fouling and scaling requires a relatively large amount of 

energy and has a high cost.  

The optimization of the membrane can be very beneficial to avoid the problem of 

the solute diffusion. In fact, inhibiting the migration of the solute from the draw 

solution to the feed solution can avoid the induced ICP and limit the contribution of 

the bivalent ions in the processes of scaling and fouling. Thus, an active layer with 

very high rejection is recommended. As demonstrated in the previous section, 

increasing the flow rate velocity increases the water flux and has a relative low 

impact on the ICP, and also can be useful to remove the foulant deposits from the 

membrane surface. Suitable operating conditions and a well-designed membrane 

can, then, but control its effect on power produced. 
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7. Conclusion 
 
In this chapter, a model reproducing the reverse salt flux for a flat sheet membrane 

flux in PRO power plant has been developed and validated at lab scale. The effects 

of feed and draw solution concentrations, the cross-flow velocity, and temperature 

on this salt flux were investigated. The following conclusions can be made from the 

current study: 

 The increase of the feed solution concentration decreases the rate of 

reverse salt flux because of the reduced concentration gradient between the 

two membrane sides. However, this leads to a severe concentrative ICP due 

to the penetration of the solute in the support layer and blocked at the 

surface of the active layer which reduces the performance of the PRO. 

 The increase of the draw solution concentration enhances the PRO process 

by increasing the osmotic driving force. However, it simultaneously 

increases the reverse salt flux. 

 The PRO process presents better performance when operating at high 

cross-flow velocity. However, this velocity exacerbate the effect of the ICP. 

 Operating under AL–DS orientation is more suitable for high pressures. 

However, the AL–FS is recommended when feed solutions contain fouling 

precursors. 

 The increase of the operating temperature leads to a better performance of 

the PRO. However, the salt flux also increases due to increase of the salt 

permeability coefficient and the diffusivity of the salt in the inner of the 

membrane. 

 The water flux and the pressure are mainly the experimental parameters 

that control the salt flux evolution.  PRO membranes with better rigidity and 

optimized spacer are required to guarantee a better performance of the 

PRO process. 

The results of this chapter were submitted in Renewable Energy Journal as: 

KhaledTouati, Christopher Hänel, Fernando Tadeo, Thomas Schiestel, Effect of the 

operating conditions on the losses caused by Reverse Salt Diffusion in osmotic 
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power plants, Renewable Energy Journal, submitted February 2015 (under 

revision) 
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Chapter 5:  Effect of the temperature on 

hydrodynamics and PRO membrane 

parameters 
 

 

1. Introduction 

Laboratory experiments have already shown that PRO performance is affected by 

such parameters as the operating pressure or the characteristics of the draw and 

feed solutions. However, most of the existing publications have focused on the 

study of water flux and power density [1,2,3,4,5,15], with the impact of 

temperature being less studied [12,13]. However, in any osmotic membrane, the 

operating temperature affects the performance of the system, as it affects the 

membrane’s permeability, the reverse salt diffusion and some structural 

parameters.  

In practice the solution temperature in PRO processes may vary over a wide 

range, depending on the nature of the sources of the solutions, the location and 

its surrounding climate, etc. [10]. For example, the expected temperature of 

seawater would range from 12 to 35 ˚C [11]. If brine were used, the temperature 

of brines discharged from desalination plants is higher than that of raw seawater 

[6]; as most desalination plants are located in hot regions, the seawater 

temperature is over 25˚C, whereas the brines are over 30˚C.  

The temperature accounts for a key factor that not only affects the 

solution’sphysic-chemical properties, such as the osmotic pressure, viscosity, 

density, and diffusion, but it also represents an important measure of the amount 

of energy input during operation. If the temperature of raw seawater is below a 

lower limit, the water flux may be too low unless temperature control strategies 

are actively implemented (for example, using external sources of heat). 

Therefore, to optimize the solution temperature for maximizing water flux yield, 

it is important to understand the temperature-induced interaction between 

solute, water and membrane [12].  

Thus, in the current chapter, the effects of the temperatures of the feed and draw 

solutions on the structural parameters of the membrane, and the hydrodynamics 
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are investigated. The results provided by this study may give an interesting 

insight into the PRO operating conditions and PRO membrane design 

 

2. PRO background             

The ideal osmotic process can be described by thermodynamic equations for the 

water and salt fluxes. The general equations of transport are [8]: 

 

𝐽𝑤,𝑖𝑑𝑒𝑎𝑙  =  𝐴 (∆𝜋 −  ∆𝑃)                        (5.1) 

     

𝐽𝑠,𝑖𝑑𝑒𝑎𝑙 = 𝐵(𝐶𝐷,𝑏 − 𝐶𝐹,𝑏)                                                 (5.2) 

 

where 𝐽𝑤,𝑖𝑑𝑒𝑎𝑙 is the ideal water flux, 𝐽𝑠,𝑖𝑑𝑒𝑎𝑙 is the ideal salt flux, A is the water 

permeability coefficient of the membrane, B is the salt permeability coefficient of 

the membrane, CD,b and CF,b are the solute concentrations in the bulks, ∆𝜋 is the 

osmotic pressure difference between the bulks, and ∆P is the hydraulic pressure 

applied on the draw water side.  

As an asymmetric membrane is generally used in PRO, internal concentration 

polarization (ICP) occurs in the porous layer of the membrane, which reduces the 

osmotic driving force across the active layer, and thus the water flux. In PRO, the 

orientation  Active dense Layer facing the Draw Solution (AL–DS) is considered to 

be mechanically more stable, as the external hydraulic pressure is applied on the 

draw side [6,7]. In this case, concentrative ICP occurs in the porous layer of the 

membrane. 

Without perfect hydrodynamics in the draw solution flow channel, dilutive 

External Concentration Polarization (ECP) occurs in the mass transfer boundary 

layer of the draw solution, reducing the local concentration at the active layer from 

CD,b to CD,m, which lowers the πD,m (the osmotic pressures of the draw active layer 

surface membrane).A schematic of the salt concentration profile across a 

membrane operating in PRO mode (active layer facing the draw solution) is shown 

in Fig. 5.1.  

Thus, a more realistic water flux expression is: 
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𝐽𝑤  =  𝐴 (𝜋𝐷,𝑚– 𝜋𝐹,𝑚 −  ∆𝑃) (5.3) 

  

where πD,m and πF,marethe osmotic pressures at the surface of the active and 

support layers, respectively. 

Based on the model developed in Chapter 3, and assuming that the concentrative 

ECP on the feed solution side is negligible in this case (CF,m= CF,b), the  expressions 

of the concentrations through the membrane are as follows:  

 

𝐶𝑖𝑐𝑝 = (𝐶𝐹,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝(𝐽𝑤𝐾) −

𝐽𝑠

𝐽𝑤
 (5.4) 

 

𝐶𝐷,𝑚 = (𝐶𝐷,𝑏 +
𝐽𝑠

𝐽𝑤
) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘
) −

𝐽𝑠

𝐽𝑤
 (5.5) 

 

Assuming that the osmotic pressure is proportional to the concentration and the 

temperature (𝜋 = 𝛽𝐶𝑅𝑇), the osmotic pressures over the active layer are 

expressed as: 

 

𝜋𝑖𝑐𝑝 = (𝜋𝐹,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝(𝐽𝑤𝐾) (5.6) 

 

𝜋𝐷,𝑚 = (𝜋𝐷,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘
)                                                                           (5.7)  

 

Thus, the water flux Jwis defined as follows: 

 

𝐽𝑤 = 𝐴 [(𝜋𝐷,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝 (−

𝐽𝑤

𝑘
) − (𝜋𝐹,𝑏 +

𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)) 𝑒𝑥𝑝(𝐽𝑤𝐾) − ∆𝑃]  

(5.8) 

where πD,b is the bulk osmotic pressure of the draw solution near the surface of the 

active layer, πF,bis the bulk osmotic pressure of the feed solution near the surface of 

the support layer, β is the van’t Hoff coefficient, R is the universal gas constant, and 

T is the absolute temperature. The mass transfer coefficient (k) is defined as [7]: 
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𝑘 =
𝑆ℎ𝐷

𝑑ℎ
 (5.9) 

 

where D is the diffusion coefficient of the solute in the draw solution, Sh is the 

Sherwood number and dhis the hydraulic diameter of the flow channel defined as: 

 

𝑑ℎ =
4𝑆

𝑃𝑤
 (5.10) 

 

where S is theareaoftheflowsection and Pw is the hydrated perimeter. For a flat 

channel with spacer, the hydraulic diameter is [21]:  

 

𝑑ℎ =
4𝜀

2

ℎ𝑠𝑝
+(1−𝜀)𝑆𝑣𝑠𝑝

 (5.11) 

 

where hsp is the thickness of the spacer, Svsp the specific surface of the spacer 

(Svsp=Ssp/Vsp, Ssp is the surface area of the spacer and Vsp the volume of the spacer), 

and 𝜀is the porosity. The Sherwood number calculation is discussed in Section 5.1. 

The solute resistivity K is defined as [9]: 

 

𝐾 =
𝜏𝑡𝑠

𝜀𝐷
=

𝑠

𝐷
          (5.12) 

     

where τ, ts and  s  are, respectively, tortuosity, thickness and structure parameter. 

The specific salt flux in PRO, defined as the ratio of salt flux to water flux, Js/Jw, is 

affected by the intrinsic transport properties of the membranes, as follows [10]: 

 

𝐽𝑠

𝐽𝑤
=  

𝐵

𝐴𝛽𝑅𝑇
(1 +

𝐴𝛥𝑃

𝐽𝑤
)                                   (5.13) 
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Fig. 5.1: Schematic representation of the salt concentration profile, salt and water 
fluxes across a membrane in PRO at steady state. 

 

 

3. Experimental 

3.1 Membranes  

Results from experiments with cellulose acetate flat-sheet PRO membranes (IGB 

membrane), developed by Fraunhofer Institute for Interfacial Engineering and 

Biotechnology, are used to validate the models and analyze the effect of 

temperatures on the PRO process. Parameters used for the calculations are 

summarized in Table 5.1. 

 

3.2 PRO bench-scale 

A schematic diagram of the laboratory scale unit used in this study was provided in 

Chapter 3. The test unit had a channel on the feed side of the membrane to allow 

the feed solution to flow tangentially to the membrane. Mesh spacers placed in the 

feed channel supported the membrane. A high-pressure positive displacement 

pump was used to recirculate the feed solution at selected velocities. Each 

container was placed on an analytical balance. The fluxeswere calculated based on 

the change of weight of the solutions in the graduated containers. The salt flux was 

determined based on conductivity measurements. 

The temperature was maintained constant using a thermostatic bath for each bulk, 

withthe temperature of the solutions controlled by an electronic thermometer for 

each side.  

CF,b 

CD,b 

Js 

CD,m 

Feed solution 

Draw solution 

∆πm 

δ 

ts Support layer  

Active layer  

Cicp 

Jw 
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3.3 Chemicals 

The feed and draw solutions were prepared using certified ACS-grade NaCl (Fisher 

Scientific). Osmotic pressures, viscosities, and diffusion coefficients of solutions 

were calculated using the equations developed in the current study. 

 

Table 5.1: Main characteristics of the IGB Membrane 

 

 

4. Effect of the operating temperature on the feed and draw solution 
chemistry 

4.1 The Osmotic Pressure 

The difference in osmotic pressure between bulks has been shown, in Chapter 3, to 

be an important parameter in PRO: In fact, the driving force of the process is the 

difference in osmotic pressure over the active layer, which is directly affected by 

the osmotic pressures in the bulks. The temperature has significant impact on 

these osmotic pressures: In fact, referring to the van’t Hoff equation(𝜋 = 𝛽𝐶𝑅𝑇), 

the osmotic pressure is directly proportional to the temperature. Although the 

osmotic pressure is not proportional to the concentration for solutions with a very 

Parameter Values 

Water permeability coefficient A 1.06×10-12 m/s/Pa (at 20˚C) 

Salt permeability coefficient B 2.62×10-8 m/s (at 20˚C) 

Porosity of the support layer ε 80 % 

Thickness of the active layer e 100 nm 

Thickness of the support layer ts 12 µm 

Length of the channel 0.17 m 

Effective surface of the membrane 0.013 m2 

Depth of the channel 0.007 m 

Width of the channel  0.07 m 

Hydraulic diameter dh 9.4×10-4 m 

Flow velocity u0 0.0107 m/s 

𝝉𝒕𝒔
𝜺⁄  5.06×10-4 m 
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high concentration, the assumption of proportionality between the osmotic 

pressure and the temperature is still applicable: for example, following the results 

in [11], the expression of the osmotic pressure at a given temperature T, as a 

function of the concentration C for a NaCl solution, can be approximated by: 

 

𝜋 =  𝑇𝑅(3.805𝐶2 + 42.527𝐶 + 0.434)  (5.14)  

 

where TR is the normalized temperature:  

𝑇𝑅 =  
𝑇

273.15
                                  (5.15) 

 

For simplicity, NaCl solutions are now considered: Fig.5.2 shows the expected 

effect of the temperature on the osmotic pressure of the draw solution for different 

concentrations.  

 

 

Fig. 5.2: Osmotic pressure of NaCl solutions at different temperatures and 
concentrations following Eq. (5.14). 

 

It can be seen in Figure 5.2 that the osmotic pressure increases when the 

temperature of the solution increases. However, the effect of the temperature on 

the osmotic pressure is more significant when the concentration of the solution is 

high: When the concentration is 0.2 M, the pressure gain is around 1.5 bar when 
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the temperature is raised from 15 to 60°C; whereas the gain is around 7 bars for 

1M. Referring to Eq. (5.1), as the water flux through the membrane is proportional 

to the difference of osmotic pressures, then, using a high temperature clearly leads 

to a better driving force to the process. In PRO processes, the driving force is 

directly related to the draw solution concentration, which explains the enhanced 

water flux at higher draw solution concentrations:as expected, the highest power 

densities are obtained using brines of high osmotic pressures (such as seawater RO 

brine, MED brine, the Dead Sea water) [24]. 

 

4.2 The diffusion coefficient D 

The Diffusion coefficient D is an important parameter in PRO as the mass transfer 

of feed solution k and the solute resistivity K are proportional to D (see equations 

3.9 and 3.11 of Chapter 3). This coefficient has a strong dependence on the 

temperature and concentration of the solution. This diffusion coefficient can be 

calculated empirically using the Stokes-Einstein relationship [12]: 

 

𝐷 =
𝑘𝑏𝑇

6𝜋𝑟𝜌𝜇
           (5.16) 

 

where kb is the Boltzmann constant, 𝜇 is the kinematic viscosity of the solution, T is 

its temperature, r is the ion radius and  ρ is the density of the solution. 

Empirical equations have been proposed to estimate the kinematic viscosity, such 

as [13]: 

 

𝜇

𝜇𝑤
= 1 +  𝑒𝐶𝑆 𝑒𝑥𝑝 (

𝐶𝑠
𝑓

𝑔𝑇𝑅+𝑖
) (5.17) 

 

where  𝜇𝑤 is the water’s kinematic viscosity at temperature T,e = 0.12, f = 0.44, g =  

3.713, and i = 2.792 are fitting parameters (values given for NaCl solutions), and CS 

is the molar concentration. 

The temperature also affects the dynamic viscosity η. For example, this 

dependence was described in [14, pp. 17-18] for NaCl solutions as follows: 
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𝜂(𝑇) = 2.414 × 10
(

247.8

𝑇−140
−5)

                                              (5.18) 

 

Using Eqs. (5.16)-(5.18), Fig. 5.3 shows the effect of the temperature on the 

diffusivity of the water through the membrane. It can be seen that, in the range of 

temperatures studied, the value of the diffusion coefficient is almost tripled. At low 

temperatures (from 15⁰C to 20⁰C), the effect of the solution concentration on the 

diffusivity is not significant, as compared to high temperatures, where it becomes 

more considerable. This is due to the fact that, in NaCl solutions, interactions took 

place between particles within the solvent. When the temperature goes up, the 

viscosity of the solution decreases and the interaction between the particles is 

reduced due to thermal agitation. Thus, the diffusion coefficient tends to decrease 

as the concentration increases. 

 

Fig. 5.3: Diffusion coefficient of NaCl solutions at different temperatures and 
concentrations. 

 

  

5. Effect of the operating temperature on the hydrodynamic parameters 

5.1 Reynolds, Schmidt and Sherwood numbers 

The mass transfer coefficient k depends on the relevant physical properties of the 

fluid, the geometry used, and the velocity of the fluid. Dimensional analysis can be 

used to express this dependence: The dimensionless version of the mass transfer 

coefficient is the Sherwood number Sh, which depends on the Reynolds number Re, 

and the Schmidt number Sc.  
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Generally, in PRO, the flow is considered to be laminar due to the low flow 

velocities (Re <2100). In fact, in several publications, the Sherwood number is 

determined using the following relations, obtained from experiments at different 

conditions [27]:   

𝑆ℎ =  0.04 𝑅𝑒0.75𝑆𝑐0.33   (Turbulent flow)     (5.19) 

  

𝑆ℎ = 1.85 (𝑅𝑒. 𝑆𝑐
𝑑ℎ

𝐿
)     (Laminar flow)       (5.20) 

 

These empirical relations are derived from UF and RO experiments and are 

correlated to the frictional factor of each membrane [28]. However, the structure 

of PRO membranes is quite different from RO and UF membranes. In fact, the RO 

membrane support layer is much thicker than the PRO support layer, and UF 

membranes are considered as porous structures, with higher roughness than PRO 

membranes. Thus, Eqs. (5.19) and (5.20) seem inadequate for PRO. Moreover, for 

laminar flow, Eq. (5.20) is valid where the channel length is significantly larger 

than hydrodynamic flow development length, or, in other words, when the length 

of the developing region is not significant. However, in the lab-scale PRO test, this 

condition is not valid due to the fact that the channel length affects the calculations. 

In fact, in PRO bench scale, the geometry of the pipes and the low velocity used 

give laminar flow. However, a recent study [22] showed that the feed spacers used 

to maintain the feed channel geometry and improve mass transfer near the 

membrane surface induce turbulent flow near the membrane surface at low 

Reynolds numbers. Consequently, the Sherwood number was described in [22] as 

follows: 

 

𝑆ℎ =  0.2 𝑅𝑒0.57𝑆𝑐0.4                                  (5.21) 

 

In Eq. (5.21), Re and Sc numbers are assumed to be homogenous over the length of 

the membrane. However, the pressure applied in PRO mode might modify the 

geometry near the membrane surface, which means that the Re and Sc are no 

longer considered homogenous. Therefore, we proposed the use of local values of 

the Reynolds and Sherwood numbers to estimate the mass transfer across the 
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boundary layer. Thus, we adopt the calculations for the local Sherwood 

developedin [23] (pp. 554–559) for the hydrodynamic boundary layer of a fluid 

that flows parallel to a smooth, flat, and non-porous surface: 

 

𝑆ℎ𝑥  =  0.332𝑅𝑒𝑥
0.5𝑆𝑐0.66 (Laminar flow for Rex < 2.105) (5.22) 

 

𝑆ℎ𝑥  =  0.0292 𝑅𝑒𝑥
0.8𝑆𝑐0.66(Turbulent flow for Rex> 2.105) (5.23) 

 

The local Reynolds number and the Schmidt number are calculated as follows [28]:  

 

𝑅𝑒𝑥 =
𝑢0𝜌𝑥

𝜇
=

𝑢𝑜𝑥

𝜂
        (5.24) 

 

𝑆𝑐 =
𝑢0

𝜌𝐷
       (5.25) 

 

where u0 is the velocity of the water, x is the distance from the start of the 

boundary layer (see Fig. 5.5), 𝜌 is the density of the water, 𝜂 the dynamic viscosity 

of the fluid, 𝜇 is the cinematic viscosity, and D is the diffusion coefficient, calculated 

in Eq. (5.16).  

As shown in Eqs. (5.24) and (5.25), the dimensionless numbers Rex and Sc depend 

on parameters which also depend on the temperature, such as the viscosities 𝜇 and  

𝜂, and the diffusion coefficient D. Fig. 5.4 shows the variation of the dimensionless 

parameters Re, Sc, and Sh with the temperature. Table 5.2 presents the parameters 

used for calculations for 1M NaCl solution. It can be seen that the increase of the 

temperature leads to an increase of the local Reynolds number, regardless of the 

concentration of the solutions. Moreover, the local Reynolds number exceeds the 

critical value (Rex >2×105) for a temperature value around 30°C, which means that 

the regime of the flow changes from laminar to turbulent. This result can be clearly 

seen in Fig. 5.4-c, where an inflection point of the curves is observed for 

temperatures around 30°C. As shown in Fig. 5.4-b, the effect of the concentration 

on Sc is negligible at high temperatures, which is due to the inverse of the 

diffusivity (1/D) present in Eq. (5.25). Contrary to the Sc number, the 

concentration effect seems to be non-significant at low temperatures for the local 
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Reynolds number. Raising the temperature of the process leads to the modification 

of the flow regime from laminar to turbulent, because of the strong effect of the 

temperature on the Rex value. This leads to the enhancement of the mass transfer 

coefficient (k); therefore, the effect of the ECP is also reduced.  

It must be pointed out that using NaCl solutions, the effect of the concentration is 

not significant. In fact, the variation of the viscosity and density of the water, 

within the range of concentrations studied, does not affect the local Re. For real 

salty fluids (seawater, brine wastewater, etc.), the result should be similar, due to 

the fact that the local Reynolds number is not strongly affected by the 

concentration, as shown in Fig. 5.4-a. Although the matrix complexity of real fluids 

can affect the viscosity for seawater and brine, these effects should be negligible, as 

more than 75% of the matrix is NaCl; however, for wastewater, the composition of 

the matrix is generally uncontrollable as it contains organic matter, dissolved 

polymeric waste, etc., which strongly affect the viscosity of the flows and their 

velocities. 
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Fig. 5.4: (a) Reynolds, (b) Schmidt and (c)Sherwood numbers of NaCl solutions at 
different temperatures, following Eqs. (5.22) to (5.25). 

 
 

Table 5.2: Characteristics of 1M NaCl draw solution at different temperatures. 

T(°C) u0 (m/s) 𝜌 (kg/ m3) 𝜇 (m2/s)×10-6 

20 0.0214 1042.8 1.095 

30 0.0214 1039.4 0.875 

40 0.0214 1035.5 0.718 

50 0.0214 1030.9 0.602 

60 0.0214 1025.9 0.515 
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5.2 The boundary layer thickness δ 

It is well known that when a viscous fluid flows along a fixed impermeable wall or 

past the rigid surface of an immersed body, the velocity at any point on the wall or 

other fixed surface is zero. The extent to which this condition modifies the general 

character of the flow depends upon the value of the viscosity. If the body is of a 

streamlined shape, and if the viscosity is small, the effect appears to be confined 

within (narrow regions adjacent to the solid surfaces) boundary layers. A 

boundary layer may be laminar or turbulent: A laminar boundary layer is one 

where the flow takes place in layers, with each layer sliding past the adjacent 

layers: they are found when the Reynolds numbers are small. A turbulent 

boundary layer, on the other hand, is marked by mixing across several layers, 

creating an exchange of mass, momentum and energy on a much bigger scale than 

in a laminar one. A turbulent boundary layer is only obtained at larger Reynolds 

numbers. Eqs. (5.26) and (5.27) describe the thickness of the boundary layer for 

different flow regimes [17]: 

 

𝛿 =  
4.91×𝑥

√𝑅𝑒𝑥
  (Turbulent flow)                           (5.26) 

 

𝛿 = 𝑥
0.382

(𝑅𝑒𝑥)
1
5

     (Laminar flow) (5.27) 

 

where the distance x is along the membrane (see Fig. 5.5).  

It has been shown in [16] that when the thickness of the boundary layer is small, 

the mass transfer is higher. The effect of the temperature on the thickness of the 

boundary layer was then studied for two specific values of x (𝑥 =  𝐿 and 𝐿 2⁄ ). Fig. 

5.6 shows that the effect of the concentration on the boundary layer thickness is 

not really comparable to the effect of the temperature. The parameter δ has an 

important dependence on the regime of the flow: a laminar boundary layer is 

thicker than a turbulent one, which means that the mass transfers are not similar. 

In fact, the boundary layer is comparable to “a resistance layer” that prevents the 

passage of the solute to the surface of the active layer, which induces the external 
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concentration polarization. With turbulent flow, this resistance is mitigated by the 

decrease of the boundary thickness.  

According to Elimelech et al. [26], ECP is characterized by its modulus  

𝐶𝐷,𝑚 𝐶𝐷,𝑏⁄ = exp(−𝐽𝑤 𝑘⁄ ) = 𝑒𝑥𝑝(−𝐽𝑤𝛿 𝐷⁄ ). Consequently, the decrease of δ induces 

the increase of k, which drives the concentration value 𝐶𝐷,𝑚 closer to that of𝐶𝐷,𝑏. 

The viscous effects are not as important at the front of the boundary layer, but 

become much more important near the end of it. Thus, when the temperature of 

the water becomes important, the viscosity of the solution is reduced, which leads 

to an increase in the value of the Reynolds number. In summary, the increase of the 

operating temperature leads to a thinner boundary layer and a higher mass 

transfer across it.  

 

 

 

Fig. 5.5: Schematic of the boundary layer at the draw solution side. 

 

 

Fig. 5.6: Thickness of the boundary layer for NaCl solutions at different 
temperatures, following Eqs. (5.24), (5.26) and (5.27). (u =0.0104m/s, L =0.17m). 
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5.3 Effect of the temperature on the mass transfer coefficient k 

The process of mass transfer across an interface in the bulk of a phase is the result 

of a chemical potential driving force, expressed in terms of concentrations of the 

species. The flux of a given species (rate of transfer per unit area normal to the 

interface), depends on physical properties of the system and on the phases 

involved. As the relationships between the flux and these parameters are not easily 

developed from fundamentals of mass transfer, coefficients have been defined that 

lump them all together. These definitions are of the form: Flux = coefficient 

×(Concentration difference) [18].  

In the PRO case, the mass transfer coefficient k characterizes the transport of 

water from the feed solution to the draw solution through the active layer. The 

mass transfer coefficient described in Eq. (5.9) depends on parameters that also 

depend on the temperature.  

In this section, the effect of the temperature on the mass transfer coefficient is 

studied experimentally. Four draw solutions with different concentrations were 

tested (0.1M, 0.3M, 0.6M and 1M of NaCl).  

The local mass transfer coefficient kx can be described using Eqs. (5.22) and (5.23) 

as follows: 

 

𝑘𝑥 =
0.332𝑅𝑒𝑥

0.5𝑆𝑐0.66

𝑑ℎ
𝐷(Laminar flow)  (5.28) 

 

𝑘𝑥 =
0.0292 𝑅𝑒𝑥

0.8𝑆𝑐0.66

𝑑ℎ
𝐷(Turbulent flow) (5.29) 

 

The overall mass transfer coefficient koverallcan be calculated by the integration of 

Eqs. (5.28) and (5.29) along the membrane. Thus, koverall is described as: 

 

𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
0.332𝑆𝑐0.66

𝑑ℎ
𝐷 ∫ 𝑅𝑒𝑥

0.5𝐿

0
𝑑𝑥 =

0.664𝑅𝑒𝐿
0.5𝑆𝑐0.66

𝑑ℎ
𝐷    (Laminar flow) (5.30) 

 

𝑘𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
0.0292 𝑆𝑐0.66

𝑑ℎ
𝐷 ∫ 𝑅𝑒𝑥

0.8𝐿

0
𝑑𝑥 =

0.0365𝑅𝑒𝐿
0.8𝑆𝑐0.66

𝑑ℎ
𝐷  (Turbulent flow) (5.31) 

 

http://www.thermopedia.com/content/940/
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where ReLis the local Reynolds number at x = L. 

From Fig.5. 7, it can be seen that the mass transfer coefficient is drastically affected 

by the temperature. In fact, when the flow is considered laminar, the effect of the 

temperature is non-significant between 15°C and 25°C. However, the behavior of 

koverall changed drastically above 30 °C. This result can be attributed to the change 

of the flow regime from laminar to turbulent. As shown in Sections 4.2 and 5.1, the 

increase of the temperature leads to a decrease in the boundary layer thickness 

and an increase of the diffusivity: thus, the mass transfer increases. In fact, 

according to film theory, a high diffusivity with a thin boundary layer enhances the 

rate of mass transfer (See [25], pp. 410–456).  

At low temperatures, the effect of the concentration on koverall is negligible, and 

seems to be significant at high temperatures. This behavior is similar to that of the 

diffusion coefficient Dpresented in Section 4.2. Consequently, operating at high 

temperatures can reduce the effect of the external concentration polarization  ECP 

by “pushing” CD,mto a value close to CD,b. 

 

 

Fig. 5.7: The overall mass transfer coefficient (koverall) for NaCl solutions at different 
temperatures, following Eqs. (5.30) and (5.31). 
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6. Effect of the operating temperature on the membrane parameters 

6.1 Effect of the temperature on the solute resistivity K 

The solute resistivity K, described in Eq. (5.12), is a parameter used to determine 

the influence of the internal concentration polarization on the water flux. Small K 

values mean less ICP, resulting in higher water flux across the membrane. To 

determine Kexperimentally for different operating temperatures, a rearrangement 

of Eq. (5.8) is used: 

 

𝐾 =
1

𝐽𝑤
𝑙𝑛 (

𝜋𝐷,𝑏𝑒𝑥𝑝(
−𝐽𝑤

𝑘⁄ )+
𝐽𝑤−𝐵

𝐴
+∆𝑃(1−

𝐵

𝐽𝑤
)

𝜋𝐹,𝑏+𝐵(
1

𝐴
+

∆𝑃

𝐽𝑤
)

)    (5.32) 

 

Experimental results were carried out for two draw solutions (0.6M and 1M of 

NaCl) and one NaCl feed solution (8.55mM). The parameters were calculated using 

experimental results, performed in the range of temperatures from 20⁰C to 60⁰C 

with the applied pressure ∆P = 10 bars. A and B are considered variables with the 

temperature and their values were taken from our previous work in [20]. The 

osmotic pressures were calculated using Eq. (5.14). τ, ts and 𝜀are presented in 

Table 5.1, and the diffusion coefficient D  is given by Eq. (5.16). 

 

 

Fig. 8: The solute resistivity (K) for NaCl solutions at different temperatures and 
concentrations. (K) is calculated using Eq. (5.12) (lines), and Eq. (5.32) using 

experimental data (symbols). 
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Fig. 5.8 shows the variation of K under different temperatures, where K is firstly 

calculated using Eq. (5.12) (lines), and then using Eq. (5.32) (symbols). It can be 

seen that, at a low temperature, K calculated using Eq. (5.12) is noticeably higher 

than that of Eq. (5.32) for both tested concentrations. This result might be 

attributed to the effect of the pressure. In fact, Eq. (5.12) does not take into 

consideration the effect of the applied pressure on the support layer. It was shown 

previously in [29] that, for a given temperature, the increase of ∆𝑃 reduces the 

structure parameter 𝑠 = 𝐾𝐷. In our case, two parameters are considered; the 

temperature and the pressure. Fig. 5.8 reveals that, at low temperatures, K is high, 

and the effect of the concentration of the draw solution on K is clearly 

considerable. In fact, Eq. (5.32) shows that K is inversely proportional to the water 

flux of the membrane. Thus, to reach the best performance, the solute resistivity 

should be as low as possible.  

Fig. 5.9 shows the variation of the water flux with the solute resistivity. The 

modeled Jw (line) is obtained by fitting Eq. (5.8), using the experimental results of K 

taken from Fig. 5.8.A and B are presented in Table 5.3, and (k) values were taken 

from Fig. 5.7. It can be seen that the solute resistivity tends to reduce the water flux 

of the process: when K is high, the water flux is significantly smaller. In fact, K 

depends on the structure parameter s: when s decreases, K decreases too, due to 

the fact that the membrane becomes thinner when the operating temperature 

increases. This is due to the simultaneous effect of the temperature and pressure: 

the increase in the operating temperature makes the membrane polymer softer, so 

tangential forces caused by the applied pressure reduce s. Thus, to reduce the 

effect of K on the water flux , and thus increase the energy produced using PRO, it 

would be better to operate with a high temperature, following the results in Figs. 

5.8 and 5.9. 
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Fig. 5.9: Modeled (line) and experimental results (symbols) of the water flux Jw 
with the solute resistivity K. (CD,b= 1M, CF,b= 8.55mM, u = 0.0107 m/s). 
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30 1.43×10-12 4.25×10-8 
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60 2.12×10-12 8.80×10-8 

 
 
 
 

6.2 Effect of the temperature on the water flux (Jw)  

The water flux (Jw) at different operating conditions is now studied experimentally: 

three draw solutions were tested (0.3M, 0.6M and 1M of NaCl) at a range of 

temperatures varying from 20⁰C to 60⁰C. The temperatures of the feed and draw 

solutions were kept equal during the experiments. The feed solution concentration 

20⁰C  

30⁰C  

40⁰C  

50⁰C  

60⁰C  

3

4

5

6

7

8

9

10

0,5 0,7 0,9 1,1 1,3

J w
 (
×

1
0

-6
 m

/
s)

 

K (×105 s/m) 

Experiment;  C = 1M

Model; C = 1 M



Chapter 5: Effect of the temperature 

 

155 
 

was 8.55mM of NaCl and the applied pressure was ∆P = 10. Fig. 5.10 shows the 

comparison between the experimental results and the model obtained by fitting 

Eq. (5.8). Clearly, both experimental and simulated Jw increased with temperature 

for all the tested solutions. The experimental results are coherent with the 

simulated data, except for the solution of 1M at a high temperature when the 

model slightly overestimates the water flux, probably due to the high salt flux 

diffusion caused by the temperature and the relatively high draw solution 

concentration, which decrease Jw.  

This 1M solution concentration case is now studied separately: The variation of the 

water flux Jw and the salt flux Js of 1M NaCl solutions as a function of ΔP for 

different temperatures is presented in Fig. 5.11-a and b.  

As expected, the increase in the temperature leads to the enhancement of the 

water flux. This result can be attributed to the variation of the transport parameter 

of the membrane due to the temperature. In fact, this increase in the water flux is 

caused the improvement of the water permeability of the membrane (A), which 

depends strongly on the temperature, the improvement of the mass transport 

coefficient k, as discussed in Section 4.3, the decrease of the solute resistivity K, 

and the decrease of the ECP because of the decrease of the boundary layer 

thickness and the increase of the mass transfer coefficient. This impact is clearly 

seen in the power density (Fig. 5.11-c); at 60⁰C, the power produced is around 

5.8W/m2 for an applied pressure of 10 bars. This value is higher than the critical 

value that makes the PRO process commercially viable [1]. The brine of thermal 

desalination processes can provide these high temperatures (for example, the 

brine of a multi-effect distillation process can reach 65⁰C) [24]. 

Fig. 5.11-b shows the experimental variation of the salt flux Js as a function of the 

temperature. It can be seen that the salt flux also increases when the temperature 

increases. This is a limiting effect to the performance of PRO, as the reverse solute 

diffusion induces a significant reduction in both the PRO water flux and the power 

density when the draw solutes diffuse through the membrane and accumulate in 

the porous substrate due to the water flux that has the opposite flow direction. 

This leads to a buildup of a draw solute concentration within the porous support 

layer, contributing to the increase of the ICP at the surface of the support layer, and 

thus, the effective osmotic pressure difference decreases.  
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The reverse solute diffusion occurs simultaneously with the forward water 

permeation in the reverse direction. A useful quantity is the specific solute flux 

(Js/Jw), which describes the amount of draw solutes permeating through the 

membrane normalized by the volumetric water flux. The study of the ratio (Js/Jw) 

at different temperatures (Fig. 5.11-d) reveals that the flux ratio increases with 

temperature, and it is also affected by the applied pressure. At low ΔP (˂4 bars), 

the rate of increase of the flux ratio is low compared to the higher ΔP (>8 bars). In 

addition, the effect of the temperature is quite visible at low pressure, although 

this effect seems much smaller (even negligible) at ΔP. This result shows that the 

temperature effect is dominated by the pressure at relatively high ΔP. 

Consequently, an adequate choice of the applied pressure and the temperature 

reduces the salt diffusion through the membrane.     

 

 

Fig. 5.10: Modeled (lines) and experimental results (symbols) of the water flux Jw. 
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Fig. 5.11: Variation of the water flux Jw (a), the salt flux Js (b), the power density W 
(c), and the specific solute flux Js/Jw (d) with the temperature. CD,b= 1M, CF,b= 

8.55mM, u = 0.0107m/s. 
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the risk of accumulation of salt at the surface of the membrane support layer, due 

to the fact that raising the temperature also leads to the increase in the salt reverse 

flux (Js), and the degradation of the membrane. These can be overcome by the 

development of specific high-temperature membranes with a high resistance to 

reverse salt flux. 

As further work, this study could be extended to real fluids (i.e. waste water, 

effluents, high concentrated brines, etc.) to investigate the effect of the matrix 

complexity. Moreover, the effect of the water flux Jw on the boundary layer using 

commercial length scale PRO membranes can also be studied following the 

approach of the current study. 
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Chapter 6: Integration of PRO in desalination 

processes 

 

1. Introduction 

The possibility of using Pressure Retarded Osmosis to recover part of the osmotic 

energy in desalination plants is explored in this chapter, based on the results 

presented in the previous chapters. The proposal concentrates on using the brines 

fromaMulti Effect Distillation unit (MED) and a Reverse Osmosis (RO). In both 

cases, the objective is to obtain the maximum energy recovery, as a function of the 

operating conditions and the architecture of the each technology. 

 

2. Motivation 

 

Desalination has been growing rapidly as an industry and research field, 

combining engineering and science to develop innovative means for water 

desalting [1]. Many countries, especially in the Middle East, depend on seawater 

desalination as source of drinking water, so they have invested considerable in 

these technologies [1].  

Desalination plants have seen considerable expansion during the past decade as 

the need for potable water increases with population growth. The world 

production of desalination water is estimated to exceed 30 million cubic meters 

per day, with the market expected to reach 30 billion dollars by 2015[2]. 

One of the major challenges in the desalination industry, especially in those 

countries that depend on desalination for potable water, is the handlingof reject 

brine, which is the highly concentrated by-product of the desalinationprocess. For 

every one m3 of desalinated water, an equivalent amount of brineis generated [3]. 

Another challenge is the use of energy to produce water: As a drinking water 

treatment technology, seawater desalination requires more energy than most 

other water treatment methods. However, the power consumption associated with 

seawater desalination is frequently exaggerated and inaccurately represented 

when compared to other treatment technologies that provide safe and reliable 

public water supply [4]. 
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Table 6.1 presents the range of typical pressures, associated with feed water 

salinity. It is clear to see that as feed water salinity increases, so does the 

requirement for an increase in membrane feed pressure (and associated energy) 

until the practical limitation of 1200 psi (82.7 bar) for  Seawater Desalination 

reached: at this point the actual feed water recovery is typically decreased to stay 

within design pressure limitations [4]. Typically, the energy consumption 

represents 44% of the total water cost of an RO plant [6], with the water recovery 

of a single-stage RO desalination system ranging from 40 to 60%. 

 

Table 6.1: Pressure requirements for different water concentration and 

desalination technics [4]. 

 

 

The common practice in the dealing with brine produce is to discharge them back 

into the sea, where it could result, in the long run, in detrimental effects on the 

aquatic life as well as the quality of the seawater available for desalination in the 

area [5,20]. 

 This chapter investigates the integration of PRO in desalination. For this, the brine 

issued from desalination plants is used as draw solution to produce or to recover 

energy, which is able to reduce the energy consumption of desalination processes. 

Moreover, this reduces the concentration of the brine, which limits its impact on 

the environment.  

 

  

Source Salinity (mg/L) Technique 

TypicalPressureRange 
 

psi bar 

Surface (Fresh) 
Water 

<500 MF/UF 15 – 30  1 – 2 

BrackishWater 500 – 3500 RO 50 – 150  3.4 –10.3 

Brackish to 
Saline 

3500 – 18,000 RO / SWRO 150 – 650  10.3 – 44.8 

Seawater 

• USA 

• Middle East 

 
18,000 – 36,000 

18,000 – 45,000+ 
RO 650 – 1200 44.8 – 82.7 
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3. Energy consumption of the desalination processes 

All desalination processes are energy intensive and share a common minimum 

energy requirement for driving the separation of the saline solution into water and 

concentrated brine. In the following paragraphs, the main energy consumption of 

several desalination processes is studied. 

 

a.  Energy consumption in RO and ED processes 

Most of the energy consumed in Reverse Osmosis and Electro Dialysis is electrical: 

the energy consumption of the RO unit depends mainly on the salinity of the feed 

water and the recovery rate. In fact, the osmotic pressure is related to the total 

dissolvedsolutes concentration of the feed water (TDS); therefore, desalination by 

RO of high-salinity water requires a higher amount of energy due to higher osmotic 

pressure (see Table 6.1). In ED plants, the electricity is used for ED electrodes and 

to drive the pumps. For low salinity (2500ppm), the electricity consumption of an 

ED unit ranges from 0.7 to 2.5 and 2.64 to 5.5kWh/m3 for a salinity range between 

2500 and 5000 ppm, respectively [6,7]. 

RO unit sizes vary from 0.1m3/day to a 395,000m3/day plant. The average 

reported energy consumption for seawater desalination ranges from 3.7 to8 

kWh/m3 [8], although might exceed 15kWh/m3 for very small units. For a typical 

size of seawater RO unit of 24,000m3/day, the electricity consumption ranges from 

4 to 6 kWh/m3 using a hydraulic energy recovery system for seawater. 

To desalinate brackish water different membranes are used, much higher recovery 

ratios are possible, and energy consumption is lower, thanks to the lower osmotic 

pressures. For a brackish water RO unit, the electrical energy consumption ranges 

from 1.5 to 2.5kWh/m3 [8]. 

 

b. Energy consumption inthermal desalination processes: MED, MSF, MVC and 

TVC. 

Two types of energy – low-temperature heat and electricity – are required for most 

distillation processes (MSF, MED, MVC and TVC). The low-temperature heat 
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represents the main portion of the energy input, with electricity mainly used for 

pumping. 

The MSF process operates at a top brine temperature (TBT) in the range of 90 to 

110⁰C. An increase of TBT increases the flash range, which, in turn, increases the 

production rate and improves the performance. However, the TBT is limited by the 

temperature to which the brine can be heated before serious scaling occurs [9]. 

Thus, the thermal energy consumption of a MSF plant ranges between 190MJ/m3 

and282MJ/m3. The electrical energy equivalent to these values based on a power 

plant efficiency of 30% ranges between 5.8 and 23.5kWh/m3. The electricity 

consumption of the pumps ranges between 2.5 and 5kWh/m3; therefore, the total 

equivalent energy consumption of the MSF unit ranges between 19 and 27 

kWh/m3. 

The MED process also requires low-temperature heat for evaporation, and 

electricity for pumps. It operates at brine temperatures from 64 to 70 ⁰C. The 

manufacturers of MED units provide again output ratio (GOR) ranging from 10 to 

16 (Although in practice, MED plants operate at GOR values of 8 to 12 [10]). 

According to manufacturer’svalues, then the thermal energy consumption of MED 

plants is between 145MJ/m3 (GOR=16) to230 MJ/m3 (GOR=10). The work 

equivalent to these values based on a power plant of 30% efficiency then ranges 

from 12.2 to 19.1 kWh/m3, plus the consumption of the pumps, which is between 

2.0 and 2.5 kWh/m3. 

For TVC, both low temperature heat and electricity are also needed: At TBT 

between 63 and 70°C, GOR=12 and a heat input of 227.3MJ/m3 (14.56 kWh/m3), 

with an electricity consumption of 1.6–1.8 kWh/m3 are required [11]. Therefore, 

the total energy consumption of the TVC process is about 16kWh/m3. 

MVC does not use heat, operating at a maximum TBT around 74°C, with electrical 

energy consumption ranging from 7 to 12 kWh/m3 [11].  

 

c. Minimum energy for separation  

Thermodynamic analysis of the energy requirement of desalination processes have 

been published by many researchers [12, 13, 14]. The expression of the minimum 
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isothermal reversible work of separation W, which is applicable to any 

desalination process regardless of the separation mechanism, is as follows [14]: 

 

−𝑊𝑑𝑒𝑠𝑎𝑙 = 𝛥𝐻 − 𝑇𝛥𝑆 = 𝛥𝐹 (6.1) 

 

where  ΔH represents the change in enthalpy between the outlet and inlet flows, ΔS 

represents the change in entropy, and ΔF the change of the free energy. 

Introducing the relation of free energy withthe molar concentration of the salt 

results in: 

 

−𝑊𝑑𝑒𝑠𝑎𝑙 = ∫ 𝛥𝐹𝑑𝑛
𝑜𝑢𝑡𝑙𝑒𝑡

𝑖𝑛𝑙𝑒𝑡
= ∫ 𝑅𝑇ln𝑎𝑤𝑑𝑛

𝑛𝑜𝑢𝑡

𝑛𝑖𝑛
= ∫ 𝑅𝑇ln

𝑝

𝑝0 𝑑𝑛
𝑛𝑜𝑢𝑡

𝑛𝑖𝑛
 (6.2) 

 

where n represents the number of water moles in the solution, R is the gas 

constant, aw is the water activity in the solution, and p is the water vapor pressure 

assumed as an ideal gas. The final expression for the minimal separation energy is 

given by: 

 

−𝑊𝑑𝑒𝑠𝑎𝑙 =
0.296𝑇

100−𝑛2
∫ 𝑙𝑛

𝑝

𝑝0

𝑛

100
𝑑𝑛 (6.3) 

 

The theoretical minimum separation energy of water is then directly given by Eq. 

(6.3): it is then possible to calculate that the energy needed per cubic meter 

produced from an infinite source of 35g/l seawater: 

 

−𝑊𝑑𝑒𝑠𝑎𝑙 (35𝑔 𝑙⁄ ) = 0.296𝑇 𝑙𝑛 𝑎𝑤 (6.4) 

 

This value is around 0.77 kWh/m3for a temperature of 20°C, but is quite far from 

the values in practice. For example, the Ashkelon facility, one of the most efficient 

seawater RO desalination facilities, operates at approximately 40% recovery and 

has a maximum nominal electrical SE consumption of 3.9 kW h/m3 [18]. 
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4. Energy recovery from MED system 

4.1 Methodology 

According to the results presentedin the previous chapter, the temperature and 

the concentration of the draw solution play a primordial role in PRO: high 

temperature and concentration are desirable, as the PRO process revealed a good 

performance under these conditions. The multi-effect distillation system is able to 

provide good values of these parametersbecauseits rejected brine has high brine 

concentration and temperature.In this case, the PRO system is placed after the 

desalination process linking two sources of water: the brine of the MED and waste 

water coming, for example, from industrial rejects. To ensure the well-functioning 

of the membrane and to optimize the energy recovery, two heat exchangers would 

be used. The first one is used to reduce the temperature of the brine to the optimal 

value for PRO membranes (to guarantee high water flux), and to extract heat that 

will be used to rise the temperature of the wastewater. The second heat exchanger 

would be placed between the heat steam condensate and the wastewater, to rise 

its temperature. The two water steams reach the PRO unit at different 

temperatures, which depend on the brine outlet temperature and the efficiency of 

the heat exchangers. 

 

4.2 Application to a case study 

4.2.1 The AQUASOL MED plant 

The AQUASOL plant is a solar thermal desalination system, located at the Platform 

Solar ofAlmeria (southern Spain), which is going to be used as a case study to test 

our proposal. Currently, the experimental plant operates as a hybrid solar-gas 

plant that combines a MED process and a low temperature solar field with a 

Double Effect Absorption Heat Pump (DEAHP) coupled with a gas boiler [15] (Fig. 

6.2). The MED plant is a 14effect forward feed unit with a vertical arrangement. 

The nominal operating parameters are presented in Table 6.2. A static compound 

parabolic concentrator (CPC) solar field provides the thermal energy required for 

the MED process during sunshine hours. This thermal energy is stored in two 

water tanks. The gas boiler used by the DEAPH can provide heat for the MED 

process at variable loads from 30% to 100% when no solar energy is available. A 
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three-way regulating valve (V2) is used to reach the nominal first-effect inlet 

temperature by mixing water from the primary tank with the return flow coming 

back from the first effect.  

It must be pointed out that although the AQUASOL MED plant currently operates 

with brackish well water with salinity of 3.3 g/l, in order to make the results more 

general, data for the expected operation with seawater is used here [15]. Table 6.3 

shows the expected brine and temperature concentrations starting with different 

inlet seawater conditions. 

To validate the proposed osmotic energy recovery technique, experiments were 

carried out at the Fraunhofer Institute for Interfacial Engineering and 

Biotechnology. Self-developed cellulose acetate membranes with an optimized 

internal structure [16] were studied under realistic operating conditions for a 

scaled-down membrane surface. More precisely, process parameters such as salt 

concentrations, pressures and flow rates were varied in order to validate the 

models and get information on the most adequate operating conditions and the 

expected energy production (for details see [17]).  

Table 6.2: Nominal operating parameters of the AQUASOL MED system. 

 

 

Fig.6.1: AQUASOL desalination 

plant. 

Number of effects 14 

Feed seawater flow rate 8 m3/h 

Brine flow rate from the 
last effect 5 m3/h 

Hot water flow rate 43.2m3/h 

Total distillate output 3 m3/h 

Cooling seawater flow rate 
at 25°C 

20 m3/h 

Vapor production in the 
last effect at 35°C 

159 kg/h 

Heat source energy 
consumption  

200 kW 

Performance  ratio > 9 

Vacuum system Hydro-ejectors 
(seawater at 3 bar) 

Inlet/outlet hot water 
temperature 

75.0/71.0°C 

Brine temperature (on the 
first cell) 

68°C 

Feed and cooling sea 
water temperature at the 
outlet of the condenser 

33°C 
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Fig. 6.2. Schematic diagram of the AQUASOL plant. 

 

Assuming the combinations of MED brine temperature and concentration 

presented in Table 6.3, and a source of low salinity water (0.5g/l), the PRO 

operating pressure and flows, and the corresponding energy that could be 

recovered are presented in Table 6.4: these results were obtained by scaling up the 

laboratory results. It can be seen that a significant portion of the osmotic pressure 

can be recovered before discharge, especially operating at higher temperatures: up 

to 22 kW if it were possible to operate with draw water at 40°C (this temperature 

could be achieved by heat exchange in the first stages of the MED process).  

As a secondary positive effect, the salinity of the discharge decreases from 57g/l to 

32-35 g/l (as the brine is mixed with low-salinity water, not suitable to produce 

drinking water); this concentration is near the seawater concentration, facilitating 

discharge to the sea. The membrane area needed to reproduce the results should 

be around 3m2, which is acceptable for this process. 

 

Table 6.3: Concentrations and temperatures of the brine in the PSA AQUASOL plant 
for different inlet seawater conditions. 

 

 

 

 

 

Case Study SW concentration SW temperature Brine concentration Brine temperature 

#1 40 g/l 29˚C 57 g/l 40˚C 

#2 38 g/l 20˚C 56 g/l 31˚C 

#3 36 g/l 30˚C 51 g/l 41˚C 
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Fig. 6.3: Basic concept of the Pressure-Retarded Osmosis process for osmotic 

energy recovery from MED brines. 

 

Table 6.4: expected energy recovered using the proposed system, for several 
combinations of seawater and feed water conditions. 

 

 

Case 
Study 

PRO 
Operating 
pressure 

PRO Feed 
flow 

PRO Feed 
Temperature 

PRO Discharge 
concentration 

Power 
recovered 

#1 23.5 bars 5m3/h 

20˚C 39.8 g/l 14.2 kW 

30˚C 35.5 g/l 19.8 kW 

40˚C 33.7 g/l 22.6 kW 

#2 22.5 bars 5m3/h 

20˚C 39.9 g/l 13.5 kW 

30˚C 36.1 g/l 17.5 kW 

40˚C 33.7 g/l 21.0 kW 

#3 21.2 bars 5m3/h 

20˚C 35.7 g/l 12.8 kW 

30˚C 32.5 g/l 17.1 kW 

40 ˚C 31.1 g/l 19.2 kW 
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The experimental results obtained so far in the laboratory have shown that SG 

techniques depend significantly on temperature. We believe that the main effect is 

due to the change of fluid parameters with the temperature. For example, a 

preliminary evaluation of some physical parameters is presented in Table 6.5 for 

several typical temperature and concentration values in MED systems. To simplify 

the analysis, the temperatures of the streams were the same (TD,b=TF,b=T). The 

Sherwood (Sh), Reynolds (Re) and Schmidt (Sc) numbers of the feed stream were 

also estimated using Eqs. (3.12), (3.14) and (3.15) from Chapter 3. It can be seen in 

Fig. 4 that increasing the temperature leads to a better performance of the process: 

thechanges inphysiochemical properties of the membrane and the solution 

improve the membrane performance. This can be justified by the fact that the 

changesin the two streams caused by the rise of the temperature increases the 

water flux crossing the membrane. In fact, the rise of the temperature reduces the 

viscosity of the water at the surface of the membrane and increases the diffusivity 

of the water; thus, the internal concentration polarization (ICP) at the surface of 

the membrane support layer will be reduced. Also, the osmotic pressure difference 

increases at higher temperatures,increasing the driving force. All of thisleads to 

higher values of Jw: Rising the temperature from 20°C to 60°C could double the 

amount of energy produced. This result is not only caused by to the change of 

physic-chemical properties of the solution. In fact, membrane transport 

parameters are also affected by the operating temperature (see the discussion in 

Chapter 5).  

Fig.5 shows the percentage of energy that can be recovered at different operating 

temperatures. It is clear that is better to operate with inlet solutions with high 

temperatures to enhance PRO performance (around 10% of the energy can be 

recovered operating at 40°C, compared with 7% at 20°C). Dashed lines present the 

extrapolation of the result for non-studied values of temperature (current 

laboratory membranes degrade at temperatures over 50°C). Extrapolations show 

that using membranes that can stand high temperatures (no swelling, no collapse) 

can be beneficial in terms of energy recovery using PRO for these MED processes. 
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Fig.6.4: Variation of the power density 
with the PRO feed water temperature. 

 

Fig.6.5: Estimated energy recovered for 
MED at different operating 
temperatures and seawater 

concentrations.
 

Table 6.5: variation of the viscosity, the diffusivity, the difference of the osmotic 
pressure, Sherwood, Reynolds and Schmidt numbers with the operating 
temperature 

 
 
 

5. PRO integration in Reverse Osmosis 

Compared to a stand-alone PRO system (fresh water vs seawater), an RO-PRO 

system has already been found to have numerous advantages. For example, the 

brine generated during the RO process dilutes to seawater concentration values, 

thus minimizing any environmental impact that brine disposal can have on marine 

habitats [18]. It should be pointed out that the RO product water is always in a 

circuit separated from the waste water used for PRO, so there is no contact 

between impaired and drinking water: Thus, recycled water can be used as a 

support of the RO desalination, without health issues.  

PRO energy production in the RO-PRO system is amplified by the higher 

concentration of the draw solution (RO brine), when compared with standard 
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#1
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#3

T (°C) ηF (Pa.s) ηD (Pa.s) DF (m2.s-1) DD (m2.s-1) Sh (-) Re (-) Sc (-) Δπ (bar) 

20 1.00×10-3 1.07×10-3 3.80×10-9 3.56×10-9 25.1 99.5 265 45.0 

30 7.98×10-4 8.23×10-4 4.93×10-9 4.78×10-9 26.8 125 162.4 46.6 

40 6.53×10-4 6.87×10-4 6.23×10-9 5.92×10-9 28.3 150 106.7 48.1 
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Seawater. Moreover, a clearcharacteristic of the RO-PRO system is that the draw 

solution is already pre-treated by the well-developed pre-treatment system used 

in RO [19].Thus, the brine entering the PRO sub-system is relatively free of 

foulants, so no additional treatment of the draw solution is needed: draw solution 

pre-treatment increases significantly the use of energy and chemicals in river-to-

sea PRO.  

5.1 Description of the case study 

A case study, a Reverse-Osmosis-based desalination unit intended for producing 

water for an electrolyzation process is used. This RO plant, composed of the 

elements presented in Fig. 6, was developed by SETA, S-L as a part of the H2Ocean 

project[29]. 

The desalination unit is based on two similar lines, each divided into two stages 

(denoted SWRO and BWRO), which can be independently operated and 

disconnected if required, for maintenance or operational requirements. The 

seawater treatment startswith a pretreatment composed of three steps: 

chlorination to deal with organic matter, ultrafiltration to block the metals and 

particles in suspension, andperiodic backwash to eliminate the foulants 

accumulated in the filters. 

The first pass of the SWRO unit starts with a chemical treatment to remove any 

chlorine from the pre‐treatment, then bisulphite is added (to remove the oxidants 

dissolved in the water and provide a bacteriostatic effect) and, finally, antifouling 

is used to avoid salt precipitation on the membranes that would increase the 

energy consumption. As a safety system, a 5 microns filter is installed just in the 

inlet of the membranes. To feed the first-pass membranes, a high pressure pump is 

then used; the water produced (around 45% of the inlet seawater) is stored in a 

tank, whereas the brine would go to the Energy Recovery system.  

In the Second Pass of Reverse Osmosis (BWRO) first antifouling is dosed to avoid 

salt precipitation; a micro filter is then installed with a degree of filtration of 5 

microns before the high pressure pump which pressurizes the water before 

entering the membrane.The reverse osmosis recovery is around 70%. The water 

produced is stored in a DEMI water tank, whereasthe brine goes to an energy 
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recovery system before being reused in the proposed osmotic energy recovery 

system or being returned to the Ultra-filtration tank.  

 

 

Fig.6.6: First Pass of Reverse Osmosis Desalination. 

 

 
Fig.6.7: Desalination Second Pass. 

 
 
 
 

 

Ultrafiltered
Water

Sea

Pretreatment

Flow…. 245.35 m3/h
Cond…. 54067 µS/cm
Pressure…. 5 bar
Power…. 51.71 Kwh

Flow….245.35 m3/h
Cond…. 54067  µS/cm

Chlorine

Bisulphite

Antiscalant

Sea Water

Reverse Osmosis

Sea Water

Reverse Osmosis

Flow…. 141 m3/h

Cond…. 91662 µS/cm

Brine

Flow…. 57.5 m3/h

Cond…. 54067 µS/cm

Pressure…. 64.5 bar

Power…. 151.66 Kw

Flow…. 70.5 m3/h

Cond…. 54067 µS/cm

Pressure…. 64.5 bar

Power…. 5.23 Kw

Flow….57.5 m3/h
Cond…. 368 µS/cm

Flow….57.5 m3/h
Cond…. 368 µS/cm

Flow….57.5 m3/h
Cond…. 368 µS/cm

Flow….70.5 m3/h
Cond…. 91662 µS/cm

Flow….70.5 m3/h
Cond…. 91662 µS/cm

Cond…. 54067 µS/cm

Power…. 151.66 Kw

Pressure…. 64.5 bar

Flow…. 57.5 m3/h

Flow…. 70.5 m3/h

Cond. 54067 µS/cm

Pressure…. 64.5 bar

Power…. 5.23 Kwh

From Second Pass RO System

Flow….26.60 m3/h
Cond... 1183 µS/cm

First Pass Sea Water Reverse Osmosis (SWRO)

Flow….256.35 m3/h
Cond…. 54067  µS/cm

To Electrolyzer
Flow….67.57 m3/h
Cond…. 3.03 µS/cm
Pressure…. 4 bar
Power…. 11.05 Kw

Flow…. 95 m3/h

Cond…. 368 µS/cm

Pressure…. 3 bar
Power…. 8.37 Kw

Osmotised
Water
Tank
From
SWRO
58 m3

From SWRO

DEMI 
Water 
Tank 
From 
BWRO
58 m3

Antiscalant

Soda

Brackish                  
Water

Reverse Osmosis

Brackish 
Water

Reverse Osmosis

Flow…. 47.5 m3/h

Cond…. 368 µS/cm

Pressure…. 19 bar

Power…. 37.67 Kw

Flow…. 14.25 m3/h

Cond…. 368 µS/cm

Pressure…. 19 bar

Power…. 1.06 Kw

Flow….34.25 m3/h
Cond…. 3.03 µS/cm

Flow….34.25 m3/h
Cond…. 3.23 µS/cm

Flow….68.5 m3/h
Cond…. 3.03 µS/cm

Flow….14.25 m3/h
Cond…. 1183 µS/cmCond…. 368 µS/cm

Power…. 37.67 Kw

Pressure…. 19 bar

Flow…. 47.5 m3/h

Flow…. 14.25 m3/h

Cond. 368 µS/cm

Pressure…. 19.5 bar

Power…. 1.06 Kw

Flow….14.25 m3/h
Cond…. 1183 µS/cm

From Second Pass RO System

Cond... 1183 µS/cm
Flow….26.5 m3/h

Flow…. 20 m3/h

Cond…. 368 µS/cm

Pressure…. 3.5 bar
Power…. 3.25 Kw

To Drinkable Water Plant
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Table6.6: Power consumed by each component of the Desalination Unit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 First RO-PRO configuration 

5.2.1 Methodology 

The concept of this integration is to exploit the large difference of concentration 

between the brines of different stages in a multi-stage RO desalination plant. Thus, 

PRO is placed between the retentates of the different stages: in the case of the 

H2Ocean desalination system, using the brines of SWRO and BWRO. Due to the 

high salinity of the retentate in the first stage, it contains a significant amount of 

energy that can be recovered by mixing with retentate from the second stage as 

presented in Fig 6.8. The effect of the variation of the temperature of both 

solutions was studied in particular: temperature of seawater normally ranges 

Section Installed Power per section   

Pre-treatment 61.27 kW 

Sea Water Pressure Pump 51.71 kW 

BackWash Equipment 9.56 kW 

Sea Water Reverse Osmosis (SWRO) 356.39 kW 

Ultra-filtrate Water Pump 42.61 kW 

High Pressure Pump 2 x 151.66 kW 

Booster Pump 2 x 5.23  kW 

Drinkable Water Plant (DWP) 8.84 kW 

Low Pressure Pump 3.25 kW 

Recirculation Pump 5.59 kW 

Brackish Water Reverse Osmosis 
(BWRO) 

12.17 kW 

Pump to Electrolyzation 11.05 kW 

Pump to Services  1.12 kW 

Others 50.0 kW 

Total 574.5 kW 
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from12 to 35°C [20], but as most RO plants are located in hot regions, the seawater 

temperature is normally over 25°C;moreover,the temperature of RO brines are 

generally higher than that of raw seawater due to pumping and storage. 

In our proposal first the brine of the first stage (with concentration around 60g/l) 

reduces its pressure in a pressure exchanger (that has an efficiency of up to 96%) 

to a value that guarantees a maximum of energy recovery according to Eq. (3.23) 

(see the discussion in Section 2.3), using the energy to pressurize the seawater. It 

should be mentioned that the brine is generated from pre-treated seawater, which 

improves the overallenergy recovery,as fouling is reduced.  

The feed water for the PRO unit is then the brine of the second stage, which has 

asalt concentration of around 0.5g/l. Thislow concentration and the RO pre-

treatment make the effect of the ECP controllable. The discharge coming out of the 

PRO is then led to the pressure exchanger for pressure recovery. 

 

Fig. 6.8: conventional integration of PRO in the H2Ocean desalination plant. 

 

5.2.2 RO-PRO modeling 

A simplified presentation of the integration proposed in Fig.6.8 is illustrated in Fig 

6.9: the seawater feed solution (VSF) is first pre-pressurized in the pressure 

exchanger PX prior to entering the desalination process. Exiting the first stage RO 
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sub-system (RO1) are two streams: a fresh water permeate stream (Vp1) and a 

concentrated brine stream (VSR1). The concentrated brine stream is then 

depressurized to approximately half of its pressure (23.5bars) to reach a suitable 

pressure for the PRO process [5]. The permeate of the first stage RO sub-system 

feeds the second stage RO sub-system (RO2). To recover this energy, an ERD (an 

isobaric or turbocharged device) could be used; alternatively, a turbine could be 

employed to convertinto electrical energy. Following this depressurization, the 

brine stream enters the PRO sub-system as a high salinity (draw) solution (VSR1). 

The feed solution for the PRO sub-system (VSR) is the low salinityretentate of the 

second stage. Through osmosis, the pressurized draw solution extracts water from 

the impaired water source under isobaric conditions, resulting in a diluted draw 

solution (VDR). The energy stored in the diluted draw solution is then exchanged 

with the seawater RO feed prior to discharge, in order to recover its potential 

energy and increase the energy savings of the RO-PRO system. 

 

 

 

 

  

 

 

 

 

 

 

Fig. 6.9: Simplified schematic of the coupled RO-PRO system. 
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5.2.2.1 Theoretical energy consumptionof the RO-PRO system. 

The theoretical energy consumption is the minimum amount of energy needed to 

produce a desired amount of permeate. More precisely, the theoretical specific 

energy consumption (SEC) provides the absolute minimum amount of energy for a 

given recovery, assuming that the efficiency of every component (pump, ERD, 

motor) is 100%. 

The work per volume of permeate requiredin a thermodynamically reversible RO 

desalting process can be determined based on the mole fraction of feed and brine, 

as presented in [7]. Assuming finite recovery in an ideal desalination process: 

 

𝑊𝑅𝑂1,𝑡ℎ𝑒𝑜 = 𝛽𝑅𝑇
𝒳𝑆𝑅1𝒳𝑆𝐹

𝒳𝑆𝑅1−𝒳𝑆𝐹
ln (

𝒳𝑆𝑅1

𝒳𝑆𝐹
) (6.5) 

 

𝑊𝑅𝑂2,𝑡ℎ𝑒𝑜 = 𝛽𝑅𝑇
𝒳𝑆𝑅2𝒳𝑝1

𝒳𝑆𝑅2−𝒳𝑝1
ln (

𝒳𝑆𝑅2

𝒳𝑝1
) (6.6) 

 

where 𝒳𝑑𝑠1and 𝒳𝐹,𝑖𝑛are, respectively, the salt mole fractions of the feed and draw 

solutions of the first stage and 𝒳𝑑𝑠2 and 𝒳𝑝1 are, respectively, the salt mole 

fractions of the second stage feed and draw. Assuming that π=𝛽RTC, the specific 

energy consumption per volume of fresh water produced (SECRO,theo) for each 

stage. 

 

𝑆𝐸𝐶𝑅𝑂1,𝑡ℎ𝑒𝑜 =
𝜋𝑆𝑅1𝜋𝑆𝐹

(𝜋𝑆𝑅1−𝜋𝑆𝐹)
ln (

𝜋𝑆𝑅1

𝜋𝑆𝐹
) (6.7) 

   

𝑆𝐸𝐶𝑅𝑂2,𝑡ℎ𝑒𝑜 =
𝜋𝑆𝑅2𝜋𝑝1

(𝜋𝑆𝑅2−𝜋𝑝1)
ln (

𝜋𝑆𝑅2

𝜋𝑝1
) (6.8) 

 

which gives the specific energy consumption per volume of fresh water produced 

for each stage. 

The recovery Y of each RO stage is given by: 

 

𝑌1 =
𝑉𝑝1

𝑉𝑆𝑅
 (6.9) 
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𝑌2 =
𝑉𝑝2

𝑉𝑝1
 (6.10) 

 

where the subscripts 1 and 2 refer to the RO stages. The total recovery of the 

system is then given by: 

 

𝑌𝑡𝑜𝑡𝑎𝑙 =
𝑉𝑝2

𝑉𝑆𝑅
= 𝑌1𝑌2 (6.11) 

 

For PRO, an equation similar to Eq. (6.5) can be developed. Assuming finite 

dilution in an ideal mixing process, the energy production can be calculated as: 

 

𝑆𝐸𝑃𝑅𝑂,𝑡ℎ𝑒𝑜 =
𝜋𝑆𝑅1𝜋𝐷𝑅

𝜋𝑆𝑅1−𝜋𝐷𝑅
ln (

𝜋𝐷𝑅

𝜋𝑆𝑅1
) (6.12) 

 

where SEPRO, ideal is energy production per volume of PRO permeate. 𝜋𝑆𝑅1 and 𝜋𝐷𝑅 

are the entering draw solution and exiting draw solution of the PRO system, 

respectively. The osmotic pressure of the outlet solution can be calculated after 

determining the permeate volume for a predetermined PRO dilution 𝜙, defined as 

follows: 

 

𝜙 =
𝑉𝐹𝑅

𝑉𝐷𝑅
 (6.13) 

 

The energy consumption of the system is the combination of each part of the 

system; thus, the total energy consumption is: 

 

𝑆𝐸𝐶𝑡𝑜𝑡,𝑡ℎ =  𝑆𝐸𝐶𝑅𝑂1,𝑡ℎ + 𝑆𝐸𝐶𝑅𝑂2,𝑡ℎ𝑒𝑜 − 𝑆𝐸𝐶𝑃𝑅𝑂,𝑡ℎ𝑒𝑜 (6.14) 

 

Fig (6.13) shows the 𝑆𝐸𝐶𝑡𝑜𝑡,𝑡ℎ of the system under different PRO dilutions. 
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Fig. 6.10: Specific energy consumption for the first stage at different recovery 

ratios. 

 
Fig. 6.11: Specific energy consumption for the second stage at different recovery 

ratios. 

 
Fig. 6.12: Specific energy production for draw solution dilution in PRO at different 

dilution factor. 
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Fig. 6.13: RO-PRO specificenergy for different PRO dilution factor.  

To separate salts from water, it is necessary to cause the water to move in the 

opposite direction in the case of the reverse osmosis, by applying sufficient 

pressure to the seawater so that the pressure difference across the membrane 

exceeds ΔP = 30bars. Therefore, As it can be seen in Fig. 6.10, theoretically the 

minimum work needed would be 𝛥𝑃 ×  𝑉 =   0.77 kWh/m3of fresh water. This 

lower limit corresponds to a rate of production that is nearly zero.It can be also 

that when the recovery rate increases, the specific energy consumption would also 

increase. In fact, it has been shown in the literature that the optimal recovery rate 

for a SWRO unit is around 40 to 50% [21]. For this recovery rates, the SECRO,theo 

would be between 1.24 to 1.49 kWh/m3 (see Fig.6.10), which clearly differs from 

real values [22,30,33]. 

Fig.6.11 shows, that for the second stage, the minimum energy required would be 

just 0.011kWh/m3.  

In Fig.6.12 the PRO theoretical specific energy (SECideal,PRO) production to dilute a 

brine solution upcoming from the first stage to low value of salinity solution is 

shown as a function of the dilution. As seen in Fig.6.12, the minimum ideal SECPRO 

is approximately 0.77 kWh/m3 and is achieved when ϕ = 0.This value of 0.77 

kWh/m3 is similar to the minimum energy to desalinate seawater at 0% recovery: 

the separation energy at 0% recovery is equal in magnitude but opposite in sign to 

the free energy of mixing at 𝜙 = 0, in an other term, the equation for Gibbs free 

energy of mixing is achieved when entering and exiting draw solution 

concentrations are equal [23].  
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Theoretically, when flow of the PRO feed entering solution is equal to the flow of 

the entering PRO draw solution, the maximum of dilution can be reached which 

means that the concentration of the entering brine could be diluted to the value of 

the sea water concentration. In our case, the entering PRO feed solution flow is 

remarkably small compared to the the entering PRO draw solution (QSR2=26m3/h, 

QSR1= 141m3/h), then, the optimum therotical value of energy recovery could not 

be reached in this case. 

 

5.2.2.2 Energy consumption of the RO-PRO system in real conditions  

Real life RO+PRO plants would be less energy efficient than theoretically 

calculated, due to electrical conversion losses and dissipation. The amount of 

additional energy required depends on the specific recovery strategy, so the 

energy consumption of the RO-PRO under real conditions isnow studied. 

 

a. The Reverse Osmosis 

The specific energy consumption (SEC) for a single-pass RO desalting process at 

the limit of the thermodynamic restriction in the absence of energy recovery (Fig. 

6.10) can bederived by combining Eqs. (6.1)–(6.4) and (6.14), to obtain: 

 

𝑆𝐸𝐶𝑅𝑂 =  
𝑅𝑠𝜋𝑆𝐹

𝜂𝑃𝑌(1−𝑌)
 (6.15) 

 

where Rs is the salt rejection, and 𝜂𝑃 is the pump conversion. Then, the energy 

consumption of each RO stage is a two-stage RO plant are: 

 

𝑆𝐸𝐶𝑅𝑂1
=

𝑅𝑠1𝜋𝑆𝐹

𝜂𝑃1𝑌1(1−𝑌1)
 (6.17) 

 

𝑆𝐸𝐶𝑅𝑂2
=

𝑅𝑠2𝜋𝑝1

𝜂𝑃2𝑌2(1−𝑌2)
 (6.18) 

 

Energy recovery devicesare known to be effective in many seawater and brackish 

water reverse osmosis installations. In the seawater desalination industry, 

Pressure Exchangers (PX) are extensively used to recover energy andlower 

operating costs: they can save half of the energy consumption.  
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These elements transfer the energy from brine rejection to a low-pressure 

incoming pretreated stream: this pressure recovery has been studied in detail in 

the literature [24,31]. In general, the specific energy cost for RO, in the presence of 

an energy recovery device (ERD) operating inthe limit of the thermodynamic 

restriction is 

 

𝑆𝐸𝐶𝑅𝑂
𝐸𝑅𝐷  =  𝑅𝑠𝜋𝑓 (

1−𝜂𝐸𝑅𝐷(1−𝑌)

𝜂𝑃𝑌(1−𝑌)
) (6.19) 

 

where 𝜂𝐸𝑅𝐷 is the efficiency of the energy recoverydevice (ERD) and 𝜋𝑓 is the feed 

water osmotic pressure. The specific energy with an ERDis for the first RO stage  

 

𝑆𝐸𝐶𝑅𝑂1

𝐸𝑅𝐷  =  𝑅𝑠1𝜋𝑆𝐹 (
1−𝜂𝐸𝑅𝐷(1−𝑌1)

𝜂𝑃1𝑌1(1−𝑌1)
) (6.20) 

 

b. Pressure Retarded Osmosis PRO 

 As shown in Chapter 3, the water flux of the PRO system across the flat sheet 

membrane is 

 

𝐽𝑤 = 𝐴 [
𝜋𝐷,𝑏+

𝐵

𝐴
(1+

𝐴∆𝑃

𝐽𝑤
)

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

− [𝜋𝐹,𝑏 +
𝐵

𝐴
(1 +

𝐴∆𝑃

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤
𝑘𝐹

⁄ ) − ∆𝑃] (6.21) 

 

This model was developed for a flat sheet bench-scale membrane. The variations 

along the membrane's length are often neglected in models designed to simulate 

bench scale systems because the effect is difficult to observe over very small 

membrane samples [25]. However, the water permeate, the salt permeate, and the 

friction in the membrane module, cause variations in several parameters along the 

length of the membrane. These include flow rates, concentrations and hydraulic 

pressures as well as all other variables that are dependent on them. For accurate 

modeling their local values should be considered. These spatial variations can be 

accounted for by either taking an average of inlet and outlet variables, or by 

considering the membrane as a finite difference model [26,32].To develop a model 

for full-scale PRO applications, the flat sheet membrane area is divided into 

segments perpendicular to the water flow, evaluating flow conditions at specific 
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points along the membrane module. In this case, feed and draw solution flows are 

assumed to be in a co-current flow mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14: Schematic of a single segment (dSi) of a flat sheet PRO membrane 

module. 

 

 

 

The permeate flow through the PRO membrane Qw can significantly dilute the draw 

solution concentration CSR1, which results in reduced flux performance compared 

to small size test membrane. Such dilution effect needs to be explicitly accounted 

for in a flat sheet module. Due to this variation, three main parametersare 

evaluated at each point along the membrane: the water flux, the pressure and the 

concentrations. 

For each segment (dS), the exiting conditions are calculated and become the 

entering conditions for the next segment, until the end of the membrane module. 

For a single segment (dS), the concentrations, the exit flow rates and the pressures 

of the draw and feed solutions are calculated as follows:  

 

 Expressions of the Flows: 

 Draw solution flow 

 

𝑄𝐷0
= 𝑄𝑆𝑅1 (6.22) 

 

dSi 

Js,i 

Jw,i 

QD[i], CD[i], PD[i] 

QF [i+1], CF [i+1], PF 
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QD [i+1], CD [i+1], PD [i+1] 

QF[i], CF [i], PF[i] 

Support layer 

Active 
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𝑄𝐷 [𝑖=𝑁+1]
= 𝑄𝐷𝐷 (6.23) 

 

𝑄𝐷[𝑖+1] = 𝑄𝐷[𝑖] + 𝐽𝑤𝑑𝑠 (6.24) 

 

 

 Feed solution Flow 

 

𝑄𝐹0
= 𝑄𝑆𝑅2 (6.25) 

 

𝑄𝐹[ 𝑖=1]
= 𝑄𝐹𝑅 (6.26) 

 

𝑄𝐹[𝑖+1] = 𝑄𝐹[𝑖] − 𝐽𝑤1𝑑𝑠 (6.27) 

 

 Expressions of the Concentrations 

 Draw solution concentration 

 

𝐶𝐷[0]
= 𝐶𝑆𝑅1 (6.28) 

 

𝐶𝐷[𝑖=𝑁+1]
= 𝐶𝐷𝐷 (6.29) 

 

𝐶𝐷[𝑖+1]
=

𝑄𝐷[𝑖]𝐶𝐷[𝑖]−𝐽𝑠𝑑𝑠

𝑄𝐷[𝑖]+𝐽𝑤[𝑖]𝑑𝑠
 (6.30) 

 

 Feed solution concentration 

 

𝐶𝐹[𝑖=𝑁+1]
= 𝐶𝑆𝑅2 (6.31) 

 

𝐶𝐹[𝑖=1]
= 𝐶𝐹𝑅 (6.32) 

 

𝐶𝐹[𝑖+1]
=

𝑄𝐹[𝑖]𝐶𝐹[𝑖]+𝐽𝑠𝑑𝑠

𝑄𝐹[𝑖]−𝐽𝑤[𝑖]𝑑𝑠
 (6.33) 
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 Expressions of the Pressures 

The pressure losses along the membrane's length are generally ignored in bench 

scale PRO system because their effect is negligible. However, for a full-scale 

system, those losses cannot be ignored. The pressure losses do exist in both side of 

the membrane as: 

 Draw solution pressure 

 

𝑃𝐷[0]
= 𝑃𝑆𝑅1 (6.34) 

 

𝑃𝐷[𝑁+1]
= 𝑃𝑆𝑅1 (6.35) 

 

𝑃𝐷[𝑖+1]
= 𝑃𝐷[𝑖]

− 𝑃𝐷[𝑖],𝑙𝑜𝑠𝑠 (6.36) 

 

 Feed solution pressure 

 

𝑃𝐹[𝑁+1]
= 𝑃𝑆𝑅1 (6.37) 

 

𝑃𝐹[𝑖=1]
= 𝑃𝐹𝑅 (6.38) 

 

𝑃𝐹[𝑖+1]
= 𝑃𝐹[𝑖]

− 𝑃𝐹[𝑖],𝑙𝑜𝑠𝑠 (6.39) 

 

where SdS is the area of the segment dS, 𝑃𝐷[𝑖],𝑙𝑜𝑠𝑠 and 𝑃𝐹[𝑖],𝑙𝑜𝑠𝑠 are the draw and feed 

side pressure losses, respectively. The total water permeate flow rate Qw at the 

membrane outlet is the integral of Jw over the whole membrane surface area: 

 

𝑄𝑤 = ∑ 𝐽𝑤𝑖

𝑁
𝑖=1 × 𝑆𝑠 (6.40) 

 

The expressions of the concentrations developed in Eqs (6.30) and (6.33) can be 

used to determine the draw solution concentration and the feed solution 

concentration anywhere in the module, and then, can be used to determine the 

local membrane flux Jw using its expression developed in the previous chapter. 

Then, the expression of the water flux in this case becomes: 
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𝐽𝑤 = 𝐴 [
𝜋𝐷+

𝐵

𝐴
(1+

𝐴∆𝑃𝑒𝑓𝑓

𝐽𝑤
)

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

− [𝜋𝐹 +
𝐵

𝐴
(1 +

𝐴∆𝑃𝑒𝑓𝑓

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤
𝑘𝐹

⁄ ) − ∆𝑃𝑒𝑓𝑓] (6.41) 

 

where ∆𝑃𝑒𝑓𝑓  is the effective hydraulic pressure across the membrane, expressed as 

the difference between the pressures in the draw side and the feed side of the 

PRO, respectively: 

 

∆𝑃𝑒𝑓𝑓 = 𝑃𝐷 − 𝑃𝐹 = ∑ 𝑃𝑁
𝑖=1 𝐷[𝑖]

− ∑ 𝑃𝐷[𝑖],𝑙𝑜𝑠𝑠
𝑁
𝑖=1 − (∑ 𝑃𝑁

𝑖=1 𝐹[𝑖]
− ∑ 𝑃𝐹[𝑖],𝑙𝑜𝑠𝑠

𝑁
𝑖=1 )  

          =  ∆𝑃 + ∑ 𝑃𝐹[𝑖],𝑙𝑜𝑠𝑠
𝑁
𝑖=1 − ∑ 𝑃𝐷[𝑖],𝑙𝑜𝑠𝑠

𝑁
𝑖=1   (6.42) 

 

The pressure losses are [27]: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑
𝜌×𝑓×𝑢2

2×𝑑ℎ

𝑁
𝑖=1 𝑑𝐿 (6.43) 

 

where 𝜌 is the density of the solution, u is the cross flow velocity, dh is the 

hydraulic diameter, 𝑑𝐿 is the length of the segment dL and f is the friction factor, 

given as a function of the Reynolds number [27]: 

 

𝑓 = 6.23𝑅𝑒
−0.3 (6.44) 

 

It was shown chapter 3 that the maximum power density is reached when 

∆𝑃 =  
∆𝜋𝑒𝑓𝑓

2
. Then, the optimum effective pressure is: 

 

∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡 =
1

2
[

𝜋𝐷+
𝐵

𝐴
(1+

𝐴∆𝜋

𝐽𝑤
)

𝑒𝑥𝑝(
𝐽𝑤

𝑘𝐷
⁄ )

− [𝜋𝐹 +
𝐵

𝐴
(1 +

𝐴∆𝜋

𝐽𝑤
)] 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (

𝐽𝑤
𝑘𝐹

⁄ )] +
𝐵

𝐽𝑤
(∑ 𝑃𝐹[𝑖],𝑙𝑜𝑠𝑠

𝑁
𝑖=1 −

∑ 𝑃𝐷[𝑖],𝑙𝑜𝑠𝑠
𝑁
𝑖=1 ) (𝑒𝑥𝑝 (

−𝐽𝑤
𝑘𝐷

⁄ ) − 𝑒𝑥𝑝(𝐽𝑤𝐾)𝑒𝑥𝑝 (
𝐽𝑤

𝑘𝐹
⁄ ))     

                                                      (6.45)  

 

The power density normalized by the membrane area in the module, is given by: 

 

𝑊 = ∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡 × ∑ 𝐽𝑊[𝑖]

𝑁
𝑖=1  (6.46) 
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where ∑ 𝐽𝑊[𝑖]

𝑁
𝑖=1  is the sum of the permeate flux along the module given by: 

 

∑ 𝐽𝑊[𝑖]
=

𝑄𝑤,𝑇𝑂𝑇

𝑆𝑆
=  

∑ 𝑄𝑤[𝑖]
𝑁
𝑖=1

𝑆𝑆

𝑁
𝑖=1  (6.47) 

 

where 𝑆𝑆 is the entire area of the membrane. In our case, as presented in Fig.6.9 

the energy is generated by a pressure exchanger, so the energy productions per 

volume of PRO permeate can be calculated as: 

 

𝑆𝐸𝑃𝑅𝑂 =
𝑊𝑃𝑅𝑂

𝑄𝑤
=

∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡×𝑆𝑆×∑ 𝐽𝑤[𝑖]

𝑁
𝑖=1

𝑆𝑆×∑ 𝐽𝑤[𝑖]
𝑁
𝑖=1

= ∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡 (6.48) 

 

where 𝑊𝑃𝑅𝑂 is power produced by the PRO system. If the PRO module is supplied 

by a pump in the draw water side, the pressure losses reduce the net power 

recovered by the PRO. Those losses are compensated by the pump on the draw 

side of the membrane unit. The power consumed by this pump is: 

 

𝑊𝑑𝑟𝑎𝑤,𝑃𝑢𝑚𝑝 =
(𝑃+𝑃𝑙𝑜𝑠𝑠)×𝑄𝑆𝑅1

𝜂𝑃,𝑑𝑟𝑎𝑤
  (6.49) 

  

where 𝜂𝑃,𝑑𝑟𝑎𝑤 is the efficiency of the pump. The net energy produced by the PRO 

system is, then, the difference between the power produced by the PRO unit minus 

the power consumed by the draw water pump: 

 

𝑊𝑛𝑒𝑡 = 𝑊𝑃𝑅𝑂 − 𝑊𝑑𝑟𝑎𝑤,𝑃𝑢𝑚𝑝 = ∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡 × 𝑄𝑤 × 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 − 𝑊𝑑𝑟𝑎𝑤,𝑃𝑢𝑚𝑝 (6.50) 

 

where 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 is the efficiency of the turbine. 

Finally, the net SE of the RO/PRO process is obtained by subtracting the energy 

generated by the PRO unit from the SEC of the RO process: 

 

𝑆𝐸𝐶𝑅𝑂/𝑃𝑅𝑂
𝑛𝑒𝑡 = 𝑆𝐸𝐶𝑅𝑂 − 𝑆𝐸𝑃𝑅𝑂 = 𝑆𝐸𝐶𝑅𝑂1

+ 𝑆𝐸𝐶𝑅𝑂2
− ∆𝑃𝑒𝑓𝑓,𝑜𝑝𝑡 (6.51) 

 

This energy can be rewritten regarding the productivity of the system in terms of 

the permeate flow in the second stage as:  
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𝑆𝐸𝐶𝑅𝑂/𝑃𝑅𝑂
𝑛𝑒𝑡 =

𝑆𝐸𝐶𝑅𝑂1×𝑄𝑝,𝑅𝑂1+𝑆𝐸𝐶𝑅𝑂2×𝑄𝑝,𝑅𝑂2−𝑆𝐸𝑃𝑅𝑂×𝑄𝑤

𝑄𝑝,𝑅𝑂2

 (6.52) 

 

 

5.3 Second RO-PRO configuration 

5.3.1 Methodology 

 

The same RO desalination unit described in Section 4 was used in the following 

application. In this case, two PRO units were used (see Fig 6.8): 

 

The PRO unit: was placed after the pre-treatment operation and before the first 

SWRO process. Thus, the pre-treated seawater will be considered as the feed 

solution. In this case, a part of the pre-treated seawater is conducted to the PRO as 

a feed solution. The amount of this part is chosen to be almost equal to the solution 

considered to be the draw solution of the PRO process. The retentate of the second 

RO stage is recirculated and conducted to be mixed with the part of the pre-treated 

seawater that is separated to be the PRO feed solution, then, the sum of the 

retentate of the second RO stage and the part of the seawater is considered as the 

PRO feed solution.  The draw solution of the PRO is the brine of the first RO stage; 

this brine passes through the pressure exchanger PX to reduce its pressure to 

around 13.0 bars (which is theoretically the optimum value of pressure to be 

applied to the draw solution in PRO process).  The pressure in PX will be 

exchanged between the brine and the combination of the non-used pre-treated 

seawater flow and the feed solution discharge of the PRO.  
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 Fig. 6.15: Second integration of PRO in the RO plant. 

 

 

5.4 RO model results 

Fig.6.16 presents the SECRO1 (Eq. (6.17)) of a RO first stage without ERD as a 

function of recovery (pump efficiency, membrane salt rejection, and ERD efficiency 

were taken to be 80%, 99%, and 95%, respectively). The minimum specific energy 

consumption is then 3.82 kWh/m3, at 50% recovery.  

As a comparison, the minimum specific energy consumption with an ERD is around 

1.45 kWh/m3 at 13% recovery, increasing to around 2 kWh/m3 at the usual 50% 

recovery, so effectively the ERD reduces the SEC by almost 50%. Similar results are 

reported in [28].  

Compared to the theoretical SERO consumption (Fig. 6.10 at 50% of recovery), the 

in practice two times more energy is required, as it is an irreversible 

thermodynamic process and the size is finite [18].  
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Fig. 6.16: Specific energy consumption of the first RO stage at the thermodynamic 
restriction, as a function of recovery (Pump efficiency, membrane salt rejection, 

and ERD efficiency are 80%, 99%, and 95%, respectively). 

 

5.5 PRO model results 

The SEPRO model was investigated by studying the response of PRO sub-system 

after the variation of effect of operating conditions (draw and feed solution 

concentrations and the temperature). Modeling parameters are illustrated in Table 

6.6. As it can be seen in Fig.6.17, the increase of the draw solution concentration 

leads to the increase of the energy recovery by the sub-system. On the other hand, 

the increase of the feed solution concentration is followed by the decrease of the 

energy. Lastly, in Fig 6.18, the increase of the draw solution temperature improves 

the performance of the PRO due to the improvement of the effective osmotic 

pressure and also the intrinsic membrane parameter such as the water 

permeability coefficient. These results are in agreement with the model behavior 

using lab-scale PRO membrane. 

Fig. 6.19 illustrates the SEPRO in Eq. (6.45), corresponding to the PRO system when 

diluting RO brine back to seawater concentration, as a function of RO recovery and 

PRO dilution (using the CA flat sheet membrane presented in Chapter 3): When RO 

recovery increases, the draw solution concentration increases, so therefore, the 
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PRO dilution increases. The minimum SEPRO recovery is approximately 0.4 

kWh/m3. This magnitude increases with RO recovery, with a maximum SEPRO 

production of 0.72 kWh/m3 at 90% of dilution. Compared to the theoretical SEPRO 

production (Fig. 6.12), the model produces approximately half the specific energy 

of the ideal case, which is realistic.  

Table 6.7: modeling parameters 

Parameter IGB membrane 
Water permeability coefficient A 1.06×10-12 m/s/Pa 
Salt permeability coefficient B 2.62×10-8  m/s 
Solute resistivity K 1.52×105  s/m 
Length of the channel L 5 m 
Width of the channel w 20 m 
Mass transfer coefficient (draw side) kD 1.17×10-4 m/s 
Mass transfer coefficient (feed side) kF 1.19×10-4  m/s 
Diffusion coefficient in the draw solution DD 4.25×10-9 m2/s 
Diffusion coefficient in the feed solution DF 4.35×10-9 m2/s 
Porosity of the support layer ε 80 % 
Thickness of the active layer e 100 nm 
Thickness of the support layer ts 12 µm 
Velocity average u0 1 m/s 
Surface of the membrane S 200 m2 
Number of segment N 100 
 

 

Fig. 6.17: PRO specific energy production (SEPRO) modeled as a function of feed and 

draw solution concentrations under optimal PRO hydraulic pressure.  
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Fig. 6.18: PRO specific energy production (SEPRO) modeled as a function of feed and 

draw solution concentrations under optimal PRO hydraulic pressure.  

 

 

Fig. 6.19: PRO specific energy production (SEPRO) modeled as a function of dilution 

for the first RO-PRO integration under optimal PRO hydraulic pressure.  
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5.6 . RO-PRO model results 

The total energy consumption of the RO/PRO system for both configurations is 

studied here. As mentioned previously, the study takes into account only the effect 

of the recovery ratio variation of the first RO stage, in other words, the recovery 

ratio of the second stage is considered constant along the study (75%). 

Similarly to the RO with ERD, higher RO recoveries correspond to higher maximum 

SERO consumption. However, the SERO-PRO consumption decreases as PRO dilution 

increases, the maximum SERO-PRO consumption for the model results is remarkably 

very high compared to that for the ideal case. As it can be seen, SERO-PRO 

consumption the ideal case is much greater for the ideal case than for the model 

results for both configurations. This behavior is due to the fact that the ideal SEPRO 

production is quite higher than the model SEPRO production. Because of the higher 

starting value of the model SERO-PRO consumption and lower rate at which the 

model SERO-PRO consumption decreases, the model RO-PRO system is not capable to 

reach the energy neutrality (SERO-PRO =0). Consequently, operating the RO-PRO 

system at low RO recovery and high PRO dilution minimizes energy consumption. 

The RO-PRO model results in Fig. 6.20 show a comparison of the SE values with the 

ideal case for the two considered RO/PRO configurations. It can be seen that for 

both the ideal case and the model results, the maximum SERO-PRO consumption 

point for each RO recovery is the point at which there is no PRO sub-system 

contribution (Dilution = 0). In other words, this is the maximum SERO consumption 

for each RO recovery. For the configuration (a), the contribution of the PRO sub-

system is very limited at low RO1 recovery ratio (Y1 < 20%), this is due to the low 

amount of rejected water issued from the second RO stage which constitutes the 

feed solution for the PRO sub-system. Contrary to configuration (a), the 

contribution of PRO is considerable at low recovery ratio because the amount of 

PRO feed solution is provided directly from the pretreated seawater and remains 

slightly constant at this range of RO1 recovery ratio (Y1 < 20%). 

As mentioned previously, most of the SWRO sub-systems are operating in a range 

of recovery ratios between 40 and 50%. In this case, the ranges of recovered 

energy are 11.7% to 17.9% and 16.2% to 16.5% for configurations (a) and (b), 
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respectively. The increase of Y1 leads to a decrease of the SECRO-PRO (case (a)). This 

is because a better performance of PRO due to the increase of the amount of the 

PRO feed solution. However, the rate of SECRO-PRO decrease in the configuration (b) 

seems to be slightly constant respecting to the increase of Y1. This is due to the 

decrease of the amount of rejected water from RO1. Simultaneously, the 

concentration of the PRO feed water decreases with the increase of Y1 because of 

the increase of the rejected water from RO2, which represents a dilution factor for 

the PRO feed water. 

For the ideal case, as presented in Fig.6.20, the increase of PRO dilution is followed 

by the decrease of energy consumption of the system regardless the recovery ratio 

Y1. For configuration (a), the use of PX and PRO coupled to the RO sub-system, The 

RO-PRO system is an “energy producer system” for all rang of Y1 in the ideal case 

under different PRO dilutions studied. For configuration (b), the same behavior as 

the first configuration persists. However, when the dilution is low (e.g. 20% of 

dilution) the system RO-PRO system is an “energy consumer system” regardless 

the recovery ratio of RO1 which means that the energy produced by PRO never 

allows the system to reach the energy neutrality. For 50% of dilution, the system 

starts to produce energy near 40% of Y1. Overall the increase of PRO dilution factor 

reduces the energy consumption of RO-PRO system. This result is directly related 

to the membrane performance. In fact, this large difference between the ideal case 

and the model is due to the membrane characteristics and concentration 

polarization. To reach high values of dilution, an improvement of the water 

permeability across the membrane is fundamental. Moreover, avoiding the reverse 

salt diffusion by reducing the salt permeability of the active layer material 

enhances the dilution factor. Lastly, improving the inner structure of PRO 

membrane support layer to reduce the effect of the internal concentration 

polarization and optimize the operating conditions to minimize the external 

concentration polarization is a challenge that can guarantee a better PRO dilution 

and therefore more recovered energy. 
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Fig. 6.20: RO-PRO specific energy as a function of RO1 recovery for different PRO 

dilution for both the ideal case and the model case. 
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6. Conclusions 

The current chapter has studied the possibility of integrating PRO technologies for 

power recovery in desalination plants. Firstly, the integration of PRO within multi-

effect distillation unit (MED) was investigated: Based on the Characteristics of the 

brine issued from the MED (high salinity and high temperature), it was seen that 

operating with inlet solutions with high temperatures enhances PRO performance 

(around 0% of the energy can be recovered at 40˚C, compared with 7% at 20˚C). 

Extrapolation of the result for non-studied values of temperatures how that using 

membranes that can stand with high temperature (no swelling, no collapse), the 

integration of PRO should be very beneficial in terms of energy production (around 

14-15% at 50˚C). These results, developed in Section 4, were published in 

Desalination and Water Treatment Journal: Khaled Touati, Alberto de la Calle, 

Fernando Tadeo, Lidia Roca, Thomas Schiestel & Diego-César Alarcón-Padilla, 

Energy recovery using salinity differences in a multi-effect distillation system,1–8 

(2014). 

The second part of this chapter deals with integration of PRO in Reverse Osmosis. 

Two different configurations were studied to provide adequate energy recovery. 

For that, a mathematical model describing the water flux in a commercial length 

membrane was developed. Additionally, a model reproducing the energy 

consumption of the system (SEC) under realistic conditions was also developed. As 

expected, the SEC of the RO unit using recovery energy device and PRO unit was 

remarkably much lower than the SEC for a stand-alone RO unit. The first RO-PRO 

configuration shows better performance at recommended recovery ratio for RO 

system (40-50%) compared to the second configuration. At low recovery ratio of 

the first stage, the second RO-PRO configuration achieved better performance. We 

expect more recovered energy for the first configuration if the feed solution is 

provided from outside the system due to the fact that the present feed solution is 

coming from the brine of the second stage which provides low amounts of water 

flows. 
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Final conclusions  

 

In this dissertation, the production of sustainable energy by Pressure Retarded Osmosis 

has been studied, concentrating on the development of models that make it possible to 

reproduce the operation of these systems in realistic conditions. These models werethen 

verified using laboratory experiments, showing a good prediction capability. Using these 

models, the effects of operating conditions were investigated:in particular, 

concentrations, flow rates and temperatures. 

 

In Chapter 2, the state of the art of PRO was presented. Firstly, a general theoretical 

background describing the different parameters affecting the process was introduced 

and discussed. Secondly, the evolution of the process since its inception to the present, 

including the PRO membrane technology progress, limitations and PRO integration, was 

presented and discussed. Finally, the energy production cost and the effect of the use of 

PRO on the environment was also studied, based on the results found during lab-scale 

and full-scale PRO experiments. 

 

In Chapter 3 the impact of the temperature of the bulks on the PRO performance was 

studied. It has been experimentally noted that the effect of the feed solution temperature 

is more important than the draw solution temperature: the water and salt permeability 

coefficients showed a higher dependency on the feed solution temperature, and the 

structure parameter s significantly decreased with the temperatures. Finally, it was 

observed that the high water flux resulting from the increase of feed solution 

temperature induced a drastic draw solution diffusion which generated a severe ICP.  

 

For the first time, a full study describing the effect of the salt flux diffusion on PRO 

performance was carried out in Chapter 4. For this, a model reproducing the salt flux 

diffusion was developed. The effects of feed and draw solution concentrations, the cross-

flow velocity and temperature on this salt flux were investigated. The results showed 

that the increase of the feed solution concentration decreases the rate of reverse salt flux 

because of the reduced concentration gradient between the two membrane sides. 

However, this leads to a severe concentrative ICP due to the penetration of the solute in 
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the support layer and being blocked at the surface of the active layer, which reduces the 

performance of the PRO. The increase of the draw solution concentration enhances the 

PRO process by increasing the osmotic driving force. However, it increases the reverse 

salt flux. It has also been shown that operating under the AL–DS orientation is more 

suitable for high pressures. However, the AL–FS is recommended when feed solutions 

contain fouling precursors. 

 

According to the results found in chapters 3 and 4, it was revealed that the temperature 

has a strong effect on the PRO process. For this, a full study of the temperature was 

carried out in Chapter 5 to better understand its effects.  It has been theoretically and 

experimentally shown that the temperature affects parameters such as the diffusion 

coefficient, the solute resistivity, the diffusion coefficient and the osmotic pressure. 

Generally, operating at high temperatures enhances the water flux of the process, and 

consequently the power recovery. The disadvantages of high temperatures are the risk 

of the accumulation of salt at the surface of the membrane support layer, due to the fact 

that raising the temperature also leads to an increase in the salt reverse flux (Js), and the 

degradation of the membrane. These can be overcome by the development of specific 

high-temperature membranes with a high resistance to reverse salt flux. 

 

The last part of this study was dedicated to evaluating the integration of PRO in 

desalination units for energy recovery. Two categories of desalination process were 

investigated; thermal desalination using a multi-effect distillation system (MED) and the 

membrane desalination process using a reverse osmosis unit (RO).  Using MED, it was 

shown that the PRO is able to recover more than 15% of the energy. With RO, two 

integration designs were used. Both of the integration strategies showed a good 

performance. However, when the PRO is placed before the first stage RO, the 

performance was better compared to the case where the PRO is placed between the two 

stage brines. 

 

As further work, several ideas should be investigated with the general aim of improving 

the performance of PRO: 
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 The existing water flux models are applicable only for “diluted” solutions (draw 

solutions with concentrations lower than 1.5M). These models should be 

modified for high concentrated solutions. 

 Scaling and fouling are still not well studied in PRO. This issue should be well 

studied and controlled to avoid pressure losses and performance drops. 

 In stand-alone PRO plants, a good pre-treatment is needed to reach the maximum 

performance: novel pre-treatments should be investigated. 

 The use of multi -PRO stages in desalination units has not yet been investigated. 

 

 



Resumen en Castellano 

 

207 

 

Resumen  

 

Ósmosis por Presión Retardada (PRO) es el proceso a través del cual la energía 

osmótica puede ser aprovechada para generar electricidad [6]. En un proceso 

típico las moléculas de agua se transportan espontáneamente a través de una 

membrana semi-permeable desde una corriente de baja salinidad (agua de río, 

agua salobre o residual) a una corriente de alta salinidad a presión (agua de mar o 

salmuera), con la ayuda del gradiente de presión osmótica a través de la 

membrana. La potencia se obtiene entonces mediante la despresurización de una 

porción del agua de mar diluida a través de una turbina hidráulica [7]. Se ha 

estimado que hasta 0,8 kWh se pueden generar usando 1 m3 de agua del río y una 

cantidad equivalente de agua de mar.  

Aunque el concepto de PRO fue mencionado por primera vez por Pattle en 1954 

[9], el interés en PRO para la generación de energía comenzó en la década de 1970. 

El método ha mejorado significativamente en los últimos años, sobre todo después 

de la inauguración de la primera planta prototipo por la empresa estatal noruega 

Statkraft, en 2009. La planta siguió la planta propuesta por Loeb y fue diseñado 

para generar 10 kW [10]. La operación de la planta demostró la factibilidad de la 

tecnología, y los aspectos a mejorar como el rendimiento de la membrana y su 

durabilidad en diferentes condiciones de operación, y los efectos de la polarización 

de la concentración y la fuga de sal a través de la membrana. 

Objetivos de la tesis 

Los principales objetivos del trabajo de tesis son: 

1. Desarrollar un modelo del flujo de agua a través de una membrana PRO que 

incluya los factores limitantes del proceso, tales como la polarización de la 

concentración y el efecto de la fuga de sal. Este modelo se validará mediante 

experimentos a escala de laboratorio. 
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2. Desarrollar un modelo para la difusión de de sal en PRO que reproduzca el 

comportamiento de la difusión inversa a través de la membrana. El objetivo 

escaracterizar la disminución de rendimiento, y sugerir soluciones para 

mejores membranas PRO. Éste modelo será también validado utilizando 

experimentos a escala de laboratorio 

 

3. Desarrollar un modelo para cuantificar la distribución de la temperatura en el 

interior de una membrana PRO, como función de las temperaturas de las 

soluciones, con el fin de mejorar las predicciones obtenidas a partir de los 

modelos de flujos de agua y sal. 

 

4. Estudiar el efecto de condiciones realistas de funcionamiento (concentraciones, 

temperatura, presión, etc.) sobre el rendimiento global del proceso, realizando 

predicciones para el proceso global. 

 

5. Estudiar la viabilidad de integrar PRO dentro de diferentes unidades de 

desalación, con el fin de mejorar su rendimiento. 

 

Organización de la tesis 

Este documento consta de los siguientes capítulos: 

1. El primer capítulo contiene una breve introducción que presenta la motivación, 

una breve discusión sobre el proceso de PRO (que será extendido en el segundo 

capítulo), y los objetivos de esta tesis. 

 

2. El segundo capítulo presenta el estado del arte de PRO, desde el 

descubrimiento del proceso hasta la actualidad. 

 

3. El tercer capítulo se ocupa de la elaboración de un modelo que reproduce el 

flujo de agua. El modelo también se valida y se utiliza para estudiar el efecto de 
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las condiciones de funcionamiento en el flujo de agua y, posteriormente, en la 

densidad de potencia. 

 

4. El cuarto capítulo propone un modelo matemático para reproducir el flujo 

inverso de sales en PRO. El modelo toma explícitamente en consideración el 

efecto de la presión y la polarización de la concentración, tanto interna (ICP) 

como externa (ECP) en ambos lados de las membranas. El modelo propuesto es 

entonces validado y probado a escala de laboratorio. Se muestra que el 

rendimiento PRO se reduciría, y los costos de la energía podría ser mucho 

mayor de lo esperado si el flujo inverso no se controlara. Se discuten entonces 

las mejores condiciones del proceso. 

 

5. En el quinto capítulolos efectos de las temperaturas de los fluidos se estudian, 

en particular sobre los parámetros estructurales de la membrana, y la 

hidrodinámica. Los resultados proporcionados por este estudio proporcionan 

informaciones interesantessobre las condiciones de funcionamiento y el diseño 

de las membranas. 

 

6. El sexto capítulo contiene un estudio de la integración de PRO dentro de 

unidades de desalación térmica (MED) y basada en membranas (RO). Especial 

énfasis se aplica a estudiar la viabilidad de esta integración mediante diferentes 

configuraciones. 
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List of Acronyms 

AL–DS: Active Layer facing the Draw Solution 

AL–FS: Active Layer facing the Feed Solution 

CA: Cellulose Acetate  

CO: Carbon monoxide  

CPC: staticCompound Parabolic Concentrator  

CTA: Cellulose Triacetate  

DEAHP:  Double Effect Absorption Heat Pump  

ECP: External Concentration Polarization  

ERD:Energy Recovery Device 

FC: Feasible Condition number  

FR: Flow Rate  

FO: Forward Osmosis 

GHGs: Greenhouse gases  

GOR: Gain Output Ratio 

HTI membrane : Hydration Technologies Inc. membrane   

ICP:Internal Concentration Polarization  

IGB membrane:Institute for Interfacial Engineering and Biotechnology membrane  

IPC: Isophthaloyl Chloride  

LCOE:Levelized Cost OfEnergy  

MD: Membrane Distillation  

MED: Multi-Effect Distillation  

MPD: m-phenylenediamine 

MSF: Multi Flash Stage distillation 

MVC: Mechanical Vapor Compression distillation  
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MVMD: Multi-stage Vacuum Membrane Distillation  

NOM: Natural Organic Matter  

NOX: Mono nitrogen oxides  

PAN: Polyamide /Polyacrylonitrile 

PES:polyethersulfone 

PEI:Polyethyleneimine 

PRO: Pressure Retarded Osmosis 

PX: Pressure Exchanger 

RED: Reverse Electrodialysis 

RO: Reverse Osmosis  

SEC: Specific Energy Consumption  

SEM: Scanning Electron Microscope  

TFC: Thin-Film Composite  

TBT: Top Brine Temperature  

TMC:Trimesoylchloride 

WERR: Water and Energy Return Rate  

WWTP:Municipal Waste Water Treatment Plant 
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