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Introducción

1. Bagaje combinatorio y algebraico

1.1 Grafos

1.2 Complejos simpliciales
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2.4 Fröberg’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Non-squarefree Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Betti Diagrams of Bipartite Edge Ideals 61

3.1 Bipartite Graphs and Biadjacency Matrices . . . . . . . . . . . . . . 61

3.2 Bipartite Complement of an Even Cycle . . . . . . . . . . . . . . . . 66

3.3 Regularity 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Non-squarefree Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Regularity and the Induced Matching Number . . . . . . . . . . . . . 83

4 Conclusions and Further Work 89

7



A Algorithm non-isomorphic bipartite graphs 91

A.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Representative Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 Connectivity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.5 Main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.6 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 101

8



Resumen y conclusiones

Esta tesis tiene por objeto el estudio de los números de Betti graduados correspon-
dientes a los llamados ideales de grafos. Los ideales de grafos son ideales generados por
monomios de grado 2 libres de cuadrados. Al ser ideales monomiales, son homogéneos
y finitamente generados y, por tanto, admiten una resolución libre graduada minimal,
que es finita y donde todos los módulos libres tiene rango finito,

F : 0 −→ Fp
ϕp
−→ · · · −→ Fi

ϕi−→ Fi−1 −→ · · · −→ F1
ϕ1−→ F0

ϕ0−→ I −→ 0 .

Los números de Betti graduados son invariantes homológicos del ideal que recogen
la información numérica de su resolución libre graduada minimal. Más concretamente,
el número de Betti graduado βi,j es el número de generadores de grado j en una base
del i-ésimo módulo libre en la resolución libre graduada minimal.

Los ideales de grafos tienen una fuerte estructura combinatoria y pueden repre-
sentarse de forma única mediante grafos simples, cuyos vértices están etiquetados por
las variables del anillo de polinomios en el que consideramos el ideal y cuyas aristas
corresponden a los generadores minimales del mismo. Estos ideales también pueden
verse como ideales de Stanley-Reisner, cuyo complejo simplicial asociado es el com-
plejo de independencia del ideal. Esto nos permite recurrir a la fórmula de Hochster
para expresar los números graduados de Betti de un ideal de grafo en función de la
homoloǵıa reducida de su complejo de independencia.

Caṕıtulo 1: Bagaje combinatorio y algebraico

El primer apartado de este trabajo consiste en una recopilación de la terminoloǵıa
relativa a la teoŕıa de grafos y de complejos simpliciales, aśı como los resultados
básicos sobre homoloǵıa simplicial, destacando de entre estos últimos la sucesión de
Mayer-Vietoris y el teorema del Nervio por su repetida utilización a lo largo de este
trabajo. Se han incluido también diferentes tipos de colapsos en complejos simpliciales
que preservan los grupos de homoloǵıa y que tienen un potencial uso en la teoŕıa de
Stanley-Reisner a través de la teoŕıa discreta de Morse o la propiedad de Leray.

La parte algebraica se centra en la construcción de la resolución libre graduada
minimal para el caso más general de módulos graduados finitamente generados sobre
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un anillo de polinomios R. Sobre R consideraremos dos posibles graduaciones: la
graduación estándar y la multigraduación. Revisamos la existencia y unicidad de
la resolución libre graduada minimal y definimos a partir de ella los invariantes que
vamos a estudiar: los números de Betti graduados, la regularidad de Castelnuovo-
Mumford y la dimensión proyectiva. A continuación nos centramos en el caso de
ideales monomiales. Además, asumiremos sin pérdida de generalidad, que estos ide-
ales serán libres de cuadrados, ya que éstos se obtienen por polarización a partir de
ideales monomiales y que los números de Betti graduados no son modificados por
esta transformación. En este contexto, introducimos la correspondencia de Stanley-
Reisner entre ideales monomiales libres de cuadrados en un anillo de polinomios con n
varibles y los complejos simpliciales con n vértices. La herramienta principal que nos
proporciona esta correspondencia es la llamada fórmula de Hochster, que nos permite
expresar los números de Betti graduados de un ideal monomial libre de cuadrados en
función de las homoloǵıas reducidas del complejo simplicial asociado.

Finalizamos este caṕıtulo con la definición de los objetos de estudio en esta tesis,
los ideales de grafos. Estos ideales están generados por monomios de grado 2 libres
de cuadrados, por lo que pertenecen al ámbito de aplicación de la correspondencia de
Stanley-Reisner. El complejo simplicial asociado a un ideal de grafo es el complejo
de independencia de un grafo simple. En esta sección vemos la relación entre las
propiedades de un grafo simple y las de su complejo de independencia y su homoloǵıa
reducida.

Caṕıtulo 2: Diagramas de Betti de ideales de grafos

Este caṕıtulo recoge resultados sobre los valores concretos de los números de Betti
graduados de ciertos ideales de grafos y también sobre el conjunto de los números
de Betti que son no nulos. Por ejemplo, en el teorema 2.3.3 damos una fórmula
combinatoria para todos los números de Betti graduados del ideal de grafo asociado
al complementario de un ciclo, mientras que en el teorema 2.1.2 demostramos que el
conjunto de números de Betti graduados no nulos, en su presentación a través del
llamado diagrama de Betti, tiene forma escalonada en su margen izquierda en el caso
de ideales de grafos.

La forma más sencilla que puede adoptar el diagrama de Betti de un ideal de grafo
consiste en una única fila. Esta propiedad equivale a que el ideal de grafo tenga regu-
laridad 2 y es satisfecha por los ideales asociados a grafos cuyo grafo complementario
es cordal. Este resultado, formulado por R Fröberg, fue mejorado por D. Eisenbud,
M. Green, K. Hulek y S. Popescu en [22] precisando en qué paso de la resolución libre
graduada minimal deja de ser lineal si el grafo complementario no es cordal. En este
caso, se demuestra en el teorema 2.4.6 que todas las sizigias minimales no lineales
que aparecen en ese primer paso tienen el mismo grado. Además, determinamos el
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número de Betti graduado correspondiente. Cerramos el caṕıtulo generalizando estos
resultados al caso de ideales monomiales generados en grado 2 (no necesariamente
libres de cuadrados).

Caṕıtulo 3: Diagramas de Betti ideales de grafos bipartitos

En este caṕıtulo nos centramos en ideales de grafos bipartitos para trasladar los
resultados del caṕıtulo anterior al caso de regularidad 3. Lo hacemos siguiendo una
analoǵıa con el caso de regularidad 2:

• Empezamos determinando los grafos bipartitos minimales con regularidad mayor
que 3 y damos fórmulas combinatorias para todos sus números de Betti gradu-
ados.

• Caracterizamos aquellos grafos bipartitos con regularidad igual a 3.

• En el caso de ideales de grafos bipartitos cuya regularidad es mayor que 3,
determinamos el primer paso de la resolución libre graduada minimal en el que
aparecen sizigias cuyo grado es al menos dos unidades mayor que el grado de
cualquier sizigia no lineal en el paso anterior. Demostramos que todas esas
sizigias tienen el mismo grado y determinamos ese grado y el número de tales
sizigias.

• Los resultados son generalizados al caso de ideales monomiales generados en
grado 2.

En la última sección de este caṕıtulo estudiamos la relación entre el número de
emparejamientos inducidos de un grafo bipartito y la regularidad de su ideal de grafo.

Apéndice: Algoritmo para grafos bipartitos conexos no isomorfos

Bajo este eṕıgrafe detallamos un algoritmo que nos permite obtener una lista exhaus-
tiva con un representante de cada clase de isomorf́ıa de grafos bipartitos conexos.
Aportamos el desarrollo teórico e incluimos un pseudocódigo de todas sus partes.

Conclusiones

En esta tesis hemos proporcionado fórmulas puramente combinatorias para el cálculo
de los números de Betti graduados de dos familias de grafos. Este problema no sólo
es dif́ıcil sino que es imposible en muchos casos debido a que éstos pueden depender
de la caracteŕıstica del cuerpo. En particular, no es posible obtener una caracteri-
zación de los ideales de grafos en general con regularidad 3 a partir exclusivamente
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de las propiedades del grafo. Ni siquiera restringiéndonos a grafos bipartitos pode-
mos conseguir una caracterización semejante para aquellos ideales de grafos bipartitos
con regularidad 4, ya que en ambos casos hay ejemplos en los que dicha regularidad
depende de la caracteŕıstica del cuerpo base.

Nuestros resultados sobre la forma del diagrama de Betti de un ideal de grafo y la
determinación del primer y segundo escalón para ideales de grafos e ideales de grafos
bipartitos, respectivamente, permiten obtener cotas ajustadas sobre los grados de las
sizigias de toda la resolución. Además, A. Conca ha sugerido que estas cotas pueden
generalizarse o servir de referencia para las cotas de las sizigias de las álgebras de
Koszul.

Finalmente, este trabajo motiva el estudio de cotas para la regularidad de ideales
de grafos bipartitos y la dependencia de dicha regularidad respecto de la caracteŕıstica
del cuerpo base.
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Introduction

The scope of this thesis lies in the field of Combinatorial Commutative Algebra. In
this dissertation, we address questions on invariants related to the minimal graded
free resolution of a homogeneous ideal I in a polynomial ring R with coefficients in a
field K,

0→ ⊕jR(−j)βp,j
ϕp

−→ · · ·
ϕi+1
−→ ⊕jR(−j)βi,j

ϕi−→ · · ·
ϕ1
−→ ⊕jR(−j)β0,j

ϕ0
−→ I → 0 .

Namely, we focus on the study of graded Betti numbers, βi,j, and other related in-
variants like the Castelnuovo-Mumford regularity and the projective dimension of
particular families of homogeneous ideals. The minimal graded free resolution of
a homogeneous ideal can theoretically be computed by using algorithms based on
Gröbner basis and implemented in software systems like CoCoA, Macaulay2 or Sin-
gular. However, in practice, these procedures can take too long or require unaffordable
resources. This makes very desirable any possible combinatorial description of these
invariants.

Graded Betti numbers encode all the numerical information about the minimal
graded free resolution of a homogeneous ideal. From them, we can recover the Hilbert
function, the Castelnuovo-Mumford regularity or the projective dimension. In par-
ticular, the regularity is one of the most important invariants of such an ideal and
measures its complexity in some sense. These invariants have also important geomet-
ric interpretations (see [21]).

In this dissertation, we restrict ourselves to the case of monomial ideals. These
homogeneous ideals have interesting properties that make them especially suitable
for a combinatorial and computational approach. The relevance of this family can be
justified by the fact that some homological invariants of general homogeneous ideals
in R are equal to or bounded by the corresponding invariants of their initial ideals,
which are monomial ideals. There is extensive literature about monomial ideals but
it is worthing to mention the celebrated book of R.H. Villarreal [68] and the nice
updated surveys [55] and [40].
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The combinatorial structure behind monomial ideals can be exploited to describe
in combinatorial terms the minimal free resolution for some concrete families. For
instance, we can find in the paradigmatic paper by S. Eliahou and M. Kervaire [23]
a description of the minimal graded free resolution of a Borel ideal in terms of the
basic data of its minimal generators. This family of monomial ideals includes generic
initial ideals of homogeneous ideals in a polynomial ring with coefficients in a field
of characteristic zero. The minimal graded free resolution of a monomial ideal can
also be described as a simplicial chain complex in several successful cases. One can
label the vertices of a simplicial complexes, ∆, with the minimal generators of a
monomial ideal and the faces with the least common multiple of the labels of the
vertices they comprise, and then consider the chain complex of ∆ with coefficients in
the polynomial ring. Some examples of graded free resolutions constructed following
this procedure are given by D. Taylor in [62] and G. Lyubeznik in [50]. In the former,
the resolution is built from a simplex whereas it is reduced to a subcomplex in the
latter. Both resolutions always contain the minimal graded free resolution of the
monomial ideal, though, in most of the cases, the containment is strict. On the other
hand, in [4], the construction of the simplicial chain complex is based on the so-called
Scarf complex and is always contained in the minimal graded free resolution. When
this chain complex is a resolution, i.e., when it is exact as a sequence, it coincides
with the minimal resolution. However, it was proved in [66] that the minimal graded
free resolution of a monomial ideal can not always be obtained in this way even if we
consider more general structures as CW-complexes instead of simplicial complexes.
To overcome this limitation, the concept of frame was introduced in [56].

Another approach to the study of graded Betti numbers of monomial ideals is
the Stanley-Reisner correspondence, which establishes a bijection between the set of
squarefree monomial ideals in R = K[x1, . . . , xn] and the set of simplicial complexes
on n vertices (see [57] and [60]). The additional condition of squarefreeness does not
mean any loss of generality in the study of graded Betti numbers as they are preserved
by polarization, a procedure that turns a monomial ideal into a squarefree monomial
ideal in a new polynomial ring with more variables (see [28]). This trend has led
to characterizations of some algebraic properties of squarefree monomial ideals, such
as being Cohen-Macaulay, sequentially Cohen Macaulay or Gorenstein in terms of
the topology of the simplicial complex associated (see [19] or [12]). It also provides
formulas for the numerical invariants. A celebrated tool is Hochster’s Formula ([42]),
that expresses the graded Betti numbers of a squarefree monomial ideal in terms of
the reduced homology of the corresponding simplicial complex with coefficients in
the ground field. Unfortunately, this theoretical machinery is not sufficient for the
effective computation of these invariants and combinatorial descriptions have been
reached only for a few families. This is the approach taken in this work.
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Edge ideals are squarefree monomial ideals generated in degree 2. The Stanley-
Reisner complex of an edge ideal is the independence complex of a simple graph.
They were first introduced by R.H. Villarreal in [67] and [59]. Many recent papers are
devoted to describing algebraic properties of these ideals in terms of the combinatorial
properties of the graph (see [68] and the surveys [64], [36] and [53], and the references
therein) and it is still a very active research topic.

We will pay special attention to bipartite graphs. In the case of bipartite edge
ideals, Cohen-Macaulayness is characterized in terms of the independence complex by
the property of being pure shellable ([26]) and also in a graph-theoretical way ([39]).
If we relax the algebraic condition to sequentially Cohen-Macaulayness, then the
characterization is given by shellability in a non-pure sense ([65]). Though bipartite
edge ideals have been studied by several authors, one only has formulas for their
graded Betti number in a few particular cases like Ferrer graphs ([13]), cycles of even
length, complete bipartite graphs, path graphs or star graphs ([43]).

We begin the body of this dissertation with a review of the combinatorial and
algebraic terminology used later and a survey on the fundamental results regarding
these concepts. We collect the basic terminology of the combinatorial structures that
we associate to the homogeneous ideals we are considering in this work: graphs and
simplicial complexes. Also, we recall the basic definitions and results on simplicial ho-
mology, including the Mayer-Vietoris sequence, the Nerve Theorem and several ways
of collapsing a simplicial complex preserving its homotopy type.Then, we overview
the existence and uniqueness (up to isomorphism) of the minimal graded free reso-
lution of a finitely generated graded R-module and define some associated numerical
invariants like graded Betti numbers, Castelnuovo-Mumford regularity and projective
dimension. We go from monomial ideals to squarefree monomial ideals through polar-
ization and describe the Stanley-Reisner corresponence. In this context, Hochster’s
Formula and Eagon-Reiner’s version are formulated. Finally, we focus on the objects
we will deal with in this thesis: edge ideals. In this case, the Stanley-Reisner com-
plex coincides with the independence complex of a simple graph and we rewrite some
properties of this simplicial complex in terms of the graph.

In the second chapter, we study the set of graded Betti numbers that we store in
the so-called Betti diagram. We prove in Theorem 2.1.2 that the Betti diagram of
an edge ideal has a left-justified staircase shape. The simplest Betti diagram that an
edge ideal can have is when it consists of only one row. In this case, one says that the
ideal has a linear resolution. Moreover, when this happens, the graded Betti numbers
do not depend on the characteristic of the ground field K. A classical characterization
of edge ideals with linear resolution was given by R. Fröberg. He formulated that the
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edge ideal associated to a graph G has linear resolution if and only if the complement
of G is chordal. This result was later refined by D. Eisenbud, M. Green, K. Hulek and
S. Popescu by determining the first step in the minimal resolution where nonlinear
syzygies appear for the first time if Gc is not chordal. In Theorem 2.4.6, we compute
the multidegrees of those minimal syzygies and determine how many there are. This
result is extended to the non-squarefree case of ideals generated by monomials of
degree 2. Furthermore, we obtain in Theorem 2.3.3 a purely combinatorial description
of all the graded Betti numbers of edge ideals corresponding to complementary graphs
of cycles. These are the minimal graphs whose edge ideals do not have linear resolution
in the sense that any graph with that property contains the complement of a cycle as
an induced subgraph by the Froberg’s Theorem.

In chapter 3, we single out bipartite edge ideals. We give a characterization of
bipartite edge ideals having regularity 3 in Theorem 3.3.11. The first column in the
Betti diagram with a nonzero entry outside the first two rows is determined and
the multidegrees of all such graded Betti numbers are computed in Theorem 3.3.9.
Then, we generalize our results to the non-squarefree case. Moreover, combinatorial
formulas for all the graded Betti numbers of the edge ideal associated to the bipartite
complement of a cycle of even length are also given in Theorem 3.2.15. These ideals
are also the minimal ones having regularity greater than or equal to 4. At the end
of this chapter, there is a brief study of the relation between the induced matching
number of a bipartite graph and the regularity of its edge ideal.

The last chapter is devoted to conclusions and further work. We present appli-
cations of the main results in this thesis as well as propose some future research
interests.

Finally, we include an appendix where we describe an algorithm to obtain an
exhaustive list with a representative of all the equivalence classes defined by isomorphy
of connected bipartite graphs.



Chapter 1

Combinatorial and Algebraic

Background

We start collecting the basic terminology related to graphs, simplicial complexes and
minimal graded free resolutions. Also, we present a survey on the fundamental results
on simplicial homology and independence complexes.

1.1 Graphs

In this section we fix some terminology and notation from the graph theory. All the
items addressed here can be found in [18], [37] or [10].

A graph G is an ordered pair of sets (V ,E) such that V is nonempty and E ⊂
V × V . The elements of V and E are called vertices and edges, respectively. The
elements of an edge e = {u, v} ∈ E are called the endvertices of e and they are
said to be adjacent to each other and incident with e. Also, e is said to cover u
and v. An edge {u, v} is called a loop if u = v. Two graphs G and G′ are said to
be isomorphic if there exists a one-to-one correspondence between their vertex sets
f : V (G) −→ V (G′) such that {u, v} ∈ E(G) ⇔ {f(u), f(v)} ∈ E(G′). We denote
this situation by G ∼= G′.

A graph G = (V,E) is said to be

• directed (or a digraph) if the elements of E are ordered pairs. Otherwise, it is
said to be undirected.

• finite if |G| := |V |, the order of G, is finite.

• simple if there is no loop in E.
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Remark 1.1.1. In this work we consider only undirected finite graphs. We assume
also that all graphs are simple except in the sections 2.5 and 3.4.

Let G = (V,E) be a graph, v ∈ V and W ⊂ V . Then, we denote by

• NG(v) := {u ∈ V : {u, v} ∈ E}, the neighborhood of v in G.

• NG[v] := NG(v) ∪ {v}, the closed neighborhood of v in G.

• NG(W ) := ∪v∈WNG(v), the neighborhood of W in G.

• NG[W ] := ∪v∈WNG[v], the closed neighborhood of W in G.

The degree (or valency) of a vertex v in a graph G is defined as the number of
vertices adjacent to v, i.e. |NG(v)|, and is denoted by degG(v). Two vertices u, v ∈ V
are called twins if NG(u) = NG(v). If degG(v) = 0 then v is said to be an isolated
vertex. If degG(v) = 1 and e = {u, v} ∈ E(G) is the unique edge in G covering v,
then e is said to be a whisker at u.

Given a graph G, a subgraph of G is a graph H such that V (H) ⊂ V (G) and
E(H) ⊂ E(G). If we fix a subset of vertices W ⊂ V (G), the induced subgraph of
G on W is the subgraph H with V (H) = W and maximal E(H) ⊂ E(G), i.e., all
edges in G whose endvertices belong to W are in E(H). We write H ⊂ G if H is a
subgraph of G, G[W ] for the induced subgraph on the vertices W and H < G if H is
an induced subgraph on some omitted vertex set.

Given two vertices u, u′ of a graph G, a path in G from u to u′ is an alternating
sequence of vertices and edges of G, v0, e1, v1, e2, v2, . . . , vl−1, el, vl such that v0 =
u, vl = u′, vi 6= vj if i, j > 0 and i 6= j, and ei = {vi−1, vi}, ∀i = 1, . . . , l. The
number of edges in the path, l, is called the length of the path. The vertices u and
u′ are connected if there exists a path between them. The distance between u and
u′, denoted by dG(u, u

′) is the minimal length of a path between them if they are
connected and infinity otherwise. The maximum among the distances between two
vertices of G is called the diameter of G and denoted by d(G). G is said to be a
connected graph if every pair of distinct vertices in G are connected. A connected
component of G is a maximal (under inclusion of vertex sets) connected induced
subgraph. We denote by comp(G) the set of connected components of G.

We can construct new graphs from a given one. Let G,G′ be graphs, v ∈ V (G)
and e ∈ E(G), we can consider the following graphs:

• Gc := (V (G), {{u, v} : u, v ∈ V (G), {u, v} 6∈ E(G)}), the complement of G,

• L(G) := (E(G), {{e, e′} : e, e′ ∈ E(G), |e ∩ e′| = 1}), the line graph of G,
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• G \ v := (V (G) \ {v}, {e ∈ E(G) : v 6∈ e}),

• G \ e := (V (G), E(G) \ {e}),

• G ∪G′ := (V (G) ∪ V (G′), E(G) ∪ E(G′)), the union of G and G′,

• kG, the union of k copies of G on different vertex sets.

Some particular families of graphs are listed below:

• a cycle Cl (of length l) is a graph isomorphic to the graph Cl on the vertices [l] :=
{1, . . . , l} where l ≥ 3 and with edge set {{1, 2}, {2, 3}, . . . , {l−1, l}, {l, 1}}. An
induced subgraph isomorphic to a cycle is called an induced cycle.

• a graph is said to be chordal if it has no induced cycle of length l ≥ 4.

• a forest is a graph such that no subgraph is a cycle.

• a tree is a connected forest. Equivalently, a graph G is a tree if it is a forest
with |V (G)| = |E(G)|+ 1 or if it is connected and |V (G)| = |E(G)|+ 1.

• the complete graph on the set V , denoted by KV , or Km if V = [m], is the graph
with vertex set V and edge set containing all pairs of distinct vertices in V .

• a graph G is said to be bipartite if its vertex set can be splitted into two disjoint
subsets V (G) = A ⊔B in such a way that E(G) ⊂ A×B, i.e., every edge in G
has its endpoints in different sets of the bipartition {A,B}.

• the complete bipartite graph on V = A⊔B, denoted by KA,B, or Ka,b if A = [a]
and B = [b], is the bipartite graph on V with the bipartition {A,B} and edge
set A× B.

Given a graph G, a subset W ⊂ V (G) is called a clique if G[W ] is a complete graph
on W . We say that a subset S of vertices (resp. edges) of G is independent if no edge
(resp. vertex) of G covers (resp. is incident with) two elements of S. If every edge
(resp. vertex) of G covers (resp. is incident with) an element in S then we say that S
is a vertex (resp. edge) cover of G. The maximum cardinality of an independent set
of vertices (resp. edges) in G is denoted by β0(G) (resp. β1(G)) and the minimum
cardinality of a vertex (resp. edge) cover in G is denoted by α0(G) (resp. α1(G)).
Independent sets of edges are also called matchings. A matching is said to be perfect
if it is also an edge cover. An induced matching is a matching M in G such that
E(G[∪e∈Me]) = M , i.e., there is no edge in G covering two endpoints of two different
edges in M . The maximum cardinality of an induced matching is called the induced
matching number of G and is denoted by µ(G).
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1.2 Simplicial Complexes

Now, we fix the terminology regarding finite abstract simplicial complexes according
to the algebraic point of view (we consider the empty set as a possible face of a
simplicial complex).

Given a finite set V , we define a (finite abstract) simplicial complex on V as a
family ∆ of subsets of V such that

1. if σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆;

2. for every element v ∈ V , {v} ∈ ∆.

Remark 1.2.1. Some authors do not require condition 2 in the definition of simpli-
cial complex. Also some authors exclude the emptyset from being an element of a
simplicial complex.

The set V is called the vertex set of ∆ and its elements are called the vertices of
∆. Elements of ∆ are called faces. By abuse of notation, we also refer to a singleton
face as a vertex. The simplicial complex consisting of all subsets of a set V is called
the simplex on V and is denoted by ∆V . There exists two simplicial complexes on
the empty vertex set: ∆ = ∅, the void complex, and ∆ = {∅}, the empty complex.
Notice that if ∆ 6= ∅, then ∅ ∈ ∆.

Maximal faces with respect to set inclusion are called facets and the set of all facets
of a simplicial complex ∆ is denoted by F(∆). Given a set V and a family of subsets
F1, . . . , Fr, we denote by 〈F1, . . . , Fr〉 the simplicial complex consisting of all subsets
of every Fi, i = 1, . . . , r. If ∆ is a simplicial complex with F(∆) = {F1, . . . , Fs}, then
∆ = 〈F1, . . . , Fs〉.

Let ∆ and ∆′ be two simplicial complexes. We say that ∆ and ∆′ are isomorphic
and denote by ∆ ∼= ∆′ if there exists a bijection f : V (∆) −→ V (∆′) such that
{v1, . . . , vs} ∈ ∆ if and only if {f(v1), . . . , f(vs)} ∈ ∆′. We say that ∆′ is a subcomplex
of ∆ if ∆′ ⊂ ∆. A subcomplex ∆′ of ∆ is said to be full provided every face of ∆
having its elements in V (∆′) also belongs to ∆′. Let W ⊂ V (∆), we call the induced
subcomplex of ∆ on W to the subcomplex ∆[W ] := {σ ∈ ∆ : σ ⊂ W}. We also can
denote an induced subcomplex ∆′ of ∆ by ∆′ < ∆, omitting the vertex set on which
it is induced. A subcomplex ∆′ is full if and only if it is an induced subgraph on
V (∆′).

Let ∆ be a simplicial complex and let σ ⊂ V (∆). We define the following sub-
complexes of ∆:

• del∆(σ) := {τ ∈ ∆ : τ ∩ σ = ∅},
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• fdel∆(σ) := {τ ∈ ∆ : σ 6⊂ τ},

• link∆(σ) := {τ ∈ ∆ : τ ∩ σ = ∅ y τ ∪ σ ∈ ∆},

• star∆(σ) := {τ ∈ ∆ : τ ∪ σ ∈ ∆}.

In the case σ = {v}, we shorten the notation to del∆(v), link∆(v) and star∆(v). We
notice that fdel∆({v}) = del∆(v). If σ 6∈ ∆, then fdel∆(σ) = ∆ and link∆(σ) =
star∆(σ) = ∅.

The dimension of a face σ is the cardinality of σ as a set minus one, dim σ :=
|σ| − 1. We adopt the convention that dim ∅ = −1. The dimension of a simplicial
complex ∆ is the maximum among the dimensions of its faces, dim∆ := max{dim σ :
σ ∈ ∆}. We say that ∆ is pure if all its facets have the same dimension. We denote
∆i := {σ ∈ ∆ : dim(σ) = i} and ∆(i) := {σ ∈ ∆ : dim(σ) ≤ i}. The first set is not a
simplicial complex unless V (∆) = ∅ and i = −1, whereas ∆(i) is always a simplicial
complex named the i-skeleton of ∆. We notice that the 1-skeleton of a simplicial
complex is a simple graph provided V (∆) 6= ∅.

The connectivity in ∆ is defined as the connectivity in ∆(1) as a graph: two vertices
of ∆ are connected if they are connected in ∆(1) and ∆[W ] is a connected component
of ∆ if and only if ∆(1)[W ] is a connected component of ∆(1). The set of connected
components of ∆ will be denoted by comp(∆).

Let ∆ and ∆′ be simplicial complexes. We can construct new simplicial complexes
from them:

• the complementary simplicial complex, ∆c := 〈V (∆) \ F : F ∈ F(∆)〉,

• the Alexander dual, ∆∨ := {σ ⊂ V (∆) : V (∆) \ σ 6∈ ∆},

• the (first) barycentric subdivision, sd(∆). It is a simplicial complex on the vertex
set ∆ \ {∅} and a family of faces of ∆, {σ1, . . . , σs}, is a face of sd(∆) if it is
the emptyset or s ≥ 1 and its elements can be arranged in an inclusion chain
σi1 ⊂ σi2 ⊂ · · · ⊂ σis .

• the union complex and the intersection complex, ∆∪∆′ and ∆∩∆′, respectively,

• assuming that V (∆)∩V (∆′) = ∅, the join of ∆ and ∆′ is the simplicial complex
∆ ∗∆′ := {σ ∪ τ : σ ∈ ∆, τ ∈ ∆′} on the vertex set V (∆) ∪ V (∆′).

• the wedge of ∆ and ∆′ (w.r.t. u ∈ V (∆) and v ∈ V (∆′)), denoted by ∆ ∨∆′,
is obtained from the union ∆ ∪∆′ by identifying the vertices u and v.

We pay special attention to two types of joins:
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• a simplicial complex ∆ is said to be a cone with appex v and is denoted by v∗∆′

if there exists some simplicial complex ∆′, called the base of the cone, such that
v 6∈ V (∆′) and ∆ = {∅, {v}} ∗∆′;

• ∆ is said to be a suspention of ∆′ on the vertices u, v if ∆ = {∅, {u}, {v}} ∗∆′

with u, v 6∈ V (∆′). In this case, ∆ is denoted by
∑v

u∆
′ or just

∑

∆′.

Notice that
∑v

u∆
′ = (u ∗∆′) ∪ (v ∗∆′) and that star∆(v) is a cone with appex v for

any simplicial complex ∆ and any v ∈ V (∆).

1.3 Simplicial Homology

We do a brief reminder on the basics of simplicial homology theory based on the
references [60] and [54].

Let ∆ be a simplicial complex on the vertices V . Given a nonempty subset of
vertices {v0, . . . , vd} ⊂ V , we can consider the set of all posible orderings on its
elements {(vb(0), . . . , vb(d)) : b is a bijection from {0, . . . , d} to itself} and the equiv-
alence relation in this set given by (vb(0), . . . , vb(d)) ∼ (vb′(0), . . . , vb′(d)) if b = p ◦ b′

where p is an even permutation on {0, . . . , d}. Thus, we have two equivalence classes
if d > 0 and only one if d = 0. These equivalence classes are called orientations and
a face of ∆ provided with an orientation is called an oriented face. An oriented face
σ = {v0, . . . , vd} is denoted by [v0, . . . , vd] if we want to make explicit that the orien-
tation corresponds to the equivalence class of (v0, . . . , vd), otherwise we just denote
by σ the oriented face and by −σ the same face with the opposite orientation (if σ is
not a vertex). ∆[i] denotes the set of oriented faces of dimension i of ∆.

A d-chain on ∆ with coefficients in G is a function c from ∆[d] to an abelian group
G satisfying c(−σ) = −c(σ) if d > 0. The set Cd(∆, G) of all d-chains on ∆ with
coefficients inG is a group with the addition defined by (c+c′)(σ) := c(σ)+c′(σ), ∀σ ∈
∆[d].

The elementary d-chain on an oriented face σ of dimension d > 0 is the d-chain
defined by c(σ) = 1, c(−σ) = −1 and c(τ) = 0 for all τ ∈ ∆[d] \ {σ}. By abuse of
notation, we identify the elementary chain on σ with σ itself. With this notation,
σ + (−σ) = 0 in Cd(∆, G). Let g ∈ G and σ ∈ Cd(∆, G), then we denote by gσ
the d-chain defined by c(σ) = g, c(−σ) = −g and c(τ) = 0, ∀τ 6= σ. Notice that
g(−σ) = −gσ. Let c be an arbitrary d-chain on ∆. Since c(−σ) = −c(σ), then c is
determined by its values in just one of the two possible orientations for each face of
dimension d > 0. Thus, if we fix an orientation for each σ ∈ ∆d, we can write uniquely
c =

∑

σ∈∆d c(σ)σ. Therefore, Cd(∆, G) is the direct sum of subgroups isomorphic to
G, one for each unoriented face of dimension d in ∆, Cd(∆, G) ∼=

⊕

σ∈∆d G.



1.3. SIMPLICIAL HOMOLOGY 27

In the case of C0(∆, G), the elementary 0-chain cv on a vertex v ∈ V (∆) is defined
by cv(v) = 1 and cv(u) = 0 if u 6= v. The set {cv : v ∈ V (∆)} form a natural basis of
C0(∆, G). The (−1)-chains are functions from {∅} to G, so C−1(∆, G) ∼= G.

Given an elementary d-chain σ = [v0, . . . , vd], the boundary operator is defined as

∂d(σ) =
d

∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vd], if d > 0, and

∂0(cv) = 1 .

These applications are well defined and extend uniquely to homomorphisms

∂d : Cd(∆, G) −→ Cd−1(∆, G), ∀d > 0, and

∂0 : C0(∆, G) −→ G

and satisfy ∂d ◦ ∂d+1 = 0, i.e., Im(∂d+1) ⊂ Ker(∂d), ∀d ≥ 0.

We consider the two following exact sequences of groups and homomorphisms:

C(∆) : 0 −→ Cd(∆, G) −→ · · · −→ Ci(∆, G)
∂i−→ Ci−1(∆, G) −→ · · ·

∂1−→ C0(∆, G) −→ 0

and

C̃(∆) : 0→ Cd(∆, G)→ · · · −→ Ci(∆, G)
∂i−→ Ci−1(∆, G) −→ · · ·

∂1−→ C0(∆, G)
∂0−→ G→ 0

where d := dim(∆). The first one is called the simplicial chain complex (over G) of
∆ and C̃(∆) is the augmented simplicial chain complex, which includes C−1(∆, G).

The quotient group Ker(∂i)/Im(∂i+1) from the chain complex C(∆), considering
∂0 = 0, is called the i-th homology group of ∆ with coefficients in G and is denoted
by Hi(∆, G), ∀i ≥ 0, whereas if the quotient is taken from C̃(∆), it is denoted by
H̃i(∆, G) and is referred to as the i-th reduced homology group. We can consider also
H̃−1(∆, G) := G/Im(∂0), which is the trivial group for every simplicial complex but
the empty complex. For ∆ = {∅}, H̃−1(∆, G) ∼= G and this is its only nontrivial
homology group.

Notice that Hi(∆, G) = H̃i(∆, G), ∀i > 0. For 0-chains, {cv : v ∈ V (∆)} form
a basis of C0(∆, G) and if two vertices v, v′ ∈ V (∆) are connected by a path v =
u0, e1, u1, · · · , ul−1, el, ul = v′ with ei = {ui−1, ui} ∈ ∆1, then ∂1(e1+ · · ·+el) = v′−v,
so they are in the same class of equivalence in H0(∆, G). Moreover, if they are not
connected, they belong to different equivalence classes (see [54, Theorem 7.1] for
details). We take the class of one vertex in each connected component of ∆, let us
say B = {[v1], . . . , [v|comp(∆)|]}. Then, B is a basis of the free group H0(∆, G). Similar
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reasoning for the reduced homology case shows that there exists a basis of H̃0(∆, G)
consisting of the classes of the 0-chains vi − v1 with i 6= 1 if ∆ is not conected.
Otherwise, any element in Ker(∂0) belongs to the equivalence class of 0 if ∆. Both
groups are then related by the equality ([54, Theorem 7.2])

H0(∆, G) = H̃0(∆, G)⊕G .

If G is a commutative ring with unit, then H̃d(∆, G) also is and if G is a field,
H̃d(∆, G) is a vector space.

Remark 1.3.1. Hereafter, we use the short notations Hd(∆) and H̃d(∆) instead of
H̃d(∆, G) and H̃d(∆, G) when G is a field. We also denote the trivial group {0} just
by 0 in the context of homology groups.

We include some definitions regarding the vanishing of reduced homology groups.
A simplicial complex is said to be

• acyclic (over G) if H̃i(∆, G) = 0, ∀i ≥ −1,

• k-acyclic (over G) if H̃i(∆, G) = 0, ∀i,−1 ≤ i ≤ k,

• k-connected (over G) if H̃i(∆, G) = 0, ∀i,−1 ≤ i ≤ k and it is simply connected
if k ≥ 1 (this is the characterization given by Hurewicz’s Theorem, see [72]),

• k-Leray (over G) if H̃i(∆[W ], G) = 0, ∀i ≥ k, ∀W ⊂ V (∆).

Example 1.3.2. Basic examples of acyclic simplicial complexes are simplices and
cones (see [54, Theorem 8.2]). The void complex is acyclic while the empty complex
is not.

1.4 Homological Tools

Computing homology groups directly from definition is an unaffordable task for non-
trivial examples so we will need some tecniques for computing homological groups in
practice. Namely, we focus on the Mayer-Vietoris Sequence, the Nerve Theorem and
collasibility, all of them based on relating the homology groups we are interested in
with others simpler.

The first way we present consists in putting the homology groups of our simplicial
complex in an exact long sequence together with the homology groups of some proper
subcomplexes.
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Theorem 1.4.1 (Mayer-Vietoris Sequence; see e.g., [54, Theorem 25.1]). Let ∆ be
a simplicial complex, ∆1 and ∆2 be subcomplexes of ∆ such that ∆ = ∆1 ∪ ∆2 and
denote ∆0 := ∆1 ∩∆2. Then, there is a long exact sequence

· · · −→ Hi(∆0) −→
Hi(∆1)
⊕

Hi(∆2)
−→ Hi(∆) −→ Hi−1(∆0) −→ · · ·

which is called the Mayer-Vietoris sequence. Provided ∆0 6= {∅}, there is an analogous
long exact sequence for reduced homology groups.

Example 1.4.2. Let ∆ be a simplicial complex and v ∈ V (∆). Then,

∆ = del∆(v) ∪ star∆(v) and del∆(v) ∩ star∆(v) = link∆(v) (1.1)

and hence we can apply Theorem 1.4.1 taking into account that star∆(v) is acyclic.
We obtain the following long exact sequence:

· · · −→ Hi(link∆(v)) −→ Hi(del∆(v)) −→ Hi(∆) −→ Hi−1(link∆(v)) −→ · · ·

· · · −→ H0(link∆(v)) −→ H0(del∆(v)) −→ H0(∆) −→ 0. (1.2)

and the analogous sequence for reduced homology groups is also exact if link∆(v) 6=
{∅}.

Corollary 1.4.3. Let ∆ be a simplicial complex such that ∆ = ∆1 ∪ ∆2 where ∆1

and ∆2 are acyclic subcomplexes of ∆ and ∆1 ∩∆2 6= {∅}. Then

H̃i(∆) ∼= H̃i−1(∆1 ∩∆2), ∀i > 0 .

If we change the direction of every arrow in the sequence, it keeps being a long
exact sequence (see [41, Lemma 2.1]).

Corollary 1.4.4. If H̃i(link∆(v)) = H̃i−1(link∆(v)) = 0 for some i ≥ 0, then

H̃i(∆) ∼= H̃i(del∆(v)) .

Likewise, if H̃i(del∆(v)) = H̃i−1(del∆(v)) = 0 for some i > 0, then

H̃i(∆) ∼= H̃i−1(link∆(v)) .

Example 1.4.5. Let us consider
∑v

u∆, the suspention of a simplicial complex ∆ on
the vertices u, v 6∈ V (∆). We assume that V (∆) 6= ∅. We notice that link∑v

u ∆(v) = ∆,
star∑v

u ∆(v) = v ∗∆ and del∑v
u ∆(v) = u ∗ ∆, so, taking into account that cones are
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acyclic and that link∑v
u ∆(v) 6= ∅, one has the following long exact sequence of reduced

homologies,

· · · −→ H̃i(∆) −→ 0 −→ H̃i(
v

∑

u

∆) −→ H̃i−1(∆) −→ 0 −→ H̃i−1(
v

∑

u

∆) −→ · · ·

· · · −→ H̃0(∆) −→ 0 −→ H̃0(
v

∑

u

∆) −→ 0.

Hence, H̃0(
∑v

u∆) is the trivial group and

H̃i(
v

∑

u

∆) ∼= H̃i−1(∆), ∀i > 0 .

A second way to compute the homology groups of a simplicial complex ∆ is
looking for isomorphisms between them and the homology groups of new simplicial
complexes constructed from ∆, like the nerve of a decomposition, the Alexander dual
or the barycentric subdivision.

Given a finite family of sets A = {Ai}i∈I (I finite set), we correspond to A the
simplicial complex on the vertex set I whose faces are subsets σ ⊂ I such that
⋂

i∈σ Ai 6= ∅. This simplicial complex is called the nerve of A and is denoted by
N (A). Those simplicial complexes that can be obtained as the nerve of a finite family
of convex sets in Rd are called d- representable. Nerves of coverings were introduced
in [1] and the first homotopical versions of the Nerve Theorem for topological spaces
seems to be in [49], [11] and [70], however, it is usually atributed to Borsuk.

We formulate here a homological version of the Nerve Theorem for simplicial
complexes, though, there exist several variations (see [51]).

Theorem 1.4.6 (Nerve Theorem). Let ∆ be a simplicial complex and A = {∆j}j∈I
a finite family of subcomplexes such that

• ∆ =
⋃

j∈I ∆j, and

• ∀S ⊂ I,
⋂

j∈S ∆j is the empty set or acyclic.

Then, H̃i(∆) ∼= H̃i(N (A)), ∀i ≥ 0.

An interesting refinement is the following version:

Theorem 1.4.7 ([38, Lemma 7]). Let ∆ be a simplicial complex, k ≥ 0 and A =
{∆j}j∈I a finite family of subcomplexes such that
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• ∆ =
⋃

j∈I ∆j, and

• ∀S ⊂ I,
⋂

j∈S ∆j is the empty set or H̃i(
⋂

j∈S ∆j) = 0, ∀i ≥ k − |S|.

Then, H̃i(∆) ∼= H̃i(N (A)), ∀i ≥ k.

There are other versions similar to Theorem 1.4.7, for example [9, Lemma1.2] or
[6, Theorem 6], regarding k-conectivity. See [8] or [7] for a survey.

The homology groups of a simplicial complex are also related to the homology
groups of its Alexander dual ∆∨ under certain conditions.

Theorem 1.4.8 ([44, Theorem 3.4]). Let ∆ be a simplicial complex on the nonempty
vertex set V and K be a field or Z. Assuming that H̃i(∆) is K-free for every i, then

H̃i(∆) ∼= H̃|V |−i−3(∆
∨), ∀i ≥ 0 .

It is also well known (see [44, Lemma 4.24] for a particular proof using discrete
Morse theory) that the geometric realizations of a simplicial complex and its barycen-
tric subdivision are homeomorphic, so, in particular, we have

H̃i(∆) ∼= H̃i(sd(∆)), ∀i ≥ 0 .

Finally, we collect some recursive procedures to modify a simplicial complex ∆
keeping the same homology groups up to isomorphism.

A vertex v ∈ V (∆) is said to be dominated by another vertex u in ∆ if link∆(v)
is a cone with appex u, in other words, if every facet containing v also contains u. A
simplicial complex with no dominated vertex is called a minimal (or taut) complex.
A simplicial complex ∆ is minimal if and only if N (∆) is minimal and also if and
only if N (N (∆)) ∼= ∆ (see [3],[33]).

Let σ ∈ ∆ and τ ∈ F(∆), then we say that σ is a free face of τ if τ is the unique
facet of ∆ containing σ. In this case, (σ, τ) is said to be a free pair of ∆.

Let σ be a face of ∆, then the subcomplex fdel∆(σ) has the same homology
groups (in fact, some stronger properties) when it is obtained as the result of one of
the following processes:

• an elementary collapse of ∆: when (σ, τ) is a free pair of ∆ with dim τ =
dim σ + 1. In this case, fdel∆(σ) = ∆ \ {σ, τ} and σ is said to be a collapsible
face of ∆. The reduction from ∆ to fdel∆(σ) is denoted by ∆ց fdel∆(σ). We
say that ∆ collapses to another simplicial complex ∆′ if there exists a sequence
of elementary collapses starting from ∆ and ending in ∆′. In that case, it is
denoted by ∆ց ∆′. When ∆ց ∅, we say that ∆ is collapsible (see [72]).
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• an elementary d-collapse of ∆: when σ is a free face of some facet of ∆ and
dim σ < d. In this case, σ is said to be a d-collapsible face of ∆. The reduction
from ∆ to fdel∆(σ) is denoted by ∆ ցd fdel∆(σ). We say that ∆ d-collapses
to ∆′ if there exists a sequence of elementary d-collapses from ∆ to ∆′. In that
case, it is denoted by ∆ ցd ∆′. When ∆ ցd ∅ we say that ∆ is d-collapsible
(see [69]).

• an elementary strong collapse of ∆: when σ = {v} and v is a dominated vertex
of ∆. The reduction from ∆ to fdel∆(σ) is denoted by ∆ցց fdel∆(v). If there
exists a sequence of elementary strong collapses from ∆ to ∆′, we say that ∆
strong collapses to ∆′ and we denote it by ∆ ցց ∆′. ∆ is said to be strong
collapsible if ∆ցց ∅ (see [3]).

• an elementary strong d-collapse of ∆: when σ = {v} and link∆(v) is (d − 1)-
collapsible. The reduction from ∆ to fdel∆(σ) is denoted by ∆ցցd fdel∆(v).
If there exists a sequence of elementary strong d-collapses from ∆ to ∆′, we say
that ∆ strong d-collapses to ∆′ and we denoted ∆ ցցd ∆′. ∆ is said to be
strong d-collapsible if ∆ցցd ∅ (see [61]).

Therefore, if ∆ (d, strong, d-strong) collapses to ∆′, then H̃i(∆) ∼= H̃i(∆
′) for all i.

A justification of the adjetive “strong” can be found in the next result.

Lemma 1.4.9 (Fold Lemma; see, e.g., [25, Lemma 3.2]). If v is a dominated vertex
in ∆, then ∆ց del∆(v).

A core of ∆ is defined as a minimal complex ∆′ such that ∆ ցց ∆′. Every
simplicial complex has a core, which is unique up to isomorphism ([3, Theorem 2.11]).

The next properties in this section will make d-collapsability specially interesting
in combination with Hochster’s Formula (Theorem 1.6.3). If ∆ is d-collapsible, then

• ∆ collapses to a simplicial complex of dimension strictly smaller than d,

• ∆[W ] is d-collapsible for any subset W ⊂ V (∆),

• ∆ is d-Leray.

On the other hand, if ∆ is d-representable, then ∆ is d-collapsible. These results are
proved in [69].

Theorem 1.4.10 ([45, Theorem 1.2]). Let ∆1, . . . ,∆s simplicial complexes on the
same vertex set. We denote by LK(∆) the minimal integer k such that ∆ is k-Leray
over K. Then,

• LK(∩si=1∆i) ≤
∑s

i=1 LK(∆i),

• LK(∪si=1∆i) ≤
∑s

i=1 LK(∆i) + s− 1.
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1.5 Graded Betti Numbers

This section is devoted to the algebraic background on minimal graded free resolu-
tions of finitely generated graded modules with special interest in the homological
invariants that appear therein like Betti numbers, (Castelnuovo-Mumford) regularity
or projective dimension. We suggest [14], [47], [20] and [12] for deeper details.

Let A be a commutative ring and (Γ,+) be a commutative monoid with + satis-
fying the cancellation law. A Γ-grading for A is a decomposition of A as a direct sum
of additive subgroups, A =

⊕

γ∈Γ Aγ , such that Aγ1 ·Aγ2 ⊂ Aγ1+γ2 , ∀γ1, γ2 ∈ Γ. Each
summand Aγ is called the homogeneous component of A of degree γ and any element
in Aγ is said to be homogeneous of degree γ. If A is Γ-graded, then A0 is a subring of
A and Aγ is an A0-module for every γ ∈ Γ.

Let A be a Γ-graded ring and M be an A-module. A Γ-grading for M is a
decomposition of M as a direct sum of additive subgroups, M =

⊕

γ∈Γ Mγ , such
that Aγ1 ·Mγ2 ⊂ Mγ1+γ2 , ∀γ1, γ2 ∈ Γ. Each summand Mγ is called the homogeneous
component of M of degree γ and any element in Mγ is said to be homogeneous of
degree γ. If M is Γ-graded, then Mγ is an A0-module for every γ ∈ Γ.

Let A be a Γ-graded ring, I ⊂ A be an ideal, M be a Γ-graded A-module and
N ⊂ M be an A-submodule. Any element m ∈ M can be written uniquely as
m =

∑

γ∈Γ mγ with mγ ∈ Mγ . We say that {mγ : γ ∈ Γ} are the homogeneous
components ofm. We say thatN is a Γ-graded submodule ofM ifN =

⊕

γ∈Γ(N∩Mγ).
The ideal I is said to be a homogeneous ideal if it is Γ-graded as an A-module.

Proposition 1.5.1 ([47, Proposition 1.7.10]). Let M be a Γ-graded module and N ⊂
M be a submodule. Then the following are equivalent:

• N is a Γ-graded submodule,

• for every n ∈ N , if n =
∑

γ∈Γ nγ with nγ ∈Mγ, then nγ ∈ N, ∀γ ∈ Γ,

• there exists a generating system of N consisting of homogeneous elements.

Henceforth, R denotes the polynomial ring K[x1, . . . , xn] where K is a field. For
α = (α1, . . . , αn) ∈ Nn, we denote by xα the monomial xα1

1 · · ·x
αn
n ∈ R. We also use

the notation |α| :=
∑n

i=1 αi. Thus, every polynomial f ∈ R can be written uniquely
as f =

∑

α∈Nn kαx
α with kα ∈ K.

We consider two different gradings for a polynomial ring R:
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• the standard grading,

R =
⊕

d∈N

Rd

where Rd := {f =
∑

α∈Nn kαx
α ∈ R : |α| = d} is the K-vector space generated

by the monomials xα with |α| = d. A polynomial f in a summand Rd is said
to be homogeneous of degree d and we denote it by deg(f) = d.

• the standard multigrading (or fine grading),

R =
⊕

α∈Nn

Rα

where Rα := {f = kαx
α ∈ R} is the K-vector space generated by the monomial

xα. A polynomial f in a summand Rα is said to be homogeneous of degree α
and we denote it by mdeg(f) = α.

Both gradings can be extended to the groups Z and Zn, respectively, by defining
Rd = 0 if d < 0 and Rα = 0 if α = (α1, . . . , αn) ∈ Zn with αi < 0 for some i ∈ [n].
Let Γ denote any of the groups Z or Zn and d ∈ Γ, then we define the grading on R
shifted (or twisted) by d, which is denoted by R(d), as

R(d) :=
⊕

γ∈Γ

R(d)γ

where R(d)γ := Rd+γ .

Let M be a finitely generated graded R-module, with the standard grading or
multigrading over R. A graded free resolution of M is a sequence F of R-modules
and morphisms

F : · · · −→ Fl
ϕl−→ Fl−1

ϕl−1
−→ Fl−2 −→ · · · −→ F1

ϕ1
−→ F0

ϕ0
−→M

ϕ−1
−→ 0

satisfying the following properties:

• Fi is a graded free R-module, ∀i ≥ 0,

• F is exact, i.e., Im(ϕi) = Ker(ϕi−1), ∀i ≥ 0. Ker(ϕi−1) is a finitely generated
graded submodule of Fi−1 and is called the i-th syzygy module of M .

• ϕi is homogeneous, i.e., for every degree d, ϕi((Fi)d) ⊂ (Fi−1)d, ∀i > 0, and
ϕ0((F0)d) ⊂Md.

We say that the resolution F is finite whenever there exists an index l such that
Fi = 0, ∀i > l. The length of the resolution is the minimal index l with that property.
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Theorem 1.5.2 (Graded Hilbert’s Syzygy Theorem). Every finitely generated graded
R-module has a finite graded free resolution with length smaller than or equal to n.

A graded free resolution of a graded R-module M

F : · · · −→ Fl
ϕl−→ Fl−1 −→ · · · −→ F1

ϕ1
−→ F0

ϕ0
−→M −→ 0

is said to be minimal if ϕi(Fi) ⊂ (x1, . . . , xn)Fi−1, ∀i > 0, i.e., no nonzero entry in the
matrices representing the morphisms ϕi belongs to K. Using the graded version of
Nakayama’s Lemma, it can be proved (see [14, (3.10)Proposition]) that the condition
of minimality is also equivalent to asking that ϕi sends a basis of Fi to a minimal
generating system of Im(ϕi), ∀i > 0.

Given a graded free resolution of a finitely generated graded R-module M , whose
existence is assured by theorem 1.5.2, it can always be reduced to a minimal one
following the procedure shown in the proof of [14, (3.15)Theorem].

Theorem 1.5.3. Every finitely generated graded R-module has a minimal graded free
resolution of length l ≤ n.

Moreover, that minimal graded free resolution is unique up to isomorphism ([14,
(3.13)Theorem]), in the sense that if F and G are two minimal graded free resolutions
of M , then there exist homogeneous isomorphisms αi : Fi −→ Gi such that every cell
in the diagram

· · ·
ϕ2
−−−→ F1

ϕ1
−−−→ F0

ϕ0
−−−→ M





y

α1





y

α0





y





y
IdM

· · ·
ψ2−−−→ G1

ψ1−−−→ G0
ψ0−−−→ M

commutes. So, from now on, we refer to a minimal graded free resolution as the
minimal graded free resolution or just the minimal resolution, for short.

Let us consider now the standard grading over R and let F be the minimal reso-
lution of M ,

F : 0 −→ Fl −→ · · · −→ Fi+1
ϕi+1
−→ Fi

ϕi−→ Fi−1 −→ · · · −→ F0
ϕ0
−→ M −→ 0 .

Since M is a finitely generated R-module, all the free R-modules in the resolution
have finite rank, so they are isomorphic to finite direct sums of copies of R with
the suitable shifted grading: let {ei,1, . . . , ei,ri} be a basis of Fi and di,1, . . . , di,ri the
corresponding degrees, then

Fi ∼=

ri
⊕

k=1

R(−di,k), ∀i ≥ 0 .
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We can collect in that expression those copies of R with the same shifting and
denote the number of summands with an exponent, R(−j)βi,j :=

⊕

k/di,k=j
R(−di,k).

Hence, Fi ∼=
⊕

j R(−j)βi,j and

F : 0→ ⊕jR(−j)βp,j → · · · → ⊕jR(−j)βi,j → · · · → ⊕jR(−j)β0,j
ϕ0−→M → 0 .

With the above notation, we define the graded Betti numbers of M , that are
denoted by βi,j(M), as the exponents βi,j , that correspond to the number of elements
in the basis of Fi of degree j and the (Castelnuovo-Mumford) regularity of M as
reg(I) := maxi,j{di,j − i}.

These definitions depend on the bases choosen for each free module in the minimal
resolution. However, the following result shows that the Betti numbers and the
regularity only depend on M .

Proposition 1.5.4 ([21, Proposition 1.7]). Let

F : 0→ ⊕jR(−j)βp,j → · · · → ⊕jR(−j)βi,j → · · · → ⊕jR(−j)β0,j
ϕ0−→ M → 0

be the minimal resolution of M . Then, any minimal set of homogeneous generators
of Fi contains precisely dimK TorRi (K,M)j generators of degree j.

It can be also deduced from this claim that pd(M), the proyective dimension of
M , i.e., the minimal length among the finite projective resolutions of M , is equal to
the length of the minimal resolution.

The set of the graded Betti numbers of a finitely generated graded R-module M
is usually arranged in a table whose columns correspond to steps in the minimal
resolution and are labeled from 0 to the projective dimension of M . The labels of
the rows run from the minimal degree of a homogeneous generator of M up to the
regularity of M . The graded Betti numbers of M , βi,j, are placed in the column
i but in the row j − i instead of j because of the following fact: since ϕi(Fi) ⊂
(x1, . . . , xn)Fi−1, ∀i > 0, if there exits J such that βi,j = 0, ∀j < J , for some i, then
βi+1,j = 0, ∀j < J +1 ([21, Proposition 1.9]). On this way, all nonzero Betti numbers
are displayed in this compact table,

0 . . . i . . . p = pd
jmin β0,jmin

. . . βi,i+jmin
. . . βp,p+jmin

. . . . . . . . . . . . . . . . . .
j β0,j . . . βi,i+j . . . βp,p+j

. . . . . . . . . . . . . . . . . .
r = reg β0,r . . . βi,i+r . . . βp,p+r
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which is called the Betti diagram of M .

We would like to highlight that the regularity and the projective dimension can
be read off the Betti diagram and expressed in terms of the graded Betti numbers:

pd(M) = max{i : βi,j(M) 6= 0 for some j},

and
reg(M) = max{j − i : βi,j(M) 6= 0 for some i}.

Remark 1.5.5. If we are considering R provided with the multigrading, the multi-
graded Betti numbers are defined in the same way as graded Betti numbers but
considering multidegrees. The latter can be recovered from the former as

βi,j =
∑

α∈Nn

|α|=j

βi,α, ∀i, j .

1.6 Stanley-Reisner Ideals and Hochster’s Formula

From now on, we restrict ourselves to the homogeneous ideals in R with respect to
the standard multigrading: monomial ideals. These ideals have interesting properties
that make them especially suitable for a combinatorial approach.

A monomial ideal I ⊂ R is an ideal for which there exists a generating system
consisting of monomials, i.e., I = (xβ : β ∈ B) for some B ⊂ Nn.

Monomial ideals have nice properties from the combinatorial and computational
points of view (see [15]). Let I = (xβ : β ∈ B) be a monomial ideal, then the following
properties hold:

• let xα be a monomial in R, then xα ∈ I ⇔ ∃β ∈ B such that xβ|xα,

• let f =
∑

α∈A kαx
α ∈ R, then f ∈ I ⇔ xα ∈ I, ∀α ∈ A,

• the set of monomials in I form a K-basis of I,

• (Dickson’s Lemma) there exists a finite set A ⊂ B such that I = (xα : α ∈ A).

We say that a generating system {xα : α ∈ A} of a monomial ideal I is minimal
if xα ∤ xβ, ∀α, β ∈ A, α 6= β.

Theorem 1.6.1. Every monomial ideal I ⊂ R has a unique minimal generating
system, denoted by G(I), which is necessarily finite.
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A monomial xα with α = (α1, . . . , αn) ∈ Nn is said to be squarefree if αi ∈
{0, 1} for all i ∈ [n]. If every monomial in G(I) is squarefree, then we say that I
is a squarefree monomial ideal. Squarefree monomial ideals correspond to radical
monomial ideals.

Construction 1.6.2 (Polarization). Given a monomial m = xα in R = K[x1, . . . , xn]
with α = (α1, . . . , αn) ∈ Nn, we define the polarization of m as the squarefree mono-
mial

mpol :=
n
∏

i=1

αi
∏

j=1

xi,j ∈ K[x1,1, . . . , x1,α1 , x2,1, . . . , xn,αn
].

Let I be a monomial ideal with G(I) = {m1, . . . , ms}, then we call the polarization
of I to the squarefree monomial ideal generated by the polarizations of the minimal
generators of I,

Ipol := ((m1)pol, . . . , (ms)pol) ∈ Rpol := K[x1,1, . . . , x1,t1 , x2,1, . . . , xn,tn ] ,

where ti := max{e : ∃j ∈ [s] / xei |mj}.

The interest of this construction is that the polarization of a monomial ideal has
similar properties to the original monomial ideal. Namely, they have the same graded
Betti numbers and, as a consequence, they have the same regularity and projective
dimension:

βi, j(I) = βi,j(Ipol), ∀(i, j); reg(I) = reg(Ipol); pd(I) = pd(Ipol). (1.3)

See [40, Corollary 1.6.3] for a proof of 1.3 and other properties of polarizations.

Therefore, the study of Betti numbers of monomial ideals can be reduced to the
case of squarefree monomial ideals, which are in correspondence with simplicial com-
plexes, as we describe below.

Let I be a squarefree monomial ideal in R. We associate to I the following
simplicial complexes (see [27]):

• the facet complex, whose facets correspond to the minimal generators of I:

∆F (I) := 〈{ii, . . . , il} : xi1 · · ·xil ∈ G(I)〉 ;

• the Stanley-Reisner complex, whose faces correspond to squarefree monomials
not belonging to I:

∆N (I) := {{ii, . . . , il} : xi1 · · ·xil 6∈ I} .
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Conversely, given a simplicial complex ∆ on the vertices {1, . . . , n}, we define two
squarefree monomial ideals associated to ∆:

• the facet ideal, generated by squarefree monomials corresponding to facets:

I(∆) := (xi1 · · ·xis : {i1, . . . , is} ∈ F(∆)) ;

• the Stanley-Reisner ideal, generated by squarefree monomials corresponding to
non-faces:

I∆ := (xi1 · · ·xis : {i1, . . . , is} 6∈ ∆) .

These applications satisfy ∆F(I(∆)) = ∆, I(∆F (I)) = I, ∆N (I∆) = ∆ and
I∆N (I) = I, so we have two bijections between simplicial complexes and squarefree
monomial ideals:

{Squarefree monomial ideals in R} {Simplicial complexes on [n]}

I ∆F (I)

I(∆) ∆

I ∆N (I)

I∆ ∆

The second one is called the Stanley-Reisner correspondence and it is close related to
the first one through Alexander duality:

I(∆) = I(∆c)∨ and ∆F(I) = ((∆N (I))c)∨ .

The quotient ring K[x1, . . . , xn]/I∆ is called the Stanley-Reisner ring and it is
usually denoted by K[∆].

Now, we recall a celebrated way to relate invariants from the minimal resolution
of a Stanley-Reisner ideal and the simplicial homology of the corresponding simplicial
complex:

Theorem 1.6.3 (Hochster’s Formula [42]). Let I be a squarefree monomial ideal
in the polynomial ring K[x1, . . . , xn] with the standard multigrading over Nn and let
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∆ = ∆N (I) be the Stanley-Reisner complex of I on [n]. Let α ∈ Nn and i ≥ 0, then
βi,α(I) = 0 if xα is not squarefree. Otherwise,

βi,α(I) = dimK H̃|α|−i−2(∆[W ]) ,

where W := {j ∈ [n] : αj = 1}. In particular, for the standard grading over N, we
have

βi,j(I) =
∑

W ⊂ [n]
|W | = j

dimK H̃j−i−2(∆[W ]) .

As a direct consequence, if ∆′ < ∆, then βi,j(I∆′) ≤ βi,j(I∆) for all i, j. In
particular, reg(I∆′) ≤ reg(I∆). Also, this formula allows us to relate the regularity of
I∆ with the k-Lerayness of ∆:

reg(I∆) = LK(∆) + 1 ,

and one can rewrite Theorem 1.4.10 in terms of regularities. The following result is
the case s = 2.

Theorem 1.6.4 ([45, Theorem 1.4]). Let ∆,∆′ simplicial complexes on the same
vertex set. Then,

• reg(I∆ + I∆′) = reg(I∆∩∆′) ≤ reg(I∆) + reg(I∆′)− 1,

• reg(I∆ ∩ I∆′) = reg(I∆∪∆′) ≤ reg(I∆) + reg(I∆′).

Hochster’s Formula was later rewritten in terms of links of the Alexander dual of
∆ taking into account the following facts:

• link∆∨(σ) ∼= ∆[V (∆) \ σ]∨ as simplicial complexes on the vertex set V (∆) \ σ;

• H̃i(∆) ∼= H̃ |V |−3−i(∆∨) (see [12, Lemma 5.5.3]);

• H̃i(∆) ∼= H̃ i(∆) since K is a field and they are finite-dimensional vector spaces
(see [54, Theorem 53.5]).

Proposition 1.6.5 ([19, Proposition 1]). Let I be a squarefree monomial ideal and
∆ the Stanley-Reisner complex associated to I. Then,

βi,j(I) =
∑

σ ∈ ∆∨

|σ| = |V (∆)| − j

dimK H̃i−3(link∆∨(σ)) .
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1.7 Edge Ideals and Independence Complexes

Finally, we focus on the algebraic and combinatorial objects that this work is con-
cerned with: edge ideals and independence complexes associated to graphs.

Given a graph G on the vertices [n], we define the edge ideal associated to G as
the squarefree monomial ideal I(G) = (xixj : {i, j} ∈ E(G)) ⊂ R = K[x1, . . . , xn].
Also we can associate to G two simplicial complexes:

• the clique complex, ∆G, whose faces are the cliques of G, and

• the independence complex, ∆(G), whose faces are the independent sets of ver-
tices of G.

They are directly related to each other by the identity ∆(G) = ∆Gc and both of them
are simplicial complexes belonging the family of so-called flag complexes.

A flag complex is a simplicial complex ∆ verifying that if σ ⊂ V (∆) and every pair
of elements in σ is a face of ∆, then σ ∈ ∆. In particular, a flag complex containing
all pairs of vertices is necessarily a simplex. A simplicial complex ∆ is flag if and only
if ∆ is the clique complex of the graph ∆(1), so the set of independence complexes,
clique conplexes and flag complexes are the same.

Notice that a subset σ ⊂ V (G) is not in ∆(G) if and only if exists a pair of
elements i, j ∈ σ such that {i, j} ∈ E(G). Thus, a monomial m = xi1 · · ·xis ∈ R
belongs to the Stanley-Reisner ideal associated to the independence complex of G if
and only if there are two indices ip, iq such that {ip, iq} ∈ E(G), i.e., m is divisible by
a product xixj with {i, j} ∈ E(G), which are the generators of I(G). So

I(G) = I∆(G) .

Hence, we can reformulate Hochster’s Formula when applied to edge ideals:

Proposition 1.7.1 ([58, Proposition 1.2]). Let G be a graph. Then, for all i, j ≥ 0,

βi,j(I(G)) = βi,j(I∆(G)) =
∑

W ⊂ V (G)
|W | = j

dimKH̃j−i−2(∆(G)[W ]) .

Some properties of the independence complex of a graph G can be reformulated
in terms of G.

• ∆(G)[W ] = ∆(G[W ]), ∀v ∈ V (G).
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• ∆(G)[W ] ∩∆(G)[W ′] = ∆(G[W ∩W ′]), ∀W,W ′ ⊂ (V (G)).

• del∆(G)(v) = ∆(G \ v), ∀v ∈ V (G).

• star∆(G)(v) = ∆(G[V (G) \N(v)]), ∀v ∈ V (G).

• link∆(G)(v) = ∆(G[V (G) \N [v]]), ∀v ∈ V (G).

• ∆(G) = star∆(G)(v) ∪ (
⋃

u∈NG(v) star∆(G)(u)), ∀v ∈ V (G).

• If e = {u, v} ∈ E(G), then ∆(G) = del∆(G)(u) ∪ del∆(G)(v).

• If v is an isolated vertex in G, then ∆(G) is a cone with appex v.

• A vertex v in ∆(G) is dominated by u 6= v if NG(v) ⊂ NG(u), or equivalently,
if NGc [u] ⊂ NGc [v] (u ∈ link∆(V ) implies u and v are not adjacent in G).

And, in some cases, it is known how transformations on the graph G affect to the
independence complex:

• If G′ is obtained from G by adding a whisker at the vertex v, then

H̃i(∆(G′)) ∼= H̃i−1(link∆(G)(v)), ∀i > 0 .

• If G′ is obtained from G by adding an ear at the edge {u, v} ∈ E(G), i.e.,
G′ = (V (G) ⊔ {z}, E(G) ∪ {{u, z}, {v, z}}), then

H̃i(∆(G′)) ∼= H̃i−1(link∆(G)(u))⊕ H̃i−1(link∆(G)(v)), ∀i > 0 .

• ([52, Claim 3.1]) If e = {u, v} ∈ E(G) and we denote by G′ := G[V (G) \NG[e]],
then there exists a long exact sequence

· · · −→ H̃i−1(∆(G′)) −→ H̃i(∆(G)) −→ H̃i(∆(G \ e)) −→

−→ H̃i−2(∆(G′)) −→ H̃i−1(∆(G)) −→ H̃i−1(∆ \ e) −→ · · · (1.4)

• Likewise, if {u, v} 6∈ E(G) and we denote by G1 := (V (G), E(G) ∪ {{u, v}})
and G′ := G[V (G) \NG[{u, v}]], then there exists a long exact sequence

· · · −→ H̃i−1(∆(G′)) −→ H̃i(∆(G1)) −→ H̃i(∆(G)) −→

−→ H̃i−2(∆(G′)) −→ H̃i−1(∆(G)) −→ H̃i−1(∆ \ e) −→ · · · (1.5)

since G1[V (G) \NG1 [{u, v}]] = G[V (G) \NG[{u, v}]].
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• ([24, Lemma 2.5]) Let v ∈ V (G) such that G[NG(v)] is a complete graph, then

∆(G) ∼=
∨

u∈NG(v)

∑

link∆(G)(u) .

• ([16, Theorem 6]) Let G2 := (V (G) ∪ E(G), {{v, e} ∈ V (G) ∪ E(G) : v ∈ e}),
then

∆(G2) =
∑

∆(G)∨ .

Example 1.7.2. We can see mK2 as the graph obtained by adding a whisker to
G = (m− 1)K2 ∪ {{u}, ∅} at the vertex u. So

H̃i(∆(mK2)) ∼= H̃i−1(link∆(mK2)(u))
∼= H̃i−1(∆((m− 1)K2)) ∼=

. . .

∼= H̃i−m+1(∆(K2)) ∼=

{

K if i−m+ 1 = 0
0 otherwise

We can also obtain the same result using the Example 1.4.5.



44 CHAPTER 1. COMBINATORIAL AND ALGEBRAIC BACKGROUND



Chapter 2

Betti Diagrams of Edge Ideals

In this chapter we study graded Betti numbers of edge ideals looking for particular
values but also paying attention to the shape of the whole set of nonzero entries
in the Betti diagram. In particular, we provide formulas for all the graded Betti
numbers of the edge ideal associated to the complement of a cycle, and prove that
the Betti diagram has a left-justified staircase shape. Fröberg’s characterization of
edge ideals with regularity 2 will be refined by determining the multidegree of the
first nonlinear syzygies and how many there are. This improvement is also extended
to the non-squarefree case. Most of the results obtained in this section are published
in [29].

2.1 Betti Diagram Shape

Monomial ideals can have Betti diagrams with a great variety of shapes in general.
Nevertheless, the Betti diagram of an edge ideal satisfies specific conditions. It follows
from the definitions of edge ideal and Betti diagram that the first row is labeled by 2
and that the only nonzero entry in the first column is β0,2, which is nothing else but
the number of minimal generators of the edge ideal, or equivalently, the number of
edges in the associated graph. We present below some more subtle properties.

Lemma 2.1.1 ([46, Lemma 2.2]). Let I(G) be an edge ideal. Then, βi,j(I(G)) = 0 if
j > 2(i+ 1) and

βi,2(i+1)(I(G)) = |{W ⊂ V (G) : G[W ] ∼= (i+ 1)K2}| .

Thus, all entries under the main diagonal passing through β0,2 are zeros and the
entries in that diagonal are determined by the number of induced matchings in the
graphs. In particular,

βi,2(i+1)(I(G)) = 0 if i ≥ µ(G) .

45
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We highlight three consequences of this result:

• the graded Betti numbers in the main diagonal, βi,2(i+1)(I(G)), do not depend
on the characteristic of the ground field K,

• the regularity is bounded below:

reg(I(G)) ≥ µ(G) + 1 ,

• the Betti diagram has a left-justified staircase shape up to the row µ(G) + 1
with steps of height one and length one.

0 1 2 . . . µ(G)− 1 . . .
2 β0,2 β1,3 β2,4 . . . . . . . . .
3 - β1,4 β2,5 . . . . . . . . .
4 - - β2,6 . . . . . . . . .
...

...
...

...
. . . . . . . . .

µ(G) + 1 - - - - βµ(G)−1,2µ(G) . . .
...

...
...

...
...

...
...

The next result states that the whole diagram has a left-justified staircase shape
with steps of height one and that the length is strictly greater than one in rows r
with µ(G) + 1 < r ≤ reg(I(G)).

Theorem 2.1.2. The following two properties hold for any edge ideal I = I(G).

1. If βi,j(I) = βi,j+1(I) = 0 with i ≥ 0 , then βi+1,j+2(I) = 0.

2. Let d > 2. If βi,i+d = 0, ∀i ≤ i0 with i0 ≥ d− 1, then βi,i+d+1 = 0, ∀i ≤ i0 + 2.

Proof. 1. Let us suppose that βi+1,j+2(I) 6= 0. Then, by Hochster’s Formula (Theorem
1.6.3), there exists W ⊂ V (∆) such that |W | = j+2 and dimK H̃j−i−1(∆(G)[W ]) > 0.
We denote by ∆ := ∆(G)[W ]. As ∆ is a flag complex, there exist u, v ∈ W such that
{u, v} 6∈ ∆ (otherwise, ∆ would be a simplex and hence acyclic). Then, we have the
following decomposition of ∆,

∆ = del∆(u) ∪ del∆(v)

with
del∆(u) ∩ del∆(v) = del∆({u, v})
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and the corresponding Mayer-Vietoris sequence for the reduced homology vector
spaces (note that del∆({u, v}) 6= ∅ since |W | > 2):

· · · −→ H̃j−i−1(del∆({u, v})) −→
H̃j−i−1(del∆(u))

⊕

H̃j−i−1(del∆(v))

−→ H̃j−i−1(∆) −→

−→ H̃j−i−2(del∆({u, v})) −→ · · · .

Invoking Hochster’s Formula again, we have

• H̃j−i−1(del∆(u)) = H̃j−i−1(del∆(v)) = 0 since βi,j+1(I) = 0, and

• H̃j−i−2(del∆({u, v})) = 0 since βi,j(I) = 0.

Hence, H̃j−i−1(∆[W ]) = 0 and we obtain a contradiction.

2. Let us suppose that βi,i+d+1 6= 0 with i > i0 + 2. Let W ⊂ V (∆) such that
|W | = j + 2 and dimK H̃d−1(∆(G)[W ]) > 0 and denote ∆ := ∆(G)[W ].

Let us consider the Mayer-Vietoris sequence (1.2) in Example 1.4.2 for an arbitrary
vertex v ∈ W ,

· · · −→ H̃d−1(del∆(v)) −→ H̃d−1(∆) −→ H̃d−2(link∆(v)) −→ · · · .

Notice that |V (link∆(v))| = |W | − |NG[W ][v]|. If |NG[W ][v]| = 1, then ∆ is acyclic
because it is a cone or the appex v. On the other hand, |NG[W ][v]| = 2, ∀v ∈ W

is equivalent to G[W ] ∼=
|W |
2
K2 and, by Example 1.7.2, H̃d−1(∆(mK2)) 6= 0 only if

m = d, but in that case, 2d = 2m = |W | = i + d + 1, so d − 1 = i > i0 + 2, that is
a contradiction with d − 1 ≤ i0. Therefore, there must exists a vertex v ∈ W with
|NG[W ][v]| > 2. Let v ∈ W such a vertex, then

• H̃j0−i0−3(link∆(v)) = 0 since βi,i+j0−i0−1 = 0, ∀i ≤ i0 − 2 and

• H̃j0−i0−2(del∆(v)) = 0 since βi0,j0 = 0.

Then, H̃j0−i0−2(∆) = 0, which is a contradiction with the condition defining ∆.

• ∗ · · · · · · · · · · · · ∗
− • ∗ · · · · · · · · · · · · ∗
...

. . .
...

...
µ(G) + 1 − · · · − • ∗ · · · · · · · · · ∗

− · · · − − . . . • . . . . . . ∗
− · · · · · · − − · · · • · · · ∗

...
. . .

...
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• = nonzero entry ; −= zero entry ; ∗ = entry that may be zero or not.

There are also some partial results on the length of the steps in [71].
In particular, we can deduce from Theorem 2.1.2 1. the well known fact that

βi0,i0+2(I(G)) = 0 with i0 ≥ 0 implies βi,i+2(I(G)) = 0, ∀i ≥ i0. It is not known,
however, whether the following property holds for edge ideals:

β(I(G))i0,i0+d 6= 0 and β(I(G))i0+1,i0+1+d = 0 implies βi,i+d(I(G)) = 0, ∀i ≥ i0.
(2.1)

Theorem 2.1.2.1. is equivalent to the following lemma if (2.1) is true, and a
refinement otherwise. This reformulation was suggested by A. Conca.

Lemma 2.1.3 ([29, Lemma 5.3]). Let denote id := min
1≤i≤p

{i : βi,i+d 6= 0}, 2 ≤ d ≤

reg(I(G)), and assume that reg(I(G) ≥ 3. Then there exists i < id such that
βi,i+d−1 6= 0 for all d, 2 < d ≤ reg(I(G)).

2.2 Linear Resolutions and Linear Strands

The simplest form for the Betti diagram of a nontrivial homogeneous ideal I is the
case in which it consists of only one row. In that case, there exists an integer d such
that βi,j(I) = 0 if j 6= i + d. The entries in the column 0 of the Betti diagram,
β0,j(I), correspond to the number of minimal generators of I of degree j and hence
it is necessary that all minimal generators have the same degree in order to have a
one-row Betti diagram. In addition to that, we need all the minimal generators of
any free module Fi in the minimal resolution to have the same degree, which must be
one unit bigger than the degree of all minimal generators of the previous free module
Fi−1. If these two conditions hold for a homogeneous ideal I, we say that I has a
d-linear resolution.

Let us assume now that I is an edge ideal. In this case, the following are equivalent.

• The Betti diagram of I consists of a unique row.

• I has a 2-linear resolution.

• reg(I) = 2.

Using Hochster’s Formula for computing the Betti numbers located in the linear
strand requires to compute the dimension of the reduced homology vector spaces
H̃0(∆(G)[W ]) for every subset W with i + 2 vertices. The advantage of this case
lies in the facts that dimK H̃0(∆,K) = |comp(∆)| − 1, independently on whichever
the field K is, and that |comp(∆(G)[W ])| = |comp(Gc[W ])|. So we can get purely
combinatorial description for those graded Betti numbers.
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Proposition 2.2.1 ([58, Proposition 2.1]). Let G be a graph. Then, for all i ≥ 0,

βi,i+2(I(G)) =
∑

W ⊂ V (G)
|W | = i+ 2

(|comp(Gc[W ])| − 1) .

Unfortunately, the problem of counting connected components of subgraphs is not
easy in general. A complete description of these graded Betti numbers exclusively in
terms of the numerical data of the graph has only been achieved under some additional
conditions.

Proposition 2.2.2 ([58, Proposition 2.4]). Let G be a simple graph with no induced
cycle of length 4. Then, for all i ≥ 0,

βi,i+2(I(G)) =
∑

v∈V (G)

(

deg(v)

i+ 1

)

− ki+2(G) ,

where ki+2(G) is the number of cliques of size i+ 2 in G.

This result enables us to describe the Betti numbers located on the linear strand
of the Betti diagrams of some families of graphs. The following examples are taken
from [58].

Example 2.2.3. If G is a forest, then it has no cycle and ki(G) = 0 if i > 2. So,
β0,2(I(G)) = |E(G)| and

βi,i+2(I(G)) =
∑

v∈VG

(

deg(v)

i+ 1

)

, ∀i > 0 .

Example 2.2.4. Let us consider the complete graph on n vertices, Kn. Every cycle
of length 4 in Kn has a chord, so none of them are induced. Moreover, every subset
of i+ 2 vertices is a clique in Kn, so ki+2(Kn) =

(

n
i+2

)

. Hence,

βi,i+2(I(Kn)) =
∑

v∈VG

(

deg(v)

i+ 1

)

− ki+2(Kn)

= n

(

n− 1

i+ 1

)

−

(

n− 1

i+ 2

)

= (i+ 2)

(

n

i+ 2

)

−

(

n− 1

i+ 2

)

= (i+ 1)

(

n

i+ 2

)

.
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Example 2.2.5. In the case of complete bipartite graphs, Km,n, we can not use the
formula in Proposition 2.2.2 since they contain induced cycles of length 4 if m,n ≥ 2.
However, we can directly apply 2.2.1 as the number of connected components in
Kc
m,n[W ] is 1 or 2, depending on whether W is contained in one set of the bipartition

or not, respectively. Thus, we can write

βi,i+2(I(Km,n)) =

(

m+ n

i+ 2

)

−

(

m

i+ 2

)

−

(

n

i+ 2

)

.

We will see in section 2.4 that the formulas in 2.2.4 and 2.2.5 give a combinatorial
description for all the nonzero graded Betti numbers of the edge ideals associated to
those graphs since they have linear resolutions.

2.3 Complements of Cycles

We describe the entire Betti diagram of edge ideals associated to graphs in a particular
family that will play a main role in Theorem 2.4.1. This family, the complementary
graphs of cycles of length greather than or equal to 4, is the simplest one whose
corresponding edge ideals do not have a 2-linear resolution in the sense that any
graph whose edge ideal does not have a linear resolution contains an element of this
family as an induced subgraph, as we will see in section 2.4.

We prove a couple of technical lemmas previously to give the combinatorial de-
scription of the graded Betti numbers in Theorem 2.3.3.

Lemma 2.3.1. Let i, k, n be integers such that 0 < k ≤ i < n and let C be a cycle of
length n. Then, the number of induced subgraphs of C with i vertices and k connected
components is n

k

(

i−1
k−1

)(

n−i−1
k−1

)

.

Proof. Let us assume that V = V (C) = [n]. Given a subset S of V , the induced
subgraph C[S] can be represented by a vector wS of length n whose l-th entry is 1 if
l ∈ S and 0 otherwise. Henceforth, we identify CS with the vector wS.

We use this identification to compute the number of induced subgraphs of C with
i vertices and k connected components. Indeed, the number i of vertices in G[S] is
the number of nonzero entries in wS and the number k of connected components of
G[S] is the number of runs of nonzero entries in wS if the fist or the last entry in wS is
0. In order to avoid distinguishing among cases when the vector wS starts/ends with
1/0, we make an easy observation. Consider the set W of vectors w of length n with
entries 0 or 1, whose first entry is 1 and last entry is 0, with i nonzero entries and k
runs of nonzero entries (hence k runs of zero entries as well). To each w in W , we can
correspond n subgraphs of C with i vertices and k connected components by assigning
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to the first entry of wS one of the entries in w and preserving nearness. Conversely,
each induced subgraph wS of C with i vertices and k connected components can come
from k vectors w in W depending on which of the connected components of wS is
the first run of w. This implies that the number of induced subgraphs of C with i
vertices and k components is n

k
× |W |.

W =

{

w ∈ {0, 1}n : w1 = 1, wn = 0
∑n

j=1wj = 1 and k runs of 1’s

}

{wS : |G[S]| = i, |comp(G[S])| = k}

(1, w2, . . . , wn−1, 0) −→



















{1, w2, . . . , wn−1, 0}
{w2, . . . , wn−1, 0, 1}

...
{0, 1, w2, . . . , wn−1}

{wi, wi+1, . . . , wn, w1, . . . , wi−1}
with

wi = 1 and wi−1 = 0 if i > 1
w1 = 1 and wn = 0 if i = 1















←− {w1, . . . , wn}

For computing |W |, we notice that a vector in W is uniquely determined by the
length of each run (of 0’s and of 1’s) in the vector, so there is a bijection between
W and the set L of vectors (l11, l

0
1, l

1
2, . . . , l

1
k, l

0
k) with l0j > 0, l1j > 0,

∑k
j=1 l

1
j = i and

∑k
j=1 l

0
j = n− i. Finally, choosing a vector in L is equivalent to choosing k− 1 places

to break a run of i elements into k pieces and k − 1 places to break a run of n − i
elements into k pieces. Therefore, |W | =

(

i−1
k−1

)(

n−i−1
k−1

)

.

Lemma 2.3.2. For any two integers a and m such that 1 ≤ a < m, one has the
following identity:

a
∑

k=1

k

k + 1

(

m− a

k

)(

a

k

)

=
a

m− a + 1

(

m

a+ 1

)

.

Proof. Let F and g be the two polynomials in Q[X ] defined as follows:

F := (1 +X)a =
∑a

k=0

(

a
k

)

Xk, and

g := (1 +X)m−a =
∑m−a

k=0

(

m−a
k

)

Xk.

Set f := F ′ and G :=
∫ x

0
g(u)du. Then

f = a(1 +X)a−1 =

a
∑

k=1

k

(

a

k

)

Xk−1 =

a
∑

k=1

k

(

a

k

)

Xa−k
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where the last equality follows from the fact that Xk−1 and Xa−k have the same
coefficients in the polynomial

∑a
k=1 k

(

a
k

)

Xk−1 since k
(

a
k

)

= k a!
k!(a−k)! = a

(

a−1
k−1

)

and

(a− k + 1)
(

a
a−k+1

)

= (a− k + 1) a!
(a−k+1)!(k−1)!

= a
(

a−1
k−1

)

. On the other hand,

G =
(1 +X)m−a+1 − 1

m− a + 1
=

m−a
∑

k=0

1

k + 1

(

m− a

k

)

Xk+1 .

Expressing the polynomial fG in two different ways, one gets that

a((1 +X)m − (1 +X)a−1)

m− a+ 1
= (

a
∑

k=1

k

(

a

k

)

Xa−k)(
m−a
∑

k=0

1

k + 1

(

m− a

k

)

Xk+1)

and the desired identity now follows determining the coefficient of Xa+1 in both sides
of this equality.

Theorem 2.3.3. Let n ≥ 4 and I = I(Cc
n) be the edge ideal of the complementary

graph of a cycle of length n. The minimal resolution of I is

0 −→ R(−n) −→ R(−n + 2)βn−4 −→ · · · −→ R(−2)β0 −→ I −→ 0

where βi := n i+1
n−i−2

(

n−2
i+2

)

for all i, 0 ≤ i ≤ n− 4.

Proof. Let us assume V = V (Cc
n) = [n] and denote G = Cc

n and ∆ = ∆(Cc
n). We use

Hochster’s Formula

βi,j(I) =
∑

S⊆V ; |S|=j

dimKH̃j−i−2(∆[S]) , ∀i, j ≥ 0

to justify that, since ∆ is a simplicial complex of dimension 1 (i.e. a graph) isomorphic
to the cycle of length n, the only subcomplex of ∆ with nontrivial homology in degree
> 0 is ∆ itself, whose reduced homology is K and is concentrated in degree 1. Thus,
βn−3,n = 1 and βi,j = 0 for any other i, j such that j > i+ 2.

Now, we determine the linear strand of the Betti diagram using the formula given
in Proposition 2.2.1:

βi,i+2 =
∑

S⊆V ; |S|=i+2

(|comp(G[S]c)| − 1) , ∀i ≥ 0 . (2.2)

Subgraphs with one component have no contribution in (2.2) so βi,i+2 = 0 if i+ 2 ≥
n− 1. As the number k of components of G[S]c satisfies 1 ≤ k ≤ i+ 2 for all S ⊆ V
with |S| = i+ 2, one has that for all i ≥ 0 such that i+ 2 < n− 1,

βi,i+2 =

i+2
∑

k=2

(
∑

S ⊆ V ;
|S| = i+ 2 and

|comp(G[S]c)| = k

(k − 1)) =

i+2
∑

k=2

(k − 1)N(i+ 2, k) (2.3)
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where N(i+2, k) is the number of induced subgraphs of G[S]c with i+2 vertices and
k components.

Applying Lemma 2.3.1 in (2.3), one gets that, for all i < n− 3,

βi,i+2 =

i+2
∑

k=2

(k − 1)
n

k

(

i+ 1

k − 1

)(

n− i− 3

k − 1

)

= n

i+1
∑

k=1

k

k + 1

(

i+ 1

k

)(

n− i− 3

k

)

and we are done applying the lemma 2.3.2 to m = n− 2 and a = i+ 1.

Remark 2.3.4. Using the Auslander-Buchsbaum formula, the above result implies
that R/I is Cohen-Macaulay and then a Gorenstein ring of dimension two because
its Cohen-Macaulay type is 1. The well-know symmetry of the graded Betti numbers
when R/I is Gorenstein can be observed checking easily in our formula that βn−4−i =
βi for all i, 0 ≤ i ≤ n− 4.

We also point out that for this family, not only the graded Betti numbers in the
linear strand are independent of the characteristic on the ground field K but also the
entire minimal resolution, in particular, the projective dimension pd(I(Cc

n)) = n− 3
and the regularity reg(I(Cc

n)) = 3.

Example 2.3.5. The ideal I = (x1x3, x1x4, x1x5, x1x6, x1x7, x2x4, x2x5, x2x6, x2x7,
x2x8, x3x5, x3x6, x3x7, x3x8, x4x6, x4x7, x4x8, x5x7, x5x8, x6x8) ⊂ K[x1, . . . , x8] is the
edge ideal of G = (C8)

c. Then its Betti numbers can be computed using the for-
mula in Theorem 2.3.3.

0 1 2 3 4 5
2 20 64 90 64 20 -
3 - - - - - 1

2.4 Fröberg’s Theorem

In [31], a characterization of edge ideals having 2-linear resolution was given in terms
of the graph.

Theorem 2.4.1 (Fröberg). An edge ideal I(G) has a linear resolution if and only if
the graph Gc is chordal.

Example 2.4.2. The edge ideals of complete graphs and complete bipartite graphs
have 2-linear resolutions since Kc

n has no edge and Kc
m,n consists of the disjoint union

of Km and Kn, that does not contain any (induced) cycle of length strictly greater
than 3. Therefore, their Betti diagrams consist of a single row whose entries can be
computed using the formulas in examples 2.2.4 and 2.2.5.
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Example 2.4.3. The condition Cl 6< Gc is equivalent to Cc
l 6< G for any l > 3, so

I(Cc
l ) does not have a 2-linear resolution as we saw in Theorem 2.3.3.

Fröberg’s theorem was recovered in [22], where, in addition, the authors deter-
mined the first step in the resolution where nonlinear syzygies appear for the first
time if the ideal does not have a linear resolution. In terms of the Betti diagram,
they pointed out the first column with a nonzero entry outside the linear strand.

Theorem 2.4.4 ([22, Theorem 2.1]). Let G be a graph such that I(G) does not have
a 2-linear resolution and r be the smallest integer l ≥ 4 such that Gc has an induced
cycle of length l. Then

• βi,j = 0 if i < r − 3 and j > i+ 2;

• ∃j ≥ r such that βr−3,j 6= 0.

0 1 · · · r − 4 r − 3 r − 2 · · ·
2 β0,2 β1,3 · · · βr−4,r−2 βr−3,r−1 βr−2,r · · ·
3 - - · · · - ∗ βr−2,r+1 · · ·
4 - - · · · - ∗ βr−2,r+2 · · ·
...

...
...

...
... ∗

...
. . .

We will now recover this result and improve it computing all the nonlinear syzygies
at step r−3. Let us first recall a result about restricting minimal resolutions to certain
multidegrees.

Let us consider R with its mulgrading over Zn. Let F be the minimal multigraded
resolution of a monomial ideal I and α ∈ Nn be a multidegree. Then, we denote by
Fα the subcomplex of F generated by the homogeneous minimal generators in F
whose multidegrees are componentwise smaller than or iqual to α.

Theorem 2.4.5 ([32, Theorem 2.1]). Let I = (m1, . . . , ms) ⊂ R be a monomial
ideal, α ∈ Nn and Iα the ideal generated by {mi : mi|x

α}. Then, Fα is a minimal
multigraded free resolution of the monomial ideal Iα.

Let G be a graph such that I(G) does not have a linear resolution. This means
that there exists α ∈ Nn such that βi,α(I(G)) 6= 0 for some i > 0 with |α| > i+2. By
Hochster’s theorem, we know that αj ∈ {0, 1}. Thus, a minimal generator of degree
α in the i-th step of the minimal resolution F of I(G) is also a minimal generator in
Fα, the minimal resolution of I(G)α by Theorem 2.4.5. In particular, I(G)α does not
have a 2-linear resolution. The ideal I(G)α is generated by those minimal generators
xkxl such that αk = αl = 1, so I(G)α = I(G[W ]) where W := {vi ∈ V (G) : αi = 1}.
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Fröberg’s theorem assures that G[W ]c has an induced cycle of length greater than or
equal to 4. This induced cycle is necessarily also an induced cycle of Gc of length
l, 4 ≤ l ≤ |α|.

On the other hand, if a graph G satisfies that Gc[S] is a cycle for some S ⊂ V (G)
with |S| > 3, we take αS = (α1, . . . , αn) with αi = 1 if vi ∈ S and αi = 0 otherwise.
Then, Iα = I(Cc

|S|) and Fα is the resolution described in Theorem 2.3.3, that must

be contained in the minimal resolution F de I(G). In particular, β|S|−3,α(I(G)) =
β|S|−3,α(I(G)α) = 1.

Therefore, if an edge ideal I(G) does not have a 2-linear resolution and we denote
by i0 the minimal i such that there exists α ∈ {0, 1}n with βi,α(I(G)) 6= 0 and
|α| > i + 2, then we know that |α| = i0 + 3 by Theorem 2.1.2 and that there exists
W ⊂ V (G) such that Gc[W ] is a cycle of length l ≤ i0 + 3. If l < i0 + 3, then, by the
previous paragraph, β|S|−3,αS

(I(G)) = 1 for some S ⊂ V (G) with |S| = l < i0 + 3,
which is a condradiction with the minimality of i0. As a conclusion, l = i0 + 3.
Moreover, for each W ⊂ V (G) with that property we have βi0,α(I(G)) = 1. Thus,

βi0,i0+3 = |{W ⊂ V (G) : G[W ] is an induced cycle of length i0 + 3}| .

We collect all these facts in the following theorem.

Theorem 2.4.6. Let I = I(G) be an edge ideal with reg(I) > 2 and r be the minimal
length of an induced cycle in Gc. Then

• βi,j = 0 if i < r − 3 and j > i+ 2;

• βr−3,j = 0 if j > r;

• βr−3,r = |{induced cycles in Gc of length r}|. More precisely, if we consider the
multigrading on R and let α ∈ Nn, then βr−3,α(I(G)) = 1 if α ∈ {0, 1}n and
G[{vi ∈ V (G) : αi = 1}]c is a cycle of length r and βr−3,α(I(G)) = 0 otherwise.

0 1 · · · r-4 r-3 r-2 · · ·
2 β0,2 β1,3 · · · βr−4,r−2 βr−3,r−1 βr−2,r · · ·
3 - - · · · - βr−3,r βr−2,r+1 · · ·
4 - - · · · - - βr−2,r+2 · · ·
...

...
...

...
...

...
...

. . .

Example 2.4.7. Let I = (x1x3, x1x4, x2x4, x2x5, x2x6, x3x5, x3x6, x4x6, x4x7, x5x7) be
the edge ideal of the graph G drawn below together with its complement.
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G:
x7 x1

x6 x2

x5 x3

x4

Gc:
x7 x1

x6 x2

x5 x3
x4

Examining the complementary graph, we realize that there are no induced cycle
of length 4 but there are 3 induced cycles of length 5.

x7 x1

x6 x2

x5 x3
x4

x7 x1

x6 x2

x5 x3
x4

x7 x1

x6 x2

x5 x3
x4

Thus, the resolution is linear only up to the second step, F2, which has 3 minimal
generators of degree 5. If we compute the minimal resolution using any software
system for Commutative Algebra like CoCoA, Macaulay2 or Singular, we obtain

R(−5) R(−4)11

0→ R(−7) → ⊕ → ⊕ → R(−3)19 → R(−2)10 → I → 0
R(−6)4 R(−5)3

and the Betti diagram is

0 1 2 3 4
2 10 19 11 1 -
3 - - 3 4 1

2.5 Non-squarefree Case

In this section we omit the condition of squarefreeness for edge ideals and extend the
results in section 2.4 using polarization. We get a correspondence between this class
of ideals and the set of finite undirected graphs (now, loops are allowed).

Let I be an ideal in R generated by monomials of degree 2, I = (m1, . . . , ms). We
assume without loss of generality that m1 = x2

1, . . . , ml = x2
l , ml+1 = xil+1

xjl+1
,. . . ,

ms = xisxjs with 0 ≤ l ≤ s and xik 6= xjk , ∀k = l + 1, . . . , s.
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We introduced some specific terminology for this section and section 3.4. We
define

• Isqf := (ml+1, . . . , ms) ⊂ R, and

• Ipol := (x1y1, . . . , xlyl, ml+1, . . . , ms) ⊂ R∗ := K[x1, . . . , xn, y1, . . . , yl],

and denote by

• G the (not necessarily simple) graph associated to I,

• G′ the simple graph associated to Isqf ,

• G∗ the simple graph (on the vertices {x1, . . . , xn, y1, . . . , yl}) associated to Ipol,

• Gc := (G′)c.

In this context, we say that two edges e1, e2 ∈ E(G) are totally disjoint provided
{u, v} 6∈ E(G) if u ∈ e1 and v ∈ e2. Two totally disjoint edges correspond to one of
the following configurations:

t

t

t

t ��
��t

t

t ��
��t t

��
��

The graph G∗ associated to Ipol is obtained from G by replacing every loop at a
vertex vi by a whisker at vi, i ≤ l, with a new vertex yi of degree 1. Thus, totally dis-
joint edges in G correspond to induced subgraphs in G∗ isomorphic to 2K2. Applying
Lemma 2.1.1 to Ipol, we have that

β1,4(I) = |{pairs of totally disjoint edges in G}| .

Therefore, given an ideal I generated by monomials of degree two, the following
are equivalent:

1. β1,4(I) = 0

2. G has no pair of totally disjoint edges.

3. ([22, Proposition 2.3 (a)]) β1,4(Isqf) = 0, if there are loops in G at vi and vj
then {vi, vj} ∈ E(G), and if there is a loop in G at vi and {vj, vk} ∈ E(G), then
{vi, vj} ∈ E(G) or {vi, vk} ∈ E(G).
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4. ([5, Lemma 4.28]) d(L(G)) ≤ 2.

We prove now that any induced cycle of length t in (G∗)c is also an induced cycle
in Gc if t > 4.

Lemma 2.5.1. Let H be a simple graph and v ∈ V (H) with degH(v) = 1. Then, v
does not belong to any induced cycle of Hc of length t ≥ 5.

Proof. Let u be the neighbor of v in H . Consider W ⊂ V (H) with |W | = t and
v ∈ W . Then,

degH[W ]c(v) =

{

t− 2 if u ∈ W,
t− 1 otherwise.

Since t − 1 and t − 2 are strictly bigger that 2 if t ≥ 5 and the degree of any vertex
in a cycle is 2, the result follows.

Thus, (G∗)c is chordal if and only if Gc has no induced cycle of length l > 5 and
there are no pair of totally disjoint edges in G.

Theorem 2.5.2. Let I be an ideal in R generated by monomials of degree 2 and G,Gc

as above. Then I has a 2-linear resolution if and only if G has no totally disjoint
edges and Gc has no induced cycle of length greater than or equal to 5.

Proof.

reg(I) = 2 ⇔ reg(Ipol) = 2 (by (1.3))
⇔ (G∗)c is chordal (by Fröberg’s theorem)

⇔

{

G has no totally disjoint edges
Gc has no induced cycle of length l ≥ 5

(by Lemma 2.5.1)

In case that the regularity is strictly greater than 2, Lemma 2.5.1 implies the
following result.

Theorem 2.5.3. Assume that reg(I) > 2. If G contains two totally dijoint edges,
then

• β1,4(I) = |{pairs of disjoint edges in G}|;

• β1,j(I) = 0 for all j > 4;

• Considering the Nn-multigrading on R, for all α ∈ Nn such that |α| = 4, one has

β1,α(I) =







1 if G[{vi ∈ V (G) : αi = 1}] is a pair of totally disjoint edges
and α ∈ {0, 1}n ,

0 otherwise .
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Otherwise, Gc contains a cycle of length greater than or equal to 5. Let t be the
minimal length of such a cycle. Then,

• βt−3,t(I) = |{W ⊂ V (G) : Gc[W ] ∼= Ct}|;

• βt−3,j(I) = 0 for all j > t;

• Considering the Nn-multigrading on R, for all α ∈ Nn such that |α| = t, one has

βt−3,α(I) =

{

1 if α ∈ {0, 1}n and Gc[{vi ∈ V (G) : αi = 1}] ∼= Ct ,
0 otherwise .

Example 2.5.4. We consider the ideal I = (x2
1, x

2
2, x1x3, x3x5, x5x2, x2x4, x4x1) ⊂

K[x1, . . . , x5]. The complement Gc of G has no induced cycle of length 4.

x5

x1

x2

x3x4

G:

x5

x4

x1

x3

x2

Gc:

However, there three pairs of disjoint edges in G.

x3

x2
x5

x1

x4

x5

x1

x2

x3x4

x1

x2
x5

x4 x3

Then β1,4 = 3, as we can see in its Betti diagram:

0 1 2 3 4
2 7 9 2 - -
3 - 3 8 5 1



60 CHAPTER 2. BETTI DIAGRAMS OF EDGE IDEALS



Chapter 3

Betti Diagrams of Bipartite Edge

Ideals

In this chapter, we deal with edge ideals associated to bipartite graphs, that we will
call bipartite edge ideals. Several properties of this family of edge ideals have been
studied like being Cohen-Macaulay or sequentially Cohen-Macaulay, having linear res-
olution and computing or bounding the regularity, the depth or the arithmetical rank.
For example, we can find a graph theoretical characterization for Cohen-Macaulayness
in [39], a topological one for sequentially Cohen-Macaulayness in [65], partial results
determining the regularity, depth and arithmetical rank in [48], another partial re-
sult for the value of the regularity in [63], a proof of the characteristic dependence
of homological invariants in [17]. Bipartite edge ideals having linear resolution are
classified in [13].

We present here a characterization of bipartite edge ideals with regularity 3 as
well as a combinatorial description of all the graded Betti numbers of a particular
family, the edge ideals corresponding to bipartite complements of cycles of length
2s ≥ 6. Moreover, we study the relation between the regularity of a bipartite edge
ideal and the induced matching number of the associated bipartite graph. We define
a transformation on bipartite graphs that increases these invariants in a controlled
way under certain conditions.

3.1 Bipartite Graphs and Biadjacency Matrices

We begin by recalling some basic properties of bipartite graphs. The reader can
find the proofs and other properties in [37] or any other graph theory manual. The
following classical characterization is due to by König:

Theorem 3.1.1. A graph G is bipartite if and only if all cycles in G have even length.

61
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For any connected simple graph G with at least 2 vertices, the equalities α0(G) +
β0(G) = |V (G)| = α1(G) + β1(G) are satisfied (see [37, Theorem 10.1]). In the
bipartite case, we have another relation between these numerical invariants.

Theorem 3.1.2 (König). If G is a bipartite graph, then β1(G) = α0(G).

Another peculiarity of bipartite graphs comes from the matrix representation of
graphs. We say that a matrix M = (ai,j) is binary if ai,j ∈ {0, 1}, ∀i, j, and we denote
by Mm×n({0, 1}) the set of all binary matrix with m rows and n columns. Given
two matrices M,N , we denote by M ∼ N if one can be obtained from the other by
permuting rows and columns.

Definition 3.1.3. Given a graph G = ({v1, . . . , vn}, {e1, . . . , es}), we can consider
several matrices associated to G:

• the adjacency matrix, M0(G) = (bi,j) ∈ Mn×n({0, 1}) where bi,j = 1 if {vi, vj} ∈
E(G) and 0 otherwise;

• the incidence matrix, M1(G) = (ci,j) ∈ Mn×s({0, 1}) where bi,j = 1 if vi ∈ ej
and 0 otherwise;

• for a bipartite graph G with V (G) = {x1, . . . , xm}⊔{y1, . . . , yn}, the biadjacency
matrix M(G) = (ai,j) ∈ Mm×n({0, 1}) is defined by ai,j = 1 if {xi, yj} ∈ E(G)
and ai,j = 0 otherwise.

Remark 3.1.4. Notice that any matrix inMm×n({0, 1}) is the biadjacency matrix of
a bipartite graph whereas it needs to be symmetric and with all entries in the main
diagonal equal to 0 in order to be an adjacency matrix. Also, incidence matrices
require that all the columns have exactly two entries equal to 1.

Example 3.1.5. Let G be the bipartite graph drawn below:

x1 x2 x3

y1 y2

e1

e2

e3

e4

Then, the corresponding matrices defined above are:
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x1 x2 x3 y1 y2
x1 0 0 0 1 0
x2 0 0 0 1 1
x3 0 0 0 0 1
y1 1 1 0 0 0
y2 0 1 1 0 0













M0(G)













e1 e2 e3 e4
x1 1 0 0 0
x2 0 1 1 0
x3 0 0 0 1
y1 1 1 0 0
y2 0 0 1 1













M1(G)





y1 y2
x1 1 0
x2 1 1
x3 0 1





M(G)

We use biadjacency matrices to describe some properties of G and ∆(G). For that,
we introduce some new notation. Let ∆ be the independence complex of a bipartite
graph G and M its biadjacency matrix. Then, we denote M(∆) := M , G(M) := G,
and ∆(M) := ∆. If W ⊂ V (G) = X ⊔ Y with W ∩ X 6= ∅ and W ∩ Y 6= ∅, then
we denote M [W ] := M(G[W ]), the submatrix of M corresponding to the rows and
columns labeled by vertices in W .

Let G be a bipartite graph with bipartition V (G) = X ⊔ Y . Then, we have the
following immediate properties:

• σ ∈ ∆(G) if and only if σ ⊂ X, σ ⊂ Y or M(G)[σ] is a null matrix;

• the facets of ∆(G) are X , Y and maximal null submatrices of M(G);

• mK2 < G if and only if exists W ⊂ V (G) such that M(G)[W ] ∼ Idm, where
Idm is the identity matrix of size m.

• µ(G) = max{n : ∃W ⊂ V (G) /M(G)[W ] ∼ Idn};

• if e = {i0, j0} ∈ E(G), then M(G \ e) = (a′i,j) where a′i,j = ai,j if (i, j) 6= (i0, j0)
and a′i0,j0 = 0.

In particular, if yj0 ∈ Y (analogous identities for xi0 ∈ X), e ∈ E(G) and G has
no isolated vertex, then

• link∆(G)(yj0) = ∆(M [W ]), where W = {xi : ai,j0 = 0}∪(Y \{yj0}), if Y 6= {yj0}.
Otherwise, link∆(G)(yj0) = ∆{xi:ai,j0=0}.

• star∆(G)(yj0) = ∆(M [W ]), where W = {xi : ai,j0 = 0} ∪ Y .

• del∆(G)(yj0) = ∆(M [W ]), where W = X ∪ (Y \ {yj0}), if Y 6= {yj0}. Otherwise,
del∆(G)(yj0) = ∆X .

• fdel∆(G)(e) = ∆(M(G \ e)).
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Example 3.1.6. Let G be the bipartite graph corresponding to the biadjacency
matrix

M(G) =













y1 y2 y3 y4
x1 1 0 1 0
x2 0 1 1 0
x3 0 0 0 1
x4 1 1 0 0
x5 1 0 1 0













.

Then, we have

• M(link∆(G)(y1)) =













1 0 1 0
0 1 1 0
0 0 0 1
1 1 0 0
1 0 1 0













=

(

y2 y3 y4
x2 1 1 0
x3 0 0 1

)

• M(star∆(G)(y1)) =













1 0 1 0
0 1 1 0
0 0 0 1
1 1 0 0
1 0 1 0













=

(

y1 y2 y3 y4
x2 0 1 1 0
x3 0 0 0 1

)

• M(del∆(G)(y1)) =













1 0 1 0
0 1 1 0
0 0 0 1
1 1 0 0
1 0 1 0













=













y2 y3 y4
x1 0 1 0
x2 1 1 0
x3 0 0 1
x4 1 0 0
x5 0 1 0













• M(fdel∆(G)({x1, y1})) =













1→ 0 0 1 0
0 1 1 0
0 0 0 1
1 1 0 0
1 0 1 0













=













y1 y2 y3 y4
x1 0 0 1 0
x2 0 1 1 0
x3 0 0 0 1
x4 1 1 0 0
x5 1 0 1 0













Some of the results in section 1.7 on the reduced homology of the independence
complex of a graph can be rewritten in terms of biadjacency matrices when the graph
is bipartite.
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Lemma 3.1.7. Let (ai,j) ∈Mm×n({0, 1}). Then,

1.

H̃i(∆(







0 . . . 0
a2,1 . . . a2,n
...

...
am,1 . . . am,n






)) = 0, ∀i ≥ 0 .

2.

H̃i(∆(







1 0 . . . 0
0 a2,2 . . . a2,n
...

...
...

0 am,2 . . . am,n






)) ∼= H̃i−1(∆(





a2,2 . . . a2,n
...

...
am,2 . . . am,n



)), ∀i ≥ 0 .

3. If m > 1,

H̃i(∆(







1 . . . 1
a2,1 . . . a2,n
...

...
am,1 . . . am,n






)) ∼= H̃i(∆(





a2,1 . . . a2,n
...

...
am,1 . . . am,n



)), ∀i ≥ 0 .

4.

H̃i(∆(











0 1 . . . 1
0 a2,2 . . . a2,n

a3,1 a3,2 . . . a3,n
...

...
...

am,1 am,2 . . . am,n











)) ∼= H̃i(∆(







0 a2,2 . . . a2,n
a3,1 a3,2 . . . a3,n
...

...
...

am,2 am,2 . . . am,n






)), ∀i ≥ 0 .

5.

H̃i(∆(











0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0 ∗ . . . ∗ 1 . . . 1

a3,1 . . . . . . . . . a3,n
...

...
am,1 . . . . . . . . . am,n











)) ∼=

∼= H̃i(∆(







0 . . . 0 ∗ . . . ∗ 1 . . . 1
a3,1 . . . . . . . . . a3,n
...

...
am,1 . . . . . . . . . am,n






)), ∀i ≥ 0 .
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Proof. 1. The vertex x1 is isolated in G and hence ∆(G) is a cone with apex x1,
so it is acyclic.

2. As a1,1 = 1, {x1, y1} ∈ E(G), so {x1, y1} 6⊂ σ, ∀σ ∈ ∆(G). Therefore, we
can write ∆(G) = del∆(G)(x1) ∪ del∆(G)(y1) and del∆(G)(x1) ∩ del∆(G)(y1) =
del∆(G)({x1, y1}). We apply 1. to del∆(G)(x1) and del∆(G)(x1) and we have

H̃i(del∆(G)(y1)) = H̃i(del∆(G)(x1)) = 0. Thus, the result follows from the Mayer-
Vietoris sequence

· · · →
H̃i(del∆(G)(x1))

⊕

H̃i(del∆(G)(y1))

→ H̃i(∆(G))→ H̃i−1(del∆(G)({x1, y1}))→

→
H̃i−1(del∆(G)(x1))

⊕
H̃i−1(del∆(G)(y1))

→ · · · .

3. and 4. are particular cases of 5.

5. link∆(G)(x1) is acyclic by 1., so we are done by Corollary 1.4.4.

Remark 3.1.8. If M is the biadjacency matrix of a bipartite graph G and we permute
rows or columns or we transpose M , then the new matrix is the biadjacency matrix
of a graph isomorphic to G and hence the previous result is still valid if the rows and
columns with fixed entries are other than the first ones or if the role of rows is played
by columns, and viceversa.

3.2 Bipartite Complement of an Even Cycle

In this section, we focus on the family of bipartite complements of cycles of even
length, Cbc

2s, with s ≥ 3. We first determine the induced matching number of Cbc
2s and

then we compute all graded Betti numbers of its associated edge ideal.

Definition 3.2.1. Given a bipartite graph G = (X ⊔ Y,E), we define the bipar-
tite complement of G, that is denoted by Gbc, as the bipartite graph on the same
bipartition, V (Gbc) = X ⊔ Y , with edge set E(Gbc) := {e ∈ X × Y : e 6∈ E(G)}.

Example 3.2.2. Let G be the bipartite graph on the vertex set V = {x1, x2, x3, x4}⊔
{y1, y2, y3, y4, y5} with edges E(G) = {{x1, y4}, {x1, y5}, {x2, y3}, {x3, y1}, {x3, y3},
{x3, y5}, {x4, y1}, {x4, y2}, {x4, y4}}. We draw below G and Gbc.
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G :

y1 y2 y3 y4 y5

x1 x2 x3 x4

Gbc :

y1 y2 y3 y4 y5

x1 x2 x3 x4

We consider a cycle of even length, C2s, with s ≥ 3. We adopt the labeling

V := V (C2s) = X ⊔ Y = {x1, . . . , xs} ∪ {y1, . . . , ys}, and

E(C2s) = {{x1, y1}, {x1, y2}, {x2, y1}, {x2, y3}, {x3, y2}, . . . , {xs, ys−1}, {xs, ys}} .

We draw C2s with this labeling.

y1 y2 y3 ys

x1 x2 x3 xs

...

Notice that C2s is a bipartite graph, so we can consider its bipartite complement,
whose biadjacency matrix has the form

M(Cbc
2s) =

















0 0 1 1 1 . . . 1
0 1 0 1 1 . . . 1
1 0 1 0 1 1
...

. . .
. . .

. . .
...

1 1 0 1 0 1
1 . . . 1 1 0 1 0
1 . . . 1 1 1 0 0

















.

Example 3.2.3. For s = 3, 4, 5, 6, we have

y1 y2 y3

x1 x2 x3

Cbc
6
∼= 3K2

y1 y2 y3 y4

x1 x2 x3 x4

Cbc
8
∼= C8
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y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

Cbc
10

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x6

Cbc
12

Lemma 3.2.4. µ(Cbc
6 ) = 3 and µ(Cbc

2s) = 2 if s > 3.

Proof. The first equality is deduced from the fact that Cbc
6 = 3K2. Let us now assume

that s > 3. We have 3K2 6< Cbc
2s as C6 6< C2s, so µ(Cbc

2s) < 3. Moreover, µ(Cbc
2s) ≥ 2

since Cbc
2s[{x1, x3, y1, y2}] ∼= 2K2.

All graded Betti numbers of I(Cbc
2s) can be described in a combinatorial way, as we

will see in Theorem 3.2.15. This implies that they do not depend on the characteristic
of the field K. We will obtain the combinatorial formulas for the graded Betti numbers
using Hochster’s Formula. In order to use that formula, we need to compute the
reduced homology of induced subcomplexes of ∆(Cbc

2s). We start with the case of
∆(Cbc

2s).

Proposition 3.2.5. H̃i(∆(Cbc
2s)) = H̃i−1(∆(Id2)) =

{

K if i = 2,
0 otherwise .

Proof. We first prove that del∆(Cbc
2s)
(x1) is acyclic. del∆(Cbc

2s)
(x1) is the independence

complex of Cbc
2s \ x1 and its biadjacency matrix has the form











0 1 0 1 . . . 1
1 0 1 0 . . . 1
...

. . .
. . .

. . .

1 . . . 1 0 1 0
1 . . . 1 1 0 0











.

Applying Lemma 3.1.7.4, we have that H̃i(del∆(Cbc
2s)
(x1)) ∼= H̃i(del∆(Cbc

2s)
({x1, y1})).

We can repeat this process to remove x2, y2, x3, . . . until the only remaining vertices

are xn−1, yn−1, xn, yn. Then, H̃i(del∆(Cbc
2s)
(x1)) ∼= H̃i(∆(

(

1 0
0 0

)

)), which is acyclic

by Lemma 3.1.7.1.
Now, by Corollary 1.4.4, H̃i(∆(Cbc

2s))
∼= H̃i−1(link∆(Cbc

2s)
(x1)), ∀i > 0. After apply-

ing, if s > 3, Lemma 3.1.7.3, we get H̃i−1(link∆(Cbc
2s)
(x1)) ∼= H̃i−1(∆(Id2)). Hence, we

conclude using Example 1.7.2.
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Hochster’s Formula assures that βi,j(I(C
bc
2s)) = 0 if j > |V (Cbc

2s)| = 2s. For the
case j = 2s, Proposition 3.2.5 implies directly the following result.

Corollary 3.2.6. Let s ≥ 3. Then, β2s−4,2s(I(C
bc
2s)) = 1 and βi,2s(I(C

bc
2s)) = 0 if

i 6= 2s− 4.

Now, we take W ( V (Cbc
2s) = X ⊔ Y . We set WX := W ∩X and WY := W ∩ Y

and we assume that WX 6= ∅ 6= WY since otherwise ∆(Cbc
2s[W ]) is a simplex and hence

acyclic.
Let denote M := M(G[W ]) = (ai,j). Notice that every column and row has at

most two entries equal to 0 and that some row or column does not reach that bound.
Let w ∈ W be a vertex such that the corresponding column or row in M has

no zero as an entry. Then H̃i(∆(G[W ]) ∼= H̃i(del∆(G[W ])(w)) by Lemma 3.1.73.
The elimination of this vertex does not affect the number of zeros in the remain-
ing columns or rows. We can remove all vertices corresponding to columns or rows
with no zero as an entry. If there is no vertex remaining, then ai,j = 1, ∀i, j.
Otherwise, we can reduce the study to M ′ := M(G[W ′]) where W ′ := {v ∈ W :
not all entries in the corresponding column or row in M are 1’s}.

Now we focus on columns and rows of M ′ with exactly one zero as an entry and
we pay attention to the number of connected components of the graph C2s[W

′], whose
biadjacency matrix is (1m×n −M)[W ′]. Let x be such a row (likewise for a column).
C2s[W

′] has no isolated vertex since we have remove them in the previous part. We
proceed according to these two possibilities:

1. if the only zero in the row x is also the unique zero in the corresponding column,
then we keep x.

2. if there exists another zero in its column, we remove the vertex x and, by the
remark 3.1.7.4, the new simplicial complex has the same reduced homology.
The number of connected components in the graph C2s[W

′] does not change
(the vertex we remove has degree 1 in C2s[W

′]) and the number of zeros only
varies in its column, which now has only one zero.

We repeat this step for any remaining vertex (after the previous steps) with only
one zero in the corresponding column or row and denote by W ′′ the set of remaining
vertices and M ′′ := M(Cbc

2s[W
′′]). Finally, we have that every column and row in

M ′′ has exactly one entry equal to 0. Thus, after relabeling vertices if necessary,

M ′′ =









0 1 . . . 1

1 0
. . .

...
...

. . .
. . . 1

1 . . . 1 0









∈Mk×k({0, 1}) where k := |W ′′/2| = |comp(C2s[W
′])|, and

H̃i(∆(M)) ∼= H̃i(∆(M ′′)), ∀i ≥ 0.
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The biadjacency matrix of the bipartite graph (kK2)
bc has the form (up to per-

muting rows and columns)

M((kK2)
bc) =











y1 y2 . . . yk
x1 0 1 . . . 1

x2 1 0
. . .

...
...

...
. . .

. . . 1
xk 1 . . . 1 0











.

We denote ∆k := ∆((kK2)
bc) = ∆(M ′′).

Lemma 3.2.7. dimK(H̃i(∆
k)) =

{

k − 1 if i = 1,
0 otherwise.

Proof. For i = 0, ∆k is connected since ∆k[X ] = ∆X and ∆k[Y ] = ∆Y are con-
nected and they are connected each other by any edge {xj , yj}, 1 ≤ j ≤ k. Hence,
dimK(H̃0(∆

k)) = |comp(∆k)| − 1 = 0.
Let us assume i ≥ 1. We notice that F(∆k) = {X, Y, {x1, y1}, . . . , {xk, yk}} and

consider the subcomplexes of ∆k generated for every single facet, Ax := ∆X , Ay :=
∆Y , Az1 := 〈{x1, y1}〉, . . . , Azk := 〈{xk, yk}〉 and the family A; = {Ai : i ∈ I} indexed
by I := {x, y, z1, . . . , zk}. Then, the nerve of A is the simplicial complex on the
vertex set I whose 2k facets are {x, zi} and {y, zi} for every i = 1, . . . , k. Therefore,
N(A) is a suspention on the vertices x and y of the 0-dimensional simplicial complex
〈{x1}, . . . , {xk}〉. Thus, by the Nerve Theorem, dimK(H̃i(∆

k)) = dimK(H̃i(N (A))) =

dimK(H̃i−1(〈{x1}, . . . , {xk}〉))) =

{

k − 1 if i = 1,
0 otherwise.

Collecting the previous information, we have the following result.

Proposition 3.2.8. Let W ( V (Cbc
2s) = X ⊔ Y , we have the following trichotomy:

• If W ∩X = ∅ or W ∩ Y = ∅ then dimK(H̃i(∆(Cbc
2s[W ])))) = 0, ∀i ≥ 0.

• If all entries in M(Cbc
2s)[W ] are 1, then

dimK(H̃i(∆(G[W ]))) =

{

1 if i = 0,
0 otherwise .

• Otherwise,

dimK(H̃i(∆(G[W ]))) =

{

k − 1 if i = 1,
0 otherwise .

where k is the number of connected components of C2s[W ] that are not isolated
vertices.
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We can now start the description of all the graded Betti numbers of I(Cbc
2s) by the

last row in the Betti diagram.

Proposition 3.2.9. Let s ≥ 3, then

• βi,i+4(I(C
bc
2s)) =

{

1 if i = 2s− 4
0 otherwise

• βi,j(I(C
bc
2s)) = 0 if j > i+ 4,

As a consequence, reg(I(Cbc
2s)) = 4.

Proof. The equality β2s−4,2s(I(C
bc
2s)) = 1 was established in Corollary 3.2.6. Applying

Hochster’s Formula for i < 2s− 4 and j = i+ 4, we get

βi,i+4 =
∑

W ⊂ V (Cbc
2s)

|W | = i + 4

dimK(H̃2(∆(Cbc
2s[W ]))) .

As |W | = i+ 4 < 2s, then W ( V (Cbc
2s) and we can apply Proposition 3.2.8, that in

particular, states that H̃i(∆(Cbc
2s[W ])) = 0 if i ≥ 2.

The second part, βi,j = 0 if j > i+ 4, can be deduced directly from the first part
using Theorem 2.1.2 and the fact that βi,j = 0 if j > |V (Cbc

2s)| = 2s.

In order to complete the description of the Betti diagram of I(Cbc
2s), we have to

determine the entries on the first two rows, i.e., βi,j for i+ 2 ≤ j ≤ i+ 3.

We focus first on the linear strand. According to Hochster’s Formula, Corol-
lary 3.2.6 and Proposition 3.2.8, we needs to determine all the proper subsets W of
V (Cbc

2s) = X ⊔ Y such that WX := W ∩X 6= ∅, WY := W ∩ Y 6= ∅ and (Cbc
2s)

c[W ] is
not connected.

Let s ≥ 3 andW ⊂ V (Cbc
2s). Notice that (C

bc
2s)

c = C2s∪KX∪KY . Since (C
bc
2s)

c[WX ]
and (Cbc

2s)
c[WY ] are connected, if one of them is empty or they are connected to each

other then (Cbc
2s)

c[W ] is connected. Otherwise, (Cbc
2s)

c[WX ] and (Cbc
2s)

c[WY ] are its
connected components. Thus, βi,i+2(I(C

bc
2s)) is the number of non-connected induced

subgraphs of Cbc
2s with i+2 vertices. (Cbc

2s)
c[W ] is not connected if and only if the two

following conditions hold:

• WX 6= ∅, WY 6= ∅,

• NC2s(WX) ∩WY = ∅.

Let us denote by CX the cycle on the vertex set X with edge set E(CX) =
{{x1, x2}, {x1, x3}, {x2, x4}, {x3, x5}, . . . , {xs−2, xs}, {xs−1, xs}}. Notice that

{xi, xj} ∈ E(CX)⇔ NC2s(xi) ∩NC2s(xj) 6= ∅ .
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Lemma 3.2.10. Assume that (Cbc
2s)

c[W ] is not connected.

1. There exists x ∈ WX such that NC2s(x) 6⊂ NC2s(WX\{x}).

2. |NC2s(WX)| = |WX |+ |comp(CX [WX ])|.

Proof. If x ∈ WX and NC2s(x) ⊂ NC2s(WX\{x}), then NCX
(x) ⊂ WX . Thus, if

NC2s(x) ⊂ NC2s(WX\{x}) for all x ∈ WX , then WX = X . In that case, NC2s(WX) =
NC2s(X) = Y andWY 6= ∅ implies NC2s(WX)∩WY 6= ∅. Then, (Cbc

2s)
c[W ] is connected

and 1. follows.

We prove 2. by induction on r := |WX |. If WX = {x} then |NC2s({x})| = 2,
|{x}| = 1, |comp((CX)[{x}])| = 1 and the statement holds. Consider now W such
that |WX | = r > 1 and assume that the statement holds for subsets W ′ such that
|W ′

X | = r − 1. By 1., we know that there exists x0 ∈ WX such that NC2s(x0) 6⊂
NC2s(WX\{x0}). There are two possibilities:

• if x0 is adjacent in CX to some x ∈ WX\{x0}, then |comp((CX)[WX ])| =
|comp(CX [WX\{x0}])| andNC2s(x0)∩NC2s(WX\{x0}) 6= ∅. Thus, |NC2s(WX)| =
|NC2s(WX\{x0})|+ 1;

• otherwise, we have that |comp(CX [WX ])| = |comp(CX [WX\{x0}])| + 1 and
NC2s(x0)∩NC2s(WX\{x0}) = ∅. Therefore, |NC2s(WX)| = |NC2s(WX\{x0})|+2.

In both cases, applying our inductive hypothesis, we get that

|NC2s(WX)| = |WX\{x0})|+ |comp(CX [WX ])|+ 1 = |WX |+ |comp(CX [WX ])| .

Proposition 3.2.11. 1. For all j ≥ s, βj−2,j(I(C
bc
2s)) = 0.

2. For j = 2, . . . , s− 1,

βj−2,j(I(C
bc
2s)) =

j−1
∑

k=1

k
∑

c=1

s

c

(

k − 1

c− 1

)(

s− k − 1

c− 1

)(

s− k − c

j − k

)

.

Proof. βi,i+2(I(C
bc
2s)) is the number of induced subgraphs (Cbc

2s)
c[W ] on i+ 2 vertices

that are non connected. If (Cbc
2s)

c[W ] is not connected then |WX | > 0, |WY | > 0
and |NC2s(WX)| + |WY | ≤ |Y | = s. Thus, |WY | ≤ s − |NC2s(WX)| < s − |WX | by
Lemma 3.2.10 2. and hence |W | = |WX | + |WY | < s. Therefore, if j = |W | ≥ s,
(Cbc

2s)
c[W ] is connected and βj−2,j(I(C

bc
2s)) = 0.

Now, for j with 2 ≤ j ≤ s− 1, we have to count how many subsets W of X ⊔ Y
with |W | = j satisfy that (Cbc

2s)
c[W ] is not connected. For each choice of WX with k
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elements (1 ≤ k ≤ j−1 in order to have WX 6= ∅ and WY 6= ∅), we must choose j−k

elements from Y \NC2s(WX) for WY , so there are
(s−|NC2s

(WX)|
j−k

)

=
(

s−k−|comp(CX [WX ])|
j−k

)

possible choices by Lemma 3.2.10 2. If we fix the number of connected components
of CX [WX ] and denote it by c 1 ≤ c ≤ k, then there are s

c

(

k−1
c−1

)(

s−k−1
c−1

)

possible
subsets WX with |WX | = k and |comp(CX [WX ])| = c by Lemma 2.3.1, and the result
follows.

Corollary 3.2.12. The first and the last nonzero entries on the linear strand of the
Betti diagram of I(Cbc

2s) coincide, i.e., βs−3,s−1(I(C
bc
2s)) = β0,2(I(C

bc
2s)).

Proof. For j = s − 1 one has that
(

s−k−c
j−k

)

6= 0 if and only if c = 1. In this case

(

k−1
c−1

)

=
(

s−k−1
c−1

)

=
(

s−k−c
j−k

)

= 1, and hence βs−3,s−1(I(C
bc
2s)) =

s−2
∑

k=1

s = s(s − 2) =

|E(Cbc
2s)| = β0,2(I(C

bc
2s)).

The description of the Betti diagram of I(Cbc
2s) will be complete once we give the

Betti numbers located on the second row. This is our next result.

Proposition 3.2.13. 1. For all j ≥ 2s− 1, βj−3,j(I(C
bc
2s)) = 0.

2. For j = 4, . . . , 2s− 2,

βj−3,j(I(C
bc
2s)) =

⌊j/2⌋
∑

m=2

(m− 1)

j−2m
∑

a=0

2s

m

(

j −m− a− 1

m− 1

)(

2s− j − 1

m− 1

)(

2s− j −m

a

)

.

Proof. By Proposition 3.2.8, H̃1(∆(Cbc
2s[W ])) will contribute to Hochster’s Formula

for βj−3,j(I(C
bc
2s)) if and only if W is a proper subset of V with |W | = j ≥ 4 such

that C2s[W ] has at least 2 connected components that are not isolated vertices. More
precisely, if we denote by w(j,m) the number of proper subsets W of V with |W | = j
and such that C2s[W ] has m ≥ 2 connected components that are not isolated vertices,
then

βj−3,j(I(C
bc
2s)) =

⌊ j
2
⌋

∑

m=2

(m− 1)w(j,m) . (3.1)

In particular, since for any subset W of V with 2s− 1 elements, one has that C2s[W ]
is connected, 1. follows.

Now, for j ≤ 2s − 2, we denote by W (j,m, a) the set of proper subsets W of V
with |W | = j and such that C2s[W ] has a isolated vertices and m ≥ 2 connected
components that are not isolated vertices. Then, w(j,m) =

∑j−2m
a=0 w(j,m, a) where

w(j,m, a) = |W (j,m, a)|, and we are reduced to prove that, for all possible j,m, a,

w(j,m, a) =
2s

m

(

j −m− a− 1

m− 1

)(

2s− j − 1

m− 1

)(

2s− j −m

a

)

.
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For determining the value of w(j,m, a), we construct the set H of binary vectors
of length 2s with the condition that the first element is 1, the last element is 0 and
there are j 1’s arranged in m runs of length greater than 1 and a runs of length 1.

We start with the set of binary vectors of length 2s −m − a whose first element
is 1, whose last element is 0 and with j −m− a 1’s arranged in m runs. In the proof
of [29, Lemma 3.3] is shown that this set has

(

j−m−a−1
m−1

)(

s−j−1
m−1

)

elements. To each of
those vectors, we add one 1 at the end of each run of 1’s and a 1’s between two 0’s,
one 1 each time. In each run of 0’s of length l there are l − 1 places where we can
insert a 1 between two 0’s, so we generate

(

s−j−m
a

)

vectors from every starting vector.

Then, H has
(

s−j−m
a

)(

j−m−a−1
m−1

)(

s−j−1
m−1

)

elements.
Now, to each element of h ∈ H we can correspond 2s elements {vi ∈ V : hi =

1}, {vi ∈ V : hi+1 = 1}, . . . , {vi ∈ V : hi+2s−1 = 1} of W (j,m, a). However, an
element W = {vi1 , . . . , vij} ∈ W (j,m, a) is represented by m vectors in H : {h ∈ H :
hik−c = 1∀k = 1, . . . , j} where c is the smallest index in a connected component of
C2s[W ], Therefore, w(j,m, a) = 2s

m
|H| and we are done.

Corollary 3.2.14. The first and the last nonzero entries on the second row of the
Betti diagram of I(Cbc

2s) coincide, i.e., β2s−5,2s−2(I(C
bc
2s)) = β1,4(I(C

bc
2s)).

Proof. For j = 2s − 2,
(

2s−j−1
m−1

)

6= 0 if and only if m = 2, and then
(

2s−j−m
a

)

6= 0 if

and only if a = 0, and hence β2s−5,2s−2(I(C
bc
2s)) =

2s
2

(

2s−5
1

)

= s(2s− 5). On the other

hand, β1,4(I(C
bc
2s)) =

2s
2

(

1
1

)(

2s−5
1

)(

2s−6
0

)

and we are done.

Now, we can describes completely the Betti diagram of I(Cbc
2s).

Theorem 3.2.15. The edge ideal I := I(Cbc
2s) associated to the bipartite complement

of acycle of length t := 2s ≥ 6 has the following Betti diagram

0 1 . . . s− 3 . . . t− 5 t− 4
2 β0,2 β1,3 . . . βs−3,s−1

3 β1,4 . . . . . . . . . βt−5,t−2

4 1

where the nonzero entries are located inside the shadowed area and its values are

• βj−2,j =
∑j−1

k=1

∑k
c=1

s
c

(

k−1
c−1

)(

s−k−1
c−1

)(

s−k−c
j−k

)

, j = 2, . . . , s− 1;

• βj−3,j =
∑⌊j/2⌋

m=2 (t
m−1
m

(

t−j−1
m−1

)
∑j−2m

a=0

(

j−m−a−1
m−1

)(

t−j−m
a

)

), j = 4, . . . , t− 2;

• βt−4,t = 1.

In particular, reg(I) = 4 and pd(I) = t− 4.
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Example 3.2.16. Let I = (x1y3, x1y4, x1y5, x2y2, x2y4, x2y5, x3y1, x3y3, x3y5, x4y1,
x4y2, x4y4, x5y1, x5y2, x5y3). I is the edge ideal associated to the bipartite compement
of the cycle of length 10.

Cbc
10 :

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

Then, the Betti diagram of I = I(Cbc
10) is

0 1 2 3 4 5 6

2 15 30 15 - - - -
3 - 25 100 140 90 25 -
4 - - - - - - 1

3.3 Regularity 3

We begin this section recalling some results from [17] that we will need later.

Construction 3.3.1 ([17, Construction 4.4.]). Let Γ be a simplicial complex on
X = {x1, . . . , xn}. Denote the number of facets of Γ by m. Let Gj , 1 ≤ j ≤ m
be such that for all 1 ≤ j ≤ m, X\Gj is a face of Γ and such that every facet of
Γ is of the form X\Gj for some j. Let y1, . . . , ym be new vertices. Let ∆X be the
(n− 1)-simplex on x1, . . . , xn. Define

∆′ = {σ ∪ τ : σ ∈ Γ, τ ⊂ {yj : σ ⊂ (X\Gj)}} and ∆ = ∆′ ∪∆X .

Let I be the Stanley-Reisner ideal of ∆, in the ring R = K[x1, . . . , xn, y1, . . . , ym].
Let IΓ denote the extension of the Stanley-Reisner ideal of Γ from the ringK[x1, . . . , xn]
to R.

Theorem 3.3.2 ([17, Theorem 4.7]). Let Γ and ∆ as in Construction 3.3.1 Then for
all i ≥ 0, H̃i+1(∆,Z) ∼= H̃i(Γ,Z).
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We will use Construccion 3.3.1 in the inverse way, i.e., given ∆, the independence
complex of a bipartite graph, we look for a simplicial complex such that Γ with
H̃i−1(Γ) ∼= H̃i(∆), ∀i ≥ 0.

Let G be a bipartite graph with bipartition V (G) = X ⊔ Y and W ⊂ V (G). We
use the notation WX = W ∩X and WY = W ∩ Y .

Definition 3.3.3. We say that a subset of vertices W ⊂ V (G) is relevant if no pair of
vertices u, v ∈ W satisfies NG[W ](u) ⊂ NG[W ](v), or equivalently, if ∆(G) is a minimal
complex.

Remark 3.3.4. If W ⊂ V (G) is not relevant, then there exists v ∈ W such that
H̃i(∆(G[W ]) ∼= H̃i(del∆(G[W ])(v)), by Lemma 3.1.7.5.

We define the set

ΓG := {σ ⊂ NGbc(y) : y ∈ Y }

which is a simplicial complex on X \ { isolated vertices of Gbc in X}.

Lemma 3.3.5. Let G be a bipartite graph and W ⊂ V (G) be a relevant subset
of vertices. The simplicial complex obtained in Construction 3.3.1 from ΓG[W ] is
∆(G)[W ].

Proof. Since W is relevant, no isolated vertex in G[W ] belongs to WX , F(ΓG[W ]) =
{NG[W ]bc(y) : y ∈ WY } and |F (ΓG[W ])| = |WY |. Then, we define

∆′ = {σ ∪ τ : σ ∈ ΓG[W ], τ ⊂ {y ∈ WY : σ ⊂ NG[W ]bc(y)}}, and

∆ = ∆′ ∪∆WX

as in Construction 3.3.1.

Let σ ⊂ W . If σ ⊂WX , then σ ∈ ∆WX
and σ ∈ ∆(G)[W ]. On the other hand,

σ ∈ ∆′ \∆WX
⇔ σX ∈ ΓG[W ], σY 6= ∅ and σX ⊂ NG[W ]bc(y) , ∀y ∈ σY

⇔ σY 6= ∅ and σX ⊂ NG[W ]bc(y) , ∀y ∈ σY

⇔ σY 6= ∅ and {x, y} 6∈ E(G[W ]) , ∀x ∈ σX , ∀y ∈ σY

⇔ σ 6⊂ WX and σ ∈ ∆(G)[W ]

⇔ σ ∈ ∆(G)[W ] \∆WX
.

Thus, σ ∈ ∆⇔ σ ∈ ∆(G)[W ].
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Lemma 3.3.6. Let I := IΓG[W ]
= (m1, . . . , ms) be the Stanley-Reisner ideal associated

to the simplicial complex ΓG[W ].

• If W is relevant then deg(mi) > 1, ∀i ∈ [s].

• max{deg(mi) : i ∈ [s]} ≤ µ(G[W ]).

Proof. Minimal generators of I correspond to minimal non-faces of ΓG[W ] and their
degrees are the cardinals of the corresponding non-face. For proving the first claim
we only have to notice that if W is relevant then every vertex v in WX is not isolated
in G[W ] and hence it is also a vertex in ΓG[W ]. Then, non-faces can not be singletons.

If m = xi1 · · ·xid is a minimal generator of I, then xik ∈ WX ,
m
xik
6∈ I, ∀k ∈ [d] and

{xi1 , . . . , xid} 6⊂ NGbc[W ](y), ∀y ∈ WY . Hence, ∀k ∈ [d], {xil : l 6= k} ⊂ NGbc[W ](y(k))
for some y(k) ∈ WY . Then, xik 6∈ NGbc[W ](y(k)), or equivalently, xik ∈ NG[W ](y(k))
and xil 6∈ NG[W ](y(k)) if l 6= k. Therefore, G[{{xik , y(k)} : k ∈ [d]}] ∼= dK2 and hence
d ≤ µ(G[W ]).

In the sequel, we will assume without loss of generality that all bipartite graph
whose graded Betti numbers we want to study are connected. For non-connected
graphs, the graded Betti numbers of their edge ideals can be recovered from the
graded Betti numbers of the edge ideals associated to their connected components
(see [34, Remark 2.6] or [43, Corollary 2.2]).

Definition 3.3.7. A Ferrers graph is a bipartite graph G whose vertices can be
relabeled on the bipartition V (G) = {x1, . . . , xm} ⊔ {y1, . . . , yn} in such a way that
{x1, yn} ∈ E(G), {xm, y1} ∈ E(G) and if {xi, yj} ∈ E(G) then {xk, yl} ∈ E(G) for all
1 ≤ k ≤ i and 1 ≤ l ≤ j.

The name of these graphs comes from the fact that their biadjacency matrices
can be seen as Ferrers tableaux (up to permuting rows and columns). This means
that Id2 can not be a submatrix of the biadjacency matrix of a Ferrers graph, or
equivalently, that the complement of a Ferrers graph has no induced cycle of length
4. Furthermore, the complement of a bipartite graph in general can not have an
induced cycle of length l > 4 since otherwise at least three vertices would belong to
one of the sets in the bipartition, so they would form a triangle. Therefore, Ferrers
graphs are those bipartite graphs that have no induced cycle of length greater than
or equal to 4 in their complementary graphs, that is the characterization given in
2.4.1 for graphs whose edge ideal has 2-linear resolution. Recall that this condition
is equivalent to having regularity 2.
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Theorem 3.3.8 ([13, Theorem 4.2]). Let G be a bipartite graph without isolated
vertices. Then, its edge ideal has a 2-linear free resolution if and only if G is a
Ferrers graph.

Now, we give a necessary condition for bipartite edge ideals to have regularity
strictly greater than 3. Moreover, if the condition is satisfied, we can determine the
first step in the minimal resolution where there is at least one syzygy contributing to
a graded Betti number located outside the first two rows of the Betti diagram and
compute the corresponding multigraded Betti numbers.

Theorem 3.3.9. Let I = I(G) be a bipartite edge ideal with reg(I) > 3. Then,
there exists an induced cycle in Gbc of length 2s for some s ≥ 3. Moreover, if we set
t := min{2s : s ≥ 3 and C2s < Gbc}, then

• βi,j = 0 if i < t− 4 and j > i+ 3;

• if t ≥ 8, βi,j = 0 if i ≥ t− 4 and j > t+ ⌊3(i−t+4)
2
⌋;

• βt−4,t = |{induced cycles of length t in Gbc}|;

• Considering the Nm+n-multigrading on R, if α ∈ Nm+n with |α| = t and we
denote by W := {vi ∈ V (G) : αi = 1}, then

βt−4,α =

{

1 if α ∈ {0, 1}m+n and Gbc[W ] ∼= Ct ,
0 otherwise .

Remark 3.3.10. If the following table is the Betti diagram corresponding to I then
the first item tells us that all entries in the light gray area are zero and the second
item tells that the same happens in the dark gray area (assuming t ≥ 8).

0 1 2 · · · t− 5 t− 4 t− 3 t− 2 t− 1 · · · p

2 • ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ · · · ∗
3 − • ∗ · · · ∗ ∗ ∗ ∗ ∗ · · · ∗
4 − − − · · · − βt−4,t ∗ ∗ ∗ · · · ∗
5 − − − · · · − − − ∗ ∗ · · · ∗
6 − − − · · · − − − − − · · · ∗
...

...
...

...
...

...
...

...
...

...
. . .

. . .

• = nonzero entry ; − = zero entry ; ∗ = entry that may be zero or not.

Proof. According to Theorem 2.1.2, if reg(I(G)) > 3 then there exists i such that
βi,i+4(I) 6= 0. Let denote by i4 the smallest index with this property. The same
theorem allows us to reduce the proof of the first two points to prove that i4 = t− 4.
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By Lemma 2.1.1, i4 ≥ 2 and if i4 = 2 then β2,6(I) is the number of induced
subgraphs of G isomorphic to 3K2, so we only have to notice that (3K2)

bc ∼= C6.
Then, t = 6 and i4 = t − 4. Moreover, by Theorem 2.4.5, βt−4,α = 1 if and only if
{vi ∈ V (G) : αi = 1} = V (3K2), as desired.

For the case i4 ≥ 3, we use Hochster’s Formula. βi4,i4+4(I) 6= 0 implies that there
exists W ⊂ V (G) such that

|W | = i4 + 4 and dimK(H̃2(∆(G)[W ]))) > 0 . (3.2)

We notice that W is a relevant subset of vertices because of the minimality of i4. Our
goal is to see that subsets W ⊂ V (G) satisfying property (3.2) are exactly the subsets
satisfying

G[W ] ∼= Cbc
i+4 . (3.3)

Let us consider Γ := ΓG[W ] = {σ ⊂ NG[W ]bc(y) : y ∈ WY } and ∆(Γ), the simplicial
complex defined in Construction 3.3.1 for Γ. Applying Lemma 3.3.5 and Theorem
3.3.2, we have

dimK(H̃1(Γ)) = dimK(H̃2(∆(G)[W ])) > 0 .

Moreover, dimK(H̃1(Γ[X
′])) = 0, ∀X ′ ( WX since ∆(Γ)[X ′] ∼= ∆(G)[W ′], where

W ′ = X ′ ⊔WY , and the minimality of the size of W implies that dimK(H̃1(Γ[X
′])) =

dimK(H̃2(∆(G)[W ′])) = 0. The fact that W is relevant also implies that Γ is a flag
complex by Lemma 3.3.6. Therefore, we have Γ = ∆(G∗) for some graph G∗ and
Theorem 2.4.6 assure that (G∗)c has an induced cycle of length greater than or equal
to 4. The same theorem together with Theorem 2.4.5 imply that no proper induced
subgraph of (G∗)c contain any induced cycle with that length. Thus, G∗ ∼= Cc

|V (Γ)|.

As Γ = ∆(Cc
|V (Γ)|) = C|V (Γ)|, we have |NG[W ]bc(y)| = 2, ∀y ∈ WY . Since W is relevant,

∀u, v ∈ W,u 6= v, it holds NG[W ]bc(u) 6⊂ NG[W ]bc(v) and hence |NG[W ]bc(u)| > 1, ∀u ∈
WX . From the fact that

∑

u∈WX
degG[W ]bc(u) =

∑

v∈WY
degG[W ]bc(v), we also have

that |NG[W ]bc(u)| ≤ 2, ∀u ∈ WX . Therefore, |NG[W ]bc(y)| = 2, ∀y ∈ W . Moreover,
G[W ]bc is connected because Γ is. Thus G[W ] ∼= Cbc

|W | and we are done.

Finally, we give a combinatorial characterization of bipartite edge ideals having
regularity 3.

Theorem 3.3.11. Let I = I(G) be a bipartite edge ideal. Then I has regularity 3
if and only if Gc has some induced cycle of length 4 and Gbc has no induced cycle of
length greater than or equal to 6.

Proof. It only remains to prove that if Gbc has an induced cycle of length greater than
or equal to 6 then I has regularity strictly greater than 3.

Let us assume that there exists W ⊂ V (G) such that G[W ]bc ∼= Ct with t ≥
6. Then, βi,j(I) ≥ βi,j(I(G[W ])) by Theorem 2.4.5. Hence, by 3.2.15, βt−4,t(I) ≥
βt−4,t(I(C

bc
t )) > 0 and reg(I) ≥ reg(I(Cbc

t )) = 4.
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Example 3.3.12. Let I = (x1y3, x1y4, x1y5, x2y4, x2y5, x3y2, x3y3, x3y5, x4y1, x4y4,
x4y5, x5y1, x5y3, x5y4, x6y1, x6y2, x6y3) the bipartite edge ideal associated to the graph

G :

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

We look at its bipartite complementary graph searching for induced cycles of legnth
greater than or equal to 6 and one can check that there are exactly two induced cycles
of length 6.

Gbc

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5

And the Betti diagram of I is

0 1 2 3 4 5 6 7
2 17 38 26 4 - - - -
3 - 32 136 219 173 69 11 -
4 - - - - 2 5 4 1

Remark 3.3.13. One can find in [46] several examples of edge ideals whose regularity
is 3 or 4 depending on the characteristic of the field K. This shows that a result
analogous to Theorem 3.3.11 is not possible for edge ideals in general. That is why
we restricted ourselves to bipartite edge ideals. But observe that even for bipartite
edge ideals, it is hopeless to try a purely combinatorial characterization of bipartite
edge ideals with a given regularity r ≥ 4 in terms of the graph, as the following
example shows.



3.4. NON-SQUAREFREE CASE 81

Example 3.3.14 ([17, Example 4.8]). Let I be the bipartite edge ideal

(x1y1, x2y1, x3y1, x7y1, x9y1, x1y2, x2y2, x4y2, x6y2, x10y2, x1y3, x3y3, x5y3, x6y3, x8y3,

x2y4, x4y4, x5y4, x7y4, x8y4, x3y5, x4y5, x5y5, x9y5, x10y5, x6y6, x7y6, x8y6, x9y6, x10y6)

obtained from Construction 3.3.1 applied to the the triangulation on six vertices of the
projective plane, whose Stanley-Reisner ideal is known to have graded Betti numbers
that depend on the characteristic of the ground field (see [57, Remark 3]).

Then, we have to possible Betti diagrams

Betti diagram of I ⊂ Q[x1, . . . , x10, y1, . . . , y6]

0 1 2 3 4 5 6 7 8 9 10 11
2 30 90 85 30 6 - - - - - - -
3 - 135 810 1875 2240 1470 500 75 - - - -
4 - - 90 740 2640 5270 6492 5166 2705 910 180 16

Betti diagram of I ⊂ Z2[x1, . . . , x10, y1, . . . , y6]

0 1 2 3 4 5 6 7 8 9 10 11 12
2 30 90 85 30 6 - - - - - - - -
3 - 135 810 1875 2240 1470 500 75 - - - - -
4 - - 90 740 2640 5270 6492 5166 2705 910 180 16 1
5 - - - - - - - - - - - 1 -

3.4 Non-squarefree Case

We use the same notation as in section 2.5:

• G the (not necessarily simple) bipartite graph associated to I,

• G′ the simple bipartite graph associated to Isqf , and

• G∗ the simple bipartite graph associated to Ipol where loops are replaced by
whiskers.

• Gbc := (G′)bc.

We can also bring the characterization of bipartite edge ideals having regularity
3 to the non-squarefree case.
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Theorem 3.4.1. Let I ⊂ R = K[x1, . . . , xm, y1, . . . , yn] be an ideal generated by
monomials xikyil or squares of variables, then I has regularity 3 if and only if

• G has two totally disjoint edges or Cl < Gc with l ≥ 5,

• G does not have three edges pairwise totally disjoint, and

• Gbc has no induced cycle of length ≥ 8.

Proof.
reg(I) = 3 ⇔ reg(Ipol) = 3

⇔

{

(G∗)c has any induced cycle of length 4, and
(G∗)bc has no induced cycle of length ≥ 6

⇔







G has two totally disjoint edges or Cl < Gc with l ≥ 5,
G does not have three edges pairwise totally disjoint, and
Gbc has no induced cycle of length ≥ 8.

Theorem 3.4.2. Assume reg(I) > 3. If G contains three pairwise totally dijoint
edges, then

• βi,j = 0 if i ≤ 1 and j > i+ 3;

• β2,6 is the number of induced subgraphs of G isomorphic to three pairwise totally
disjoint edges;

• β2,j = 0 for all j > 6;

• Considering the Nm+n-multigrading on R, for all α ∈ Nm+n such that |α| = 6

we have β2,α =

{

1 if G[{xi : αi = 1}] consits of three totally disjoint edges;
0 otherwise .

Otherwise, if we denote t := min{2s : s ≥ 4 and C2s < Gbc}, then

• βi,j = 0 if i < t− 4 and j > i+ 3;

• if t ≥ 8, βi,j = 0 if i ≥ t− 4 and j > t+ ⌊3(i−t+4)
2
⌋;

• βt−4,t = |{induced cycles of length t in Gbc}|;

• Considering the Nm+n-multigrading on R, if α ∈ Nm+n with |α| = t and we
denote by W := {vi ∈ V (G) : αi = 1}, then

βt−4,α =

{

1 if α ∈ {0, 1}m+n and Gbc[W ] ∼= Ct ,
0 otherwise .
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Example 3.4.3. Let consider the squarefree monomial ideal generated in degree
two I = (x2

1, x1x5, x2x5, x2x7, x3x5, x3x6, x3x7, x4x6). If we look at its Betti diagram,
β2,6 = 1. This is not because of the fact that there is an induced cycle of length 6 in
Gbc but for the triple of pairwise disjoint edges in G.

x1 x2 x3 x4

y1 y2 y3

three pairwise disjoint edges in G

x1 x2 x3 x4

z1 y1 y2 y3

induced cycle of length 6 in (G∗)bc

0 1 2 3 4
2 8 10 3 - -
3 - 7 12 5 -
4 - - 1 2 1

Betti diagram of I

x1 x2 x3 x4

y1 y2 y3

no triple of pairwise disjoint edges in G′

x1 x2 x3 x4

y1 y2 y3

no induced cycle in Gbc = (G′)bc

0 1 2 3
2 7 9 3 -
3 - 3 5 2

Betti diagram of Isqf

3.5 Regularity and the Induced Matching Number

It seems that there exists a close relation between the regularity of an edge ideal and
the induced matching number of the associated graph. It was noticed after Lemma
2.1.1 that the regularity of an edge ideal is bounded below by µ(G)+1. The equality
holds for some families of graphs, including particular subfamilies of bipartite graphs:

• forests ([74]),

• chordal graphs ([35]),

• weakly chordal graphs ([73]),

• unmixed bipartite graphs ([48]),

• sequentially Cohen-Macaulay bipartite graphs ([63]),

• Ferrer graphs ([13]).
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Let us see a method to modify these invariants:

Construction 3.5.1. Given M ∈ Mm×n({0, 1}), we consider the following biadja-
cency matrices:

MM :=
(

M M
)

MM :=









11×n 01×n

M M









MM :=









M M

01×n 11×n









MM :=













11×n 01×n

M M

01×n 11×n













The matrix MM is called the setting of M . If M is labeled by {x1, . . . , xm} and
{y1, . . . , yn}, then we label its rows and columns as follows:















y1 ··· yn z1 ··· zn

x0 11×n 01×n

x1

... M M
xm

xm+1 01×n 11×n















Proposition 3.5.2. Let M = (ai,j) ∈Mm×n({0, 1}) with at least one 1 and one 0 in
a row and denote µ := µ(G(M)). Then

• µ(G(MM)) = µ,

• µ(G(MM)) = µ(G(MM)) = µ(G(MM)),

• µ(G(MM)) =

{

µ+ 1 if ∃W ⊂ V (G(M)) / M [W ] =
(

0µ×1 Idµ
)

;
µ otherwise .

Proof. From the definition of MM , it is clear that µ(G(MM)) = µ. The equality
µ(G(MM)) = µ(G(MM)) follows from the fact that MM ∼ MM . Suppose that
µ(G(MM)) 6= µ(G(MM)). As there existsW = {xi1 , yi1, yi2} withM [W ] ∼

(

1 0
)

,

then MM [{xi1 , xm+1, yi1, zi2}] ∼

(

1 0
0 1

)

= Id2 and hence µ(G(MM)) ≥ 2. There-

fore µ(G(MM)) > µ(G(MM)) ≥ 2. Let W ′ ⊂ V (G(MM )) with G(MM)[W ′] ∼=
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µ(G(MM))K2. Since µ(G(MM))  µ(G(MM)) = µ(G(MM)), x0 and xm+1 must
be inW ′. However, {x0, xm+1} ⊂ W ′ withMM [W ′] ∼ Idµ(G(MM )) for µ(G(MM)) > 2
is a contradiction since there are |W ′∩Y | nonzero entries in the row x0 and |W ′∩Z|
nonzero entries in the row xm+1 of the matrix MM [W ′] and |W ′ ∩ Y | + |W ′ ∩ Z| =
µ(G(MM)) > 2.

Let us assume now that µ(G(MM)) = µ(G(MM)) > µ. If G(MM )[W ] ∼=
µ(G(MM))K2, then x0 ∈ W . Hence, MM [W \ {x0}] ∼

(

0µ×1 Idµ(G(MM ))−1

)

and

µ(G(MM)) = µ(G(MM)) ≤ µ(G(MM))+1 = µ+1. Therefore, µ(G(MM)) = µ+1
and M [W ′] ∼

(

0µ×1 Idµ
)

, where W ′ := WX ∪ {yi : yi ∈ W or zi ∈ W}.
Conversely, if there exists W ′ = {yi0, xi1 , . . . , xiµ, yi1, . . . , yiµ} such that M [W ′] ∼

(

0µ×1 Idµ
)

, then G(MM )[W ] ∼ Idµ+1 for W := {x0, yi0, xi1 , . . . , xiµ , zi1 , . . . , ziµ}.

Hence, µ(G(MM)) = µ(G(MM)) ≥ µ + 1 and we are in the previous case, so
µ(G(MM)) = µ+ 1.

Proposition 3.5.3. H̃i(∆(MM)) ∼= H̃i−1(∆(M)), ∀i ≥ 0.

Proof. We consider the Mayer-Vietoris sequence corresponding to the decomposition
∆(MM ) = star∆(MM)(x0) ∪ del∆(MM)(x0),

· · · −→ H̃i(del∆(MM)(x0)) −→ H̃i(∆(MM)) −→ H̃i−1(link∆(MM)(x0)) −→

−→ H̃i−1(del∆(MM)(x0)) −→ · · · .

By Lemma 3.1.7.3, H̃i−1(link∆(MM)(x0)) ∼= H̃i−1(∆(MM [X ∪ {xm+1} ∪ Z}])) ∼=

H̃i−1(∆(MM [X ∪ Z}])) ∼= H̃i−1(∆(M)).
It only remains to prove that H̃i(del∆(MM)(x0)) = 0, ∀i ≥ 0. We can apply Lemma

3.1.7.5 to every column zj since the positions of its null entries are positions of null
entries in the column yj. Then, H̃i(del∆(MM)(x0)) ∼= H̃i(∆(MM [X ∪ {xm+1} ∪ Y ]))
and the claim follows applying Lemma 3.1.7.1 to row xm+1.

Theorem 3.5.4. reg(I(G(MM))) = reg(I(G(M))) + 1.

Proof. Let r := reg(I(G(M))). By Hochster’s Formula, there exists W ⊂ V (G(M))
such that H̃r−2(∆(M)[W ]) 6= 0. We take ∆(M [W ]M [W ]) < ∆(MM ). Then,

H̃r−1(∆(M [W ]M [W ])) 6= 0, by Proposition 3.5.3. Therefore, reg(I(G(MM))) ≥ r+1.

Conversely, if r′ := reg(I(G(MM))), then there exists W ⊂ V (G(MM )) such
that H̃r′−2(∆(MM )[W ]) 6= 0. We may assume that |W | is minimal for that property.
We have necessarily that W 6⊂ V (G(M)) since reg(I(G(M))) < r′.
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If x0 ∈ W , then the Mayer-Vietoris sequence

· · · → H̃i(del∆(MM)[W ](x0))→ H̃i(∆(MM )[W ])→ H̃i−1(link∆(MM)[W ](x0))→ · · ·

implies that H̃i−1(link∆(MM)[W ](x0)) 6= 0 as H̃i(del∆(MM)[W ](x0)) = 0 because of the
minimality of |W |. If xm+1 ∈ W , we can delete it by Lemma 3.1.7.3. Then, we get
H̃i−1(∆[W ∩(X∪Y )]) ∼= H̃i−1(∆(MM )[W ∩(X∪Z)]) ∼= H̃i−1(link∆(MM)[W ](x0)) 6= 0.
Thus, reg(I(G(M))) ≥ r′ − 1. Likewise if xm+1 ∈ W .

Finally, if W ⊂ X ∪ Y ∪ Z, then H̃i(∆(MM)[W ]) ∼= H̃i(∆(MM )[W ∩ (X ∪ Y )])
applying Lemma 3.1.7.5 to the columns zj ∈ W . Thus, reg(I(G(M))) ≥ r′ − 1.

An interesting example of the previous construction is the case M = Idn with
n ≥ 2. Let us denote by Mn ∈Mn+2,2n({0, 1}) the setting of Idn

Mn :=













11×n 01×n

Idn Idn

01×n 11×n













=















1 . . . 1 0 . . . 0
1 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 1
0 . . . 0 1 . . . 1















and by Gn the bipatite graph on the vertex set V (Gn) = {x0, x1, . . . , xn, xn+1} ∪
{y1, . . . , yn, z1, . . . , zn} =: X ⊔ (Y ⊔ Z) whose biadjacency matrix is Mn.

Proposition 3.5.5. µ(Gn) = n.

Proof. We have immediately that µ(Gn) ≥ n from the fact that Idn is a submatrix
of Mn. Suppose that exists W ⊂ V (Gn) with |W | > 2n such that Mn[W ] ∼ Id |W |

2

.

Then, |W ∩ (Y ∪Z)| > n. However, if xi ∈ W ∀i ∈ [n], then 6 ∃i ∈ [n] with yi, zi ∈ W
and hence |W ∩ (Y ∪ Z)| ≤ n. Otherwise, {x0, xn+1} ⊂ W . Then |W ∩ Y | = 1 and
|W ∩ Z| = 1, that implies |W | = 4 ≤ 2n and we get a contradiction.

Proposition 3.5.6. β2n,3n+2(I(Gn)) = 1 and βi,i+n+2(I(Gn)) = 0, ∀i 6= 2n.

Proof. By Hochster’s Formula, β2n,3n+2(I(Gn)) = dimK H̃n(∆(Gn)) and, by propo-
sition 3.5.3, H̃n(∆(Gn)) = H̃n−1(∆(Idn)). We can conclude β2n,3n+2(I(Gn)) = 1,
according to Example 1.7.2.

Let W ( V (Gn), we claim that H̃n(∆(Gn)[W ]) = 0.
If {x0, xm+1}∩W = ∅, then H̃n(∆(Gn)[W ]) ∼= H̃n(∆(Idn)[W

′]) = H̃n(∆(nk2)[W
′])

where W ′ := W ∩ (X ∪ Y ), by Lemma 3.1.7.5. The only two possibilities are a cone
or ∆(Idm) with m ≤ n. In both cases H̃n(∆(Idn)[W

′]) = {0}.
If x0 ∈ W but xm+1 6∈ W (likewise if xn+1 ∈ W and x0 6∈ W ), then we can remove

every column yi ∈ W such that zi ∈ W . If there is no yi remaning, then we get a
cone and we are done. Otherwise,
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• if xi ∈ W , then we apply Lemma 3.1.7.5 to x0 and we are in the first case.

• if xi 6∈ W , then the first entry in the column yi is 1 and the rest are 0. There-
fore, we can remove all other remaining yj applying Lemma 3.1.7.5, and we
apply Lemma 3.1.7.2 in the end. After that, we obtain again H̃n(∆(Gn)[W ]) ∼=
H̃n−1(∆(Idn)[W

′]) for some m < n (since zi 6∈ W ) and W ′ ⊂ W at is a cone or
∆(Ids) with s < n. In both cases H̃n−1(∆(Idm)[W

′]) = 0.

Finally, if {x0, xn+1} ⊂ W , then there exist i ∈ [n] with {xi, yi, zi} 6⊂ W . We
denote by Wi := {xi, yi, zi} ∩W . Then, ∃i ∈ [n] : ∅ 6= Wi ( {xi, yi, zi} (if Wi = ∅,
then ∆(Mn)[W ] ∼= ∆(Mm) with m < n and hence H̃n(∆W ) = 0). We fix such an
index i and we consider the following three cases:

• if Wi = {xi}, then ∆(Mn)[W ] is a cone with appex xi;

• if Wi = {xi, yi}, (or Wi = {xi, zi}) then link∆W
(x0) is a cone with appex xi and

hence H̃i(∆(Mn)[W ]) ∼= H̃i(del∆(Mn)[W ](x0)) by Corollary 1.4.4. This situation
was considered above.

• if yi ∈ Wi and xi 6∈ Wi (likewise for zi ∈ Wi and xi 6∈ Wi), then link∆(Mn([W ]))(yj)
is a cone with appex yi for any yj ∈ (W ∩ Y )\{yi} since the column yi has a
one in the first entry and 0 in the rest. Therefore, we can remove every yj 6= yi
applying Lemma 3.1.7.5. After that, we apply Lemma 3.1.7.2 to x0 and yi.
Then, H̃n(∆(Mn)[W ]) ∼= H̃n−1(∆(Mn)[W

′]) = H̃n−1(∆(Mn)[W
′ \ {xn+1}]) (all

entries in the row xn+1 of Mn[W
′] are 1) where W ′ := (W ∩ (X ∪Z))∪{xm+1}.

So, H̃n(∆(Mn)[W ]) = H̃n−1(∆(Idm)[W
∗]) for some m < n (since zi 6∈ W ) and

W ∗ ⊂ {x1, . . . , xn} ∪ Z, that is a cone or ∆(Ids) with s < n. In both cases
H̃n−1(∆(Idm)[W

∗]) = 0.

Therefore βi,i+n+2(I(Gn)) = 0, ∀i < 2n. βi,i+n+2(I(Gn)) = 0, ∀i > 2n by Hochster’s
Formula.

Applying Theorem 2.1.2 and realizing that βi,j(I(Gn)) = 0, ∀j > |V (Gn)| = 3n+2,
we have that βi,j(I(Gn)) = 0, ∀j > i+ n+ 2. Then,

Corollary 3.5.7. reg(I(Gn)) = n+ 2.
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Chapter 4

Conclusions and Further Work

It is a hard problem to give closed formulas for the graded Betti numbers of families
of edge ideals apart from the basic ones. In this dissertation, we have provided
combinatorial formulas for all the graded Betti numbers of edge ideals associated
to two particular families of graphs: the complementary graphs of cycles of length
greater than or equal to 4, Cc

l with l ≥ 4, and the bipartite complementary graphs
of cycles of even length greater than or equal to 6, Cbc

2s with s ≥ 3 (Theorems 2.3.3
and 3.2.15). These two families are the minimal edge ideals with regularity strictly
greater than 2 and the minimal bipartite edge ideals with regularity strictly greater
than 3, respectively, in the sense that

reg(I(G)) > 2⇒ ∃ l ≥ 4 /Cc
l < G

and, when G is bipartite,

reg(I(G)) > 3⇒ ∃ s ≥ 3 /Cbc
2s < G.

Let denote by ui the maximal degree of an i-th syzygy of I. From the definition
of regularity, it is clear that these degrees are bounded by reg(I) + i. This bound is
eventually reached, though, it is not sharp in general. The knowledge of some of the
graded Betti numbers allows us to get better bounds for ui.

When we deal with monomial ideals generated in degree 2, Taylor’s resolution
provides the bound ui ≤ 2(i + 1), which is thight up to i = µ(G) − 1 by Lemma
2.1.1. However, with the notation id := min

1≤i≤p
{i : βi,i+d 6= 0}, 2 ≤ d ≤ reg(I(G)),

introduced in Lemma 2.1.3, we can thighten the conjunction of those bounds by
using Theorem 2.1.2 in the case of edge ideals:

• ui = i+ 2, if i < µ(G),

89
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• ui ≤ miniµ(G)−1≤id≤i
{id + d+ ⌊3(i−id)

2
⌋} if µ(G) ≤ i < ireg(I(G)),

• ui ≤ reg(I(G)) + i, if i ≥ ireg(I(G)).

Therefore, the more values id we know, the thighter the bound in the middle part
is. Our contribution is a combinatorial characterization of i3 for edge ideals I with
reg(I) > 2 and i4 for bipartite edge ideals I with reg(I) > 3 (Theorems 2.4.6 and
3.3.9).

Aldo Conca brought to our attention that similar bounds are still valid in the
more general context of Koszul algebras (see [2]). Edge ideals are Koszul algebras
([30]) and the behaviour of their graded Betti numbers suggest the same behaviour
in the general case of Koszul algebras.

Edge ideals with regularity 2 are characterized by Fröberg’s Theorem. In the
bipartite case, they correspond to the family of Ferrer graphs. Furthermore, one of
the main results in this dissertation is the characterization of bipartite edge ideals
with regularity 3 given in Theorem 3.3.11. Unfortunately, we have seen examples
where the regularity of an edge ideal (resp. bipartite edge ideal) is 3 or 4 (resp. 4 or
5) depending on the characteristic of the ground field, see Remark3.3.13. Therefore,
it is hopeless to find a purely combinatorial characterization in terms of the defining
monomials of edge ideals with regularity strictly greater than 2, or 3 for bipartite
edge ideals. A natural question arising from that is

Question 4.0.8. Under what conditions is the regularity of an edge ideal independ
on the characteristic of the ground field?

In spite of the characteristic dependence, there is hope for a very sharp bound on
the regularity of a bipartite edge ideal I(G). We saw in section 3.5 that

reg(I(G)) ≥ µ(G) + 1

and mentioned some families of graphs for which the bound becomes an equality.
Many of these families are bipartite graphs under additional conditions. However,
there are examples of bipartite graphs G such that reg(I(G)) > µ(G)+1 like Cbc

2s and
Gn (Theorem 3.2.15, Corollary 3.5.7), path graphs and cycles of length 6s+ 2 ([43]).
In all these cases, one has the identity reg(I(G)) = µ(G) + 2. After heavy computer-
assisted computations based on the algorithm in Appendix A, we have not found
any bipartite graph such that reg(I(G)) > µ(G) + 2, and hence we are interested in
proving or finding some counterexample to

Conjecture 4.0.9. Let G be a bipartite graph, then

reg(I(G)) ≤ µ(G) + 2 .



Appendix A

An algorithm for constructing all

non-isomorphic bipartite graphs

We deal with bipartite graphs represented by its biadjacency matrices. The problem
we address in this appendix is related to isomorphisms between connected bipartite
graphs. In terms of biadjacency matrices, two bipartite graphs on the same vertex set
V = A⊔B are isomorphic if and only if the biadjacency matrix of one of those graphs
can be obtained from the biadjacency matrix of the other one by permuting rows and
columns and, in the case |A| = |B|, transposing. We consider the equivalence relation
given for those operations on the set of biadjacency matrices. Then, our aim is to
design an algorithm for constructing a representative element for each equivalence
class. We will define also an order in that set of matrices and we will choose the
greatest one for each equivalence class.

A.1 Terminology

First of all, we introduce some terminology specific for this context, not related to
other possible meanings in the literature.

We denote the set of permutations on [n] by Sn and the permutation matrix
corresponding to a permutation σ by Pσ.

Let denote by Mm×n({0, 1}) the set of all matrices with m rows and n columns
and whose entries are 0 or 1. Let M = (ai,j),M

′ = (a′i,j) ∈Mm×n({0, 1}), then

• We say that M and M ′ are equivalent, and denote M ∼ M ′, if M can be
obtained from M ′ after permuting rows and columns. If n = m, transposition
is also allowd. This is an equivalence relation.
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• M is said to be lexicographically greater than M ′ if

(a′1,1, . . . , a
′
1,n, a

′
2,1, . . . , a

′
m,1, . . . , a

′
m,n) ≤lex (a1,1, . . . , a1,n, a2,1, . . . , am,1, . . . , am,n) .

• M is called a lexicographic representative if M ′ ≤lex M, ∀M ′ ∼ M . There is a
unique lexicographic representative in each equivalence class.

• We say that M is row-normalized (resp. column-normalized) if it is lexico-
graphically greater that any other matrix we can get permuting rows (resp.
columns) inM . In other words, M is row-normalized (resp. column-normalized)
if MPσ ≤lex M, ∀σ ∈ Sm (resp. PγM ≤lex M, ∀γ ∈ Sn). M is said to be nor-
malized if it is row-normalized and column-normalized. If M is a lexicographic
representative, then it is normalized.

• We say that r ∈ [n] is a break for the row f ∈ [m] if either r = 1 or r > 1 and
∃k, 1 ≤ k < f , such that ak,r−1 = 1 and ak,r = 0. We notice that if j is a break
for i then it is also a break for every i′ ≥ i.

A.2 Theoretical Results

Lemma A.2.1. A matrix M = (ai,j) ∈ Mm×n({0, 1}) is (P1) column-normalized if
and only if it satisfies the property (P2): if ai,j = 1, then either ai,j−1 = 1 or j is a
break for the row i.

Proof. We prove ¬P1⇔ ¬P2.
¬P2 ⇒ ¬P1) Let us assume that there exist i1, j such that ai1,j−1 = 0, ai1,j = 1

and j is not a break for i1. We fix such a j, and denote by i0 the minimum i satisfying
those conditions. Hence, ai,j−1 = 0 implies ai,j = 0, ∀i < i0, and ai,j−1 = 1 implies
ai,j = 1.

After swapping columns j − 1 and j in M , we obtain a new matrix M ′ = (a′i,j)
such that

i) (a′1,1, . . . , a
′
i0,j−2) = (a1,1, . . . , ai0,j−2) if j > 2, or

ii) (a′1,1, . . . , a
′
i0−1,n) = (a1,1, . . . , ai0−1,n) if j = 2.

Therefore, we have M <lex M
′ since a′i0,j−1 = ai0,j = 1 > 0 = ai0,j−1.

¬P1 ⇒ ¬P2) Let assume now that there exists a permutation γ ∈ Sn such
that M <lex MPγ = M ′. Let set f := min{i ∈ [m] : ∃j ∈ [n] with ai,j 6= a′i,j}, and
k = min{j ∈ [n] : af,k 6= a′f,k}. There exists c > k with af,c = 1 since af,j = 0, ∀j > k,
implies |{j ∈ [n] : af,j = 0| 6= |{j ∈ [n] : a′f,j = 0}|. Then, there exists j0, k ≤ j0 < c,
such that af,j0 = 0 and af,j0+1 = 1 and al,j0 = al,j0+1, ∀l < f (i.e., j0 is not a break
for f).



A.2. THEORETICAL RESULTS 93

Corollary A.2.2. Let M be a column-normalized matrix with n columns, and let
p, q be two consecutive breaks for the same row r or p be the greatest break for r and
q = n+ 1. Then

∃0 ≤ l ≤ q − p /ar,p+t =

{

1 if 0 ≤ t < l;
0 if l ≤ t < q − p.

(A.1)

This result allows us to represent each row i in a column-normalized matrix M =
(ai,j) ∈Mm×n({0, 1}) by a pair of vectors of the same length:

• Ri = {ri,1, . . . , ri,ti}, whose entries are the breaks for that row; and

• Li = {li,1, . . . , li,ti}, where li,j is the length of the run of ones starting at ri,j,
that correspond to the index l in (A.1).

Thus, every column-normalized matrix M ∈ Mm×n({0, 1}) is determined by the
vectors R(M) := {R1, . . . , Rm} and L(M) := {L1, . . . , Lm}.

Remark A.2.3. Notice that

• 1 = ri,1 ≤ ri,2 ≤ · · · ≤ ri,ti ≤ n,

• t1 ≤ t2 ≤ · · · ≤ tm, and

• ∀i, j, ∀k > i, ∃j′/ri,j = rk,j′.

Lemma A.2.4. Let M = (ai,j) ∈ Mm×n({0, 1}) be column-normalized with breaks
vector R(M) = {R1, . . . , Rm}. We fix a row f > 1 and two columns k1, k2 with
1 ≤ k1 < k2 ≤ n. Then,

• if there exists a break for f , rf,j, with k1 < rf,j ≤ k2, then there exists i < f
such that ai,k1 = 1, ai,k2 = 0 and ai′,k1 = ai′,k2, ∀i

′ < i;

• if there exists no such a break, then ai′,k1 = ai′,k2, ∀i
′ < f .

Proof. Let us assume first that there is no break rf,j ∈ Rf with k1 < rf,j ≤ k2 and
let i < f . If ai,k2 = 0, then ai,k1 = 0 (otherwise there is a break between k1 and k2
for the row i+ 1 and, as a consequence, for every row greater that or equal to i+ 1,
including f). Likewise, if ai,k2 = 1 then ai,k1 = 1 by Lemma A.2.1.

Let us suppose now that there exists rf,j ∈ Rf with k1 < rf,j ≤ k2. We use
induction on f . For f = 2, if there exists r2,j with 1 ≤ k1 < r2,j, then a1,j′ = 1, ∀j′ <
r2,j and a1,j′ = 0, ∀j′ ≥ r2,j. In particular, a1,k1 = 1 and a1,k2 = 0. We assume
that the claim is true for 1 < f < m. Let suppose that there exists J ⊂ [tf+1] with
J 6= ∅ such that ∀j ∈ J , 1 ≤ k1 < rf+1,j ≤ k2 ≤ n. If rf+1,j ∈ Rf for j ∈ J , then
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∃i < f < f + 1 / ai,k1 = 1, ai,k2 = 0 and ai′,k1 = ai′,k2, ∀i
′ < i. If rf+1,j 6∈ Rf , ∀j ∈ J

(so |J | = 1), then af,rf+1,j−1
= 1 and af,rf+1,j

= 0. By Lemma A.2.1, af,k1 = 1 and
af,k2 = 0. Moreover, ai′,k1 = ai′,k2, ∀i

′ < f < f + 1 because of the first part in this
proof.

Given a column-normalized matrixM = (ai,j), i ∈ [m], X ⊂ [n] and a permutation
σ ∈ Sm, we set

Bσ
i,0(X) := {c ∈ X / aσ−1(i),c = 0} , Bσ

i,1(X) := {c ∈ X / aσ−1(i),c = 1} ,

and, if we are given also a vector b ∈ {0, 1}i,

Bσ
b := Bσ

i,bi
◦Bσ

i−1,bi−1
◦ · · · ◦Bσ

1,b1
([n]) .

We establish a partial order among the last kind of sets. Let b, b′ ∈ {0, 1}i, then

Bσ
b < Bσ

b′
def
⇔ (b1, . . . , bi) <lex (b

′
1, . . . , b

′
i) .

and we denote by Bσ
〈i,j〉 the j-th largest non-empty set Bσ

b with b ∈ {0, 1}i.

We also denote by Xσ
1,1 := Bσ

1,1([n]) and, if i > 1, Xσ
i,j := Bσ

i,1(B
σ
〈i−1,j〉).

Lemma A.2.5. Let M = (ai,j) ∈ Mm×n({0, 1}), σ ∈ Sm and γ ∈ Sn. Then, the
matrix M ′ = (a′i,j) = PσMPγ is column-normalized if and only if γ holds

∀i ∈ [m], ∀b ∈ {0, 1}i−1, x ∈ Bσ
b|{1} and y ∈ Bσ

b|{0} ⇒ γ(x) < γ(y). (A.2)

Proof. ⇒) Let M ′ be column-normalized and x ∈ Bσ
b|{1} and y ∈ Bσ

b|{0} with b ∈

{0, 1}i−1 and i ∈ [m]. Then, a′i,γ(x) = 1, a′i,γ(y) = 0 and a′l,γ(x) = a′l,γ(y), ∀l < i. By

Lemma A.2.4, there is no break for i between γ(x) and γ(y). Thus, if γ(x) > γ(y),
we have that a′i,γ(x)−1 = 1, a′i,γ(x)−2 = 1, . . . , a′i,γ(y) = 1 by Lemma A.2.2. Hence,

γ(x) < γ(y).

⇐) Let us prove now that if a′i,j = 1 with j 6∈ R′
i, then a′i,j−1 = 1. After that, we

will be done by Lemma A.2.1.
Let us suppose ∃(i, j) / a′i,j−1 = 0, a′i,j = 1 and j 6∈ R′

i. We consider

i0 := min{i ∈ [m]/∃j ∈ [n] with a′i,j−1 = 0, a′i,j = 1 and j 6∈ R′
i}, and

j0 := min{j ∈ [n] with a′i0,j−1 = 0, a′i0,j = 1 and j 6∈ R′
i0
}} .

We have a′i,j0−1 = a′i,j0 , ∀i < i0 by definition of i0, since j 6∈ R′
i0 . Thus, γ−1(j0 −

1) ∈ Bσ
b|{0} and γ−1(j0) ∈ Bσ

b|{1} for b ∈ {0, 1}i0−1 with bi = a′i,j0−1 = a′i,j0. Therefore,

γ(γ(j0)) < γ(γ(j0 − 1)), which is a contradiction.
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A.3 Representative Test

Proposition A.3.1. A normalized matrix is a lexicographic representative if and only
if there exist σ ∈ Sm, f ∈ [m] and k ∈ [tf ] such that

• li,j = |Xσ
i,j|, ∀i < f and, if i = f , ∀j < k;

• lf,k < |Xσ
f,k|.

Proof. ⇐) Let us suppose that there exist such σ, f and k. We consider γ ∈
Sn satisfying (A.2) and M ′ = (a′i,j) = PσMPγ . We denote by R′ := R(M ′) =
{{r′1,1}, . . . , {r

′
m,1, . . . , r

′
m,tm}} and L′ := L(M ′) = {{l1,1}, . . . , {lm,1, . . . , lm,tm}}.

We will see that Xσ
i.j = {γ

−1(c) : c ∈ [r′i,j, r
′
i,j+1)anda

′
i,c = 1} (r′i,ti+1 = n + 1).

By definition, Xσ
1,1 = {γ−1(c) : c ∈ [n] and a′1,c = 1} and, for i > 1, we have to

check [r′i,j, r
′
i,j+1) = γ(Bσ

〈i−1,j〉).

We first prove that γ(Bσ
b ) is a closed interval. If i = 2, then γ(Bσ

1 ) = [1, |Bσ
1 ]|

and γ(Bσ
0 ) = [|Bσ

1 | + 1, n] by Corollary A.2.2; if i > 2 and z satisfies x < z < y
with x, y ∈ γ(Bσ

b ), b ∈ {0, 1}
i, then x, y ∈ γ(Bσ

b\{bi}
), which is an interval. Thus,

z ∈ γ(Bσ
b\{bi}

). If a′i,z = 1 − bi, then γ−1(z) ∈ Bσ
b\{bi}|{1−bi}

and x, y ∈ Bσ
b{bi}|{bi}

.
Hence, if bi = 1, then y < z, and, if bi = 0, then z < x. In both cases we get a
contradiction.

We notice that the first element of γ(Bσ
〈i−1,j〉) is a break for i in M ′: if j = 1, the

first element in γ(Bσ
i−1,1) is 1, which is always a break; if j > 1, let x be the first

element in γ(Bσ
〈i−1,j〉) = γ(Bσ

b ), b ∈ {0, 1}
i−1, then x − 1 ∈ γ(Bσ

〈i−1,j−1〉) = γ(Bσ
b′),

b′ ∈ {0, 1}i−1. As Bσ
〈i−1,j−1〉 < Bσ

〈i−1,j〉, the first non-zero element in b′ − b (let us

denote it by p) is positive. So a′p,x−1 = 1 and a′p,x = 0 with p < i and x is a break for
i in M ′.

Moreover, γ(Bσ
〈i−1,j〉) only contains one break for i inM ′: let r′1, r

′
2 ∈ γ(Bσ

〈i−1,j〉)∩R
′
i

with r′1 < r′2, then ∃i
′ < i / a′i′,r′2−1 = 1 and a′i′,r′2

= 0, so r′2 − 1 6∈ γ(Bσ
〈i−1,j〉), which

is a contradiction with the fact that γ(Bσ
〈i−1,j〉) is an interval.

Therefore, l′i,j = |Xσ
i,j| and we have li,j = l′i,j, ∀i < f , ∀j < k if i = f , and

lf,k < l′f,k. Hence M ≤lex M
′.

⇒) Let us assume that there exist σ ∈ Sm and γ ∈ Sn such that M <lex PσMPγ ,
where M ′ := PσMPγ is a lexicographic representative. Then, there exist f ∈ [m] and
k ∈ [tf ] such that li,j = l′i,j, ∀i < f , ∀j < k if i = f , and lf,k < l′f,k. Let us see
l′i,j = |X

σ
i,j|, ∀i, j.

Since M ′ is a lexicographic representative, it is, in particular, column-normalized.
Then, by Lemma A.2.5, γ satisfies (A.2). Hence, as we saw in the first part of this
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proof, [r′i,j , r
′
i,j+1) = γ(Bσ

〈i−1,j〉). Thus,

l′i,j = |{c ∈ [r′i,j, r
′
i,j+1) : a

′
i,c = 1}|

= |{c ∈ γ(Bσ
〈i−1,j〉) : a

′
i,c = 1}|

= |{x ∈ Bσ
〈i−1,j〉 : aσ−1(i),x = 1}|

= |Bσ
i,1(B

σ
〈i−1,j〉)|

= |Xσ
i,j|.

A.4 Connectivity Test

Lemma A.4.1. Let M = (ai,j) ∈ Mm×n({0, 1}) be a normalized matrix with lengths
vector L(M) = {L1, . . . , Lm}. Then, M is the non-connected biadjacency matrix of a
bipartite graph G without isolated vertices if and only if ∃i ∈ [m] / ai′,n = 0, ∀i′ < i,
and Li = {0, . . . , 0, li,ti} with li,ti 6= 0.

Proof. ⇒) Since G has no isolated vertices, M has no column with all its entries
equal to 1. Then, there exists i ∈ [n] such that ai,n = 1. We set N := min{i ∈ [n] :
ai,n = 1}. We have aN,j = 1, ∀rN,tN ≤ j ≤ n. If N = 1, then a1,j = 1, ∀j ∈ [n] (as
M is column-normalized) and G is connected, what is a contradiction. Thus, N ≥ 2.

We prove by reduction to the absurd that there exists 1 < I ≤ N such that
lI,k = 0 ∀k < tI . Let us suppose

∀i, 1 < i ≤ N, ∃k < ti / li,k 6= 0 . (A.3)

We are going to reach the following contradiction: G[W ] is a connected graph where
W is the set of vertices corresponding to the columns of M (recall G has no isolated
vertex). Let us see that for every row f > 1, (Pf:) the vertices corresponding to the
columns c with rf,tf ≤ c < rf,tf + lf,tf are connected to the vertices corresponding to
1 ≤ c < rf,tf . We prove it by induction on f . We have a1,n = 0, so L1 = {l1,1} and
L2 = {l2,1, l2,2}. By (A.3), l2,1 6= 0, so (Pf) is true for f = 2. If (Pf) is true for f , then
it is also true for f + 1 by A.3). For the case f = N , we obtain the desired result.

⇐) If ai′,n = 0, ∀i′ < i then ai′,j = 0, ∀i′ < i, ∀j ≥ ri,ti, otherwise there is a break
for i greater than ri,ti. As Li = {0, . . . , 0, li,ti}, we have al,j = 0, ∀l ≥ i, ∀j < ri,ti since
M is row-normalized. Thus, no vertex corresponding to a column c with ri,ti ≤ c ≤ n
or a row f with i ≤ f ≤ m is connected to the rest of vertices.
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A.5 Main algorithm

Given two integers, m and n, we will work with two lists lengths and breaks repre-
senting the biadjacency matrix of a (m,n)-bipartite graph. Each list consists of m
lists corresponding to the rows of the matrix.

1 Make sure the number of columns (n) is bigger than or iqual to the number of
rows (m).

2 Initialize parameters in order to obtain a matrix with all estries iqual to 1 and
add it to the list.

3 Find the last non-zero entry in lengths, let say lengths row segment.
4 Reduce its value one unit.
5 Modify the entries “on the right” of the vector lengths row with the maximal

possible values.
6 Check the first row of the associated matrix with a 1 in the last column.
7 Take a copy of lengths row for the next vector in lengths.
8 Select the column x in the matrix where we have replaced a 1 with a 0 to

compare it with the breaks for the corresponding row, row (b ≤ x < b + 1 with
b ∈breaks row).

9 Modify the vector breaks (row+1) removing old breaks or introducing new ones.
In the last case, also introduce a new entry in lengths (row+1) iqual to 0 in the
corresponding position. Tere are four posibilities:

a)
x x+ 1

1 . . . 0 0 . . . *
b b+ 1

→
Replace old break with the new one.
Keep 0 for the corresponding length.

b)
x x+ 1

1 . . . 0 *
b b+ 1

→
Insert new break.
Insert 0 in the corresponding length.

c)
x x+ 1

0 0 . . . *
b b+ 1

→
Remove old break.
Remove the corresponding length.

d)
x x+ 1

0 *
b b+ 1

→ Do nothing.

10 Replace the entries of lengths and breaks after row+1 with copies of this one.
11 Check whether the associated graph has no isolated vertices.
12 Check whether the associated graph is connected.
13 Check whether the associated matrix M is a lexicographic leader.
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14 If the matrix M is not square and 11,12,13 are verified then we add M to the
list list.

15 If the matrix M is square we also have to check whether the matrix is greater
than its transpose and all those equivalent to it before adding M to list.

Notation:

matrix(breaks,lengths) means the matrix coded by the two vectors,
insert(object,vector,position) means create a new position in vector after position

and put there the value object,
remove(position,vector) means to delete the position position from vector,
last(vector) denote the element in the last position of vector.

A.6 Pseudocode

Representative Test’s Pseudocode

Input: Two lists breaks and lengths and a logic parameter transpose;
Output: TRUE or FALSE ;

M :=matrix(breaks,lengths);

finished :=FALSE;

usedRows:={};
realRow :=1;

candidate:=1;

B := {{1, . . . , n}} ;
while finished=FALSE do

if candidate 6∈ usedRows & candidate < m then

continue:=TRUE;

hip:=TRUE;

newB :={};
for j from 1 to —B realRow— do

if transpose=TRUE then

B1:={c ∈ B realRow j : M c candidate=1};
B0:={c ∈ B realRow j : M c candidate=0};

else

B1:={c ∈ B realRow j : M candidate c=1};
B0:={c ∈ B realRow j : M candidate c=0};

end if

if B1 6= ∅ then newB :=newB∪{B1}; end if

if B0 6= ∅ then newB :=newB∪{B0}; end if

if |B1| <lengths realRow j then continue:=FALSE; break; end if

if |B1| >lengths realRow j then
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continue:=FALSE;

hip:=FALSE;

break;

end if

end do

if hip=TRUE then

if continue=TRUE & realRow< m then

usedRows:=usedRows∪{candidate};

realRow :=realRow+1;

candidate:=1;

B := B∪{newB};

end if

else finished :=TRUE;

end if

else candidate:=candidate+1;

end if

if candidate ≥ m then

if usedRows=∅ then

candidate:=last(usedRows)+1;

realRow :=realRow+1;

remove(—usedRows—,usedRows);

remove(|B|,B);

else finished :=TRUE;

end if

if realRow≥ m then candidate:=last(usedRows)+1; end if

end if

end do

return hip;

Main Algorithm’s Pseudocode

Input: two positive integers m,n;

Output: The list of all non-isomorphic (m,n)-bipartite graphs;
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1 if m > n then swap their values end if

2















end1 :=1;
lengths := {{n}, . . . , {n}}; (∗ ∗ |lengths | = m ∗ ∗)
breaks := {{1, n + 1}, . . . , {1, n + 1}}; (∗ ∗ |breaks | = m ∗ ∗)
list := {matrix(lengths, breaks)}
while lengths 6= {{1}, {0} . . . , {0}} do

3

{

row :=max{i ∈ [m] : lengths i 6= 0};
segment :=max{k : lengths row k 6= 0};

4 lengths row segment :=lengths row segment-1;

5







for i from segment+1 to —lengths row— do

lengths row i:=breaks row (i+1)-breaks row i;
end do

6

{

if segment<—lengths— & row<end1 then end1 :=row ; end if

if segment=—lengths— & row=end1 then end1 :=m+1; end if ;
7 lengths (row+1):=lengths row ;

if row< m then

8 x:=breaks row segment+lengths row segment ;

9























































































if x 6= breaks row segment then

if x+ 1 6= breaks row (segment+1) then
breaks (row+1) (k+1):=x;

else

insert(x,breaks (row+1),segment);
insert (0,lengths (row+1),segment);

end if

end if

if x = breaks row segment & x + 1 6= breaks row (segment+1)
then

remove(segment,breaks row);
remove(segment,lengths row);

end if

10











for i from row+2 to m do

lengths i:=lengths (row+1);
breaks i:=breaks (row+1);

end do
end if

11 if (end1≤ m & ∃j s.t. lengths m j 6= 0)

12 & ∀i = 1, . . . , end1 ,
∑|lengths i|−1

j=1 lengths i j 6= 0

13 & IsRlex(breaks,lengths,transpose=FALSE) then

14
if m 6= n then

list :=list ∪{M};
else

15

{

if M t ≤lex M & IsRlex(breaks,lengths,transpose=TRUE) then

list :=list∪{M};
end if

end if

end if

end do

return list ;
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