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Abstract 13 

Context: Biomass equations are needed to correctly quantify harvestable stock and biomass for 14 

sustainability efforts in forest management, but this kind of information is scarce in Ethiopia. 15 

Aims: This study sought to develop biomass models for five of the most common native tree species 16 

in the Chilimo dry afro-montane mixed forest in the central highlands of Ethiopia: Allophyllus 17 

abyssinicus, Olea europaea ssp.cuspidata, Olinia rochetiana, Rhus glutinosa and Scolopia theifolia. 18 

Comparison with generalized models was intended to show the greater accuracy of the specific 19 

models. 20 

Methods: A total of 90 trees from different diameter classes were selected, felled and divided into 21 

different biomass compartments. Biomass equation models were fitted using joint-generalized least 22 

squares regression to ensure the additivity property between the biomass compartments and total 23 

biomass. 24 
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Results: These were the first models developed for these species in African tropical forests. Models 25 

were including diameter at breast height and total height as independent variables, obtaining more 26 

accurate biomass estimations using these models than from generalized models. 27 

Conclusion: Fitted models are reliable for estimating aboveground biomass in the Chilimo forest and 28 

for more general application in similar forest types. Model applicability for biomass or carbon 29 

estimation is high within forest inventory data contexts. 30 

 31 
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 35 

1. Introduction 36 

 37 

Forests play an important role in mitigating global climate change. Forests cover over 4·109 hectares of 38 

the earth’s surface (IPCC 2007), with an estimated carbon (C) stock of 363 Pg C in living biomass 39 

(Pan et al. 2011). Tropical forests are especially important; they account for about 60% of global forest 40 

cover and store from 229 Pg C (Baccini et al. 2012) to 263 Pg C (Pan et al. 2011) in aboveground 41 

biomass, roughly 20 times the annual emissions from combustion and changes in land use 42 

(Friedlingstein et al. 2010). Intact tropical forests contributed 1.2 Pg C ha-1 to the global carbon sink, 43 

which represents half the contribution of all established world forests (Pan et al. 2011). Tropical dry 44 

forests represent around 42% of all tropical forest ecosystems (Miles et al. 2006) and possess great 45 

potential for carbon sequestration, especially through protection, conservation and forest management 46 

in light of the high existing degradation and deforestation rates. 47 

Biomass and carbon stock estimates for tropical forest species enhance our understanding of 48 

the importance of tropical forests in the global carbon cycle and how to manage these forests for 49 

sustainable production and fuelwood harvesting. In developing countries, about 38% of primary 50 
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energy consumption comes from forest biomass (Sims 2003); in Ethiopia, biomass supplies 93% of 51 

total household energy consumption (Shiferaw et al. 2010). To successfully implement mitigating 52 

policies and take advantage of the REDD+ (Reducing Emissions from Deforestation and Forest 53 

Degradation) programme of the United Nations Framework Convention in Climate Change 54 

(UNFCCC) (Chaturvedi et al. 2011), these countries need well-authenticated estimates of forest carbon 55 

stocks. 56 

Consequently, there is an urgent need to quantify tree biomass through direct or indirect 57 

methods (Brown 2002). Destructive methods calculate biomass directly by harvesting the tree and 58 

measuring the actual mass of each of its compartments (Kangas and Maltamo 2006). Though very 59 

accurate (Henry et al. 2011), cutting down trees is both costly and time consuming. Indirect methods 60 

using biomass models and biomass expansion factors (BEFs) to estimate tree biomass are time 61 

efficient (Peltier et al. 2007). However, tools for biomass estimation remain scare in the tropics and 62 

existing generalized models do not accurately represent biomass in the actual forests (Henry et al. 63 

2011). Most existing models for tropical species were developed in Latin America and Asia. Though 64 

great efforts have been made to develop models for several tropical species in recent years, particularly 65 

in Africa (e.g., Henry et al. 2011; Fayolle et al. 2013; Mate et al. 2014; Ngomanda et al. 2014), 66 

attempts to develop biomass equations for Sub-Saharan Africa have been very limited (Henry et al. 67 

2011). To obtain precise and accurate biomass and carbon stock estimates in forests, different models 68 

must be developed for different species and forest types. Most of the recent biomass models in Africa 69 

have been developed for wet or moist forests (e.g., Djomo et al. 2010; Fayolle et al. 2013; Ngomanda 70 

et al. 2014), leaving dry forests poorly studied. The 2011 review of Henry et al. reported biomass 71 

equations for only six forest species in Ethiopia. 72 

Biomass partitioning is an important factor in quantifying exploitable dendromass (for timber 73 

yield or firewood). Data that accurately reflects biomass amounts and distribution between 74 

compartments for different species in tropical forests can aid in the application of sustainable forest 75 

management for these resources. 76 
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Deforestation has reduced Ethiopia’s forest cover in the last century. Forest policies aimed at 77 

stopping this process are being implemented, due to the important ecosystem services that the forest 78 

provides (timber, firewood, soil erosion reduction, carbon sink…). Carbon stock estimates in Ethiopia 79 

range from 153 Tg C (Houghton, 1999) to 867 Tg C (Gibbs et al. 2007). Estimates of mean 80 

aboveground biomass carbon stock density vary from 26 Mg C ha-1 (Brown 1997) to 18 Mg C ha-1 81 

(FAO 2010) depending on the methodology and tools used. Mean values as high as 278 Mg C ha-1 and 82 

414 Mg C ha-1 have been found in dense forests such as the Egdu Forest (Feyissa et al. 2013) and the 83 

Arba Minch Ground Water Forest (Wolde et al. 2014), respectively. Localized carbon stocking 84 

capacity studies are urgently needed to aid sustainable management of the existing forest (IBC 2005). 85 

Located in the central highland plateau of Ethiopia, the Chilimo-Gaji forest is one of the few 86 

remaining dry afro-montane mixed forests, composed of broad-leaf and predominantly coniferous 87 

species (Kassa et al. 2009). The forest represents a vital ecological space for birds, mammal species 88 

and water supply. It is the source of several large rivers, including the Awash River. However, the 89 

Chilimo-Gaji forest has been subjected to human impact for over 2,000 years. The current rate of 90 

deforestation is extremely high due to clearing for fuelwood, agricultural land expansion, lumber and 91 

farming. Chilimo forest cover has shrunk from 22,000 ha in 1982 to its present-day size of 6,000 ha 92 

(Dugo 2009; Teshome and Ensermu 2013). In order to preserve this area and the important 93 

environmental services it provides, the Ethiopian government has moved to protect this woodland by 94 

proclaiming it a National Forest Priority Area. Although some species were protected by law, other 95 

species are under increased pressure from the local human population in search of wood for fuel, 96 

construction, farm implements and charcoal (Teshome and Ensermu 2013). 97 

Given the lack of aboveground biomass estimates for most Ethiopian species (see the review 98 

of Henry et al. 2011), the main objective of this study was to develop biomass and carbon stock 99 

estimation models for use in sustainable biomass harvesting practices and carbon stock estimation for 100 

five of the most common native broadleaf species in a dry tropical afro-montane forest: Allophyllus 101 

abyssinicus (Hochst.) Radlk. Olea europaea L. ssp. cuspidata (Wall. ex G. Don) Cif, Olinia 102 
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rochetiana A. Juss, Rhus glutinosa Hochst. ex A. Rich. and Scolopia theifolia Gilg. Although the 103 

coniferous Juniperus procera Hochst. ex Endl. and the broadleaf Podocarpus falcatus (Thunb.) R.Br. 104 

ex Mirb. are the most abundant and dominant tree species in this forest, cutting them down is 105 

prohibited by law and it was therefore not possible to develop biomass-based equations for these 106 

endangered species. 107 

 108 

2. Materials and methods 109 

2.1. Study site location 110 

The experimental site was located in the Chilimo-Gaji dry afro-montane forest of the Western Shewa 111 

zone, in the Dendi district of the central highlands of Ethiopia (38° 07′ E to 38° 11′ E longitude and 9° 112 

03′ to 9° 06′ N latitude), at an altitude of 2,170–3,054 m above sea level (Figure 1). The mean annual 113 

temperature ranges between 15ºC and 20ºC and average annual precipitation is 1,264 mm (Dugo 2009) 114 

with a bimodal rainfall distribution of lower precipitation from November to January and a higher 115 

rainy season from May to September. Köppen’s typology classifies the Chilimo-Gaji forest as a 116 

temperate highland climate with dry winters (Cwb, Subtropical highland variety) (EMA 1988). The 117 

main rock type in the area is basalt and some areas are covered with other volcanic rocks of more 118 

recent formation. 119 

 120 

2.2. Exploration and pilot study 121 

This study included a stratification of the Chilimo-Gaji forest based on dominant species composition, 122 

representativeness and accessibility. Due to the lack of data, a pilot survey was taken prior to biomass 123 

data collection in order to compile information about species composition, diameter distribution and 124 

general forest conditions. A total of thirty-five 20 × 20 m square sample plots were established (Figure 125 

1) between the altitudes of 2,470 and 2,900 m, based on the Neyman optimal allocation formula (Köhl 126 

et al. 2006). Thirty-three different native species (22 tree and 11 shrub species) were recorded in the 127 

Chilimo-Gaji forest. Tree density (N) was 591±39 tree ha-1 (stand basal area (G) of 24.5±2.3 m2 ha-1) 128 
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and the most abundant species were J. procera and P. falcatus (136±28 and 116±24 tree ha-1 129 

respectively; 42% of N and 50% of G). The five next most abundant species accounted for one third of 130 

the total tree population in terms of mean density and 27% of total basal area: A. abyssinicus 36.4±11.1 131 

tree ha-1 (6% of total N) and 0.8±0.3 m2 ha-1 (3% of total G); O. europaea 54.3±13.0 tree ha-1 (9% of 132 

N) and 3.0±0.7 m2 ha-1 (12% of G); O. rochetiana 59±16 tree ha-1 (10% of N) and 2.1±0.6 m2 ha-1 (8% 133 

of G); R. glutinosa 16±5 tree ha-1 (3% of N) and 0.5+0.2 m2 ha-1 (2% of G) and S. theifolia 34±11 tree 134 

ha-1 (6% of G) and 0.4±+0.2 m2 ha-1 (2% of G). 135 

 136 

2.3. Data 137 

2.3.1. Data collection 138 

The five most abundant and dominant broadleaf tree species in the natural forest (after the endangered 139 

and protected coniferous species J. procera and P. falcatus) were selected for developing aboveground 140 

biomass-based equations for sustainable fuelwood production: A. abyssinicus, O. europaea, O. 141 

rochetiana, R. glutinosa and S. theifolia. 142 

Trees of each species were randomly selected along a forest transect, based on diameter 143 

classes at 5-cm intervals that had been obtained from the pilot inventory data. The trees were 144 

dendrometrically representative of the population, with typical shape and development for each species 145 

studied. A total of 20 trees were felled for each of the most abundant species, in which it was possible 146 

to complete a suitable diameter range (O. europaea, O. rochetiana and R. glutinosa), while 15 trees 147 

were for each of the other species (A. abyssinicus and S. theifolia) (Table 1). Prior to felling, diameter 148 

at breast height (dbh at 1.30 m), stump diameter (db), crown diameter (cd) and crown length (cl) were 149 

measured for each tree. After the trees were cut down, diameter at each meter interval, total height (h), 150 

commercial height (hc) (height up to a stem diameter of 7 cm) and height at branching stems (hb) were 151 

measured. Several biomass compartments were considered: stem with bark, thick branches (diameter 152 

greater than 2 cm) and thin branches (diameter less than 2 cm) with leaves. Trees were felled and 153 

divided in the field into the compartments mentioned. Stem biomass was estimated using stem volume 154 
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(calculated through Smalian’s formula in logs 2 m length) and wood density (Picard et al. 2012), 155 

because it was not possible to weigh heavier logs. Although this indirect method might overestimate 156 

stem biomass (Moundounga Mavouroulou et al., 2014) the short length of the logs would minimise 157 

this tendency. Fresh weights of each compartment were recorded in the field and then samples were 158 

taken to the laboratory and oven dried at 102 ºC until constant weight was reached. The main 159 

dendrometric variables for the sampled trees are listed by species in Table 1. Sampling of larger trees 160 

was not possible due to the prohibition on felling trees in this natural forest (this research was an 161 

exceptional case agreed upon with the local forest user groups) and the fact that trees with diameter 162 

greater than 30 cm were not abundant in the forest. 163 

 164 

2.3.2. Data analysis 165 

A correlation analysis between the biomass dry weight of the different compartments and the biometric 166 

tree measurements was carried out using the Spearman method. To fit the biomass models, different 167 

linear and non-linear equations (Table 2) with additive error term were evaluated for each dry biomass 168 

weight compartment. The best one was selected based on the statistics calculated for each equation: 169 

bias (MRES), root mean square error (RMSE), adjusted coefficient of determination (R2
adj) (Pérez-170 

Cruzado and Rodríguez-Soalleiro 2011), and a graphical analysis of the biological behavior of the 171 

models and the residuals. The selected models were then simultaneously fitted using joint-generalized 172 

least squares regression (also known as seemingly unrelated regression-SUR), where cross-equation 173 

error correlation was taken into consideration to ensure the additivity property between biomass 174 

compartments and total aboveground biomass (Parresol 1999; 2001; Balboa-Murias et al. 2006; Pérez-175 

Cruzado and Rodríguez-Soalleiro 2011; Ruiz-Peinado et al. 2011, 2012). Weighted regression was 176 

used to avoid heteroscedasticity: each observation was weighted by the inverse of its variance to 177 

homogenize the variance of residuals. Models were fitted using the MODEL procedure included in 178 

SAS/ETS software (SAS INSTITUTE INC. 2012). 179 
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 In order to determine how biomass is partitioned between compartments for the species 180 

studied, models were applied to the mean value of each diameter class and the mean height for each 181 

class (calculated in a dbh-height relationship using field data). 182 

 To compare the predictive accuracy of the main general equations developed for tropical dry 183 

forests (Brown et al. 1989; Brown 1997; Brown and Lugo 1992; Chave et al. 2005; Chave et al. 2014), 184 

the Ethiopian site-specific fitted models were evaluated using relative bias (RB) [equation 1], average 185 

deviation (S) [equation 2], relative root mean square error (rRMSE) [equation 3] and a paired t-test for 186 

estimation values. 187 
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where 𝑌𝑌𝑖𝑖 is the observed value, 𝑌𝑌𝚤𝚤�  is the predicted value and n is the number of observations. 191 

 192 

3. Results 193 

3.1. Correlation of dendrometric variables to biomass compartments 194 

The aboveground, stem and thin branches plus foliage dry weight biomass compartments for all five 195 

species were strongly correlated to dbh and stump diameter (Table 3). Similarly, most biomass 196 

compartments were also correlated to total height and commercial height. However, the thick branches 197 

compartment of A. abyssinicus and R. glutinosa were non-correlated to dbh and stump diameter and 198 

most biomass fractions were not significantly correlated to tree branching height, crown length or 199 

crown diameter. Spearman’s correlation results indicated that biomass models could use dbh and total 200 

height as independent variables. 201 

 202 
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3.2. Fitted models 203 

Based on goodness-of-fit statistics and biological behaviour, models 1, 2, 5 and 7 (Table 4) were 204 

selected for different compartments and species. Due to fitting problems, biomass for the different 205 

branches compartments were combined into a crown fraction for O. rochetiana, R. glutinosa and S. 206 

theifolia and one model was fitted for this component. Similarly, the model that treated all 207 

compartments together as aboveground biomass provided the best fit for A. abyssinicus. The calculated 208 

model parameters were statistically significant at the 99% confidence level (p<0.001) (Table 4). All 209 

fitted models for stem biomass showed R2-Adj values higher than 0.75. Due to high variability, branch 210 

or crown models presented lower values, ranging from 0.79 for the thick branches compartment in O. 211 

europaea to 0.55 for crown biomass in S.theifolia. Aboveground biomass models fitted with SUR 212 

(except for A. abyssinicus) showed high R2-Adj values ranging from 0.96 for O. europaea to 0.79 for 213 

S. theifolia. 214 

The selected models were also tested for accuracy based on observed and predicted data. 215 

Figure 2 shows how observed and predicted aboveground biomass values are close to the 1:1 line and 216 

the simultaneous F-test provided no evidence for rejecting the null hypothesis (intercept = 0 and slope 217 

= 1). Thus, bias was not revealed in the fitted models, though model efficiency varied among the 218 

species (Table 4). 219 

 220 

3.3. Biomass partitioning 221 

Aboveground biomass partitioning of O. europaea, O. rochetiana, R. glutinosa and S. theifolia into 222 

stem and crown biomass compartments is summarized in Figure 3. The biomass proportions were 223 

estimated by applying the fitted models to the sample diameter classes and the corresponding 224 

estimated total height. O. europaea and O. rochetiana exhibited similar biomass allocation: the stem 225 

compartment accumulated more biomass than the crown fraction (~60-70%) in all diameter classes. R. 226 

glutinosa crown fraction accumulated more biomass (53%) than stem compartment (47%) in the 10 cm 227 

diameter class; but stem compartment accumulated more biomass than crown fractions in the 15 and 228 
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20 cm diameter classes (61% and 69%, respectively). The S. theifolia crown fraction was always 229 

greater than the stem fraction for all sampled diameter classes. 230 

 231 

 232 

4. Discussion 233 

The biomass models for these tropical dry forest species are valuable tools for policy-makers and 234 

stakeholders, mainly in assisting forest managers in the necessary estimation of fuelwood or carbon 235 

stocks for sustainable management. The models developed in this study included dbh and total height 236 

as independent variables in all the biomass compartments (Table 4). Goodman et al. (2014) showed the 237 

importance of include crown variables to improve tropical biomass estimations. Nevertheless, 238 

correlations of crown variables with biomass were not high (Table 3) (with some exceptions) perhaps 239 

due to the lack of large trees in our dataset. Although commercial height showed a high correlation 240 

with biomass weight, accurate measurement of this variable in the field is very difficult (Segura and 241 

Kanninen 2005). For this reason, total height was selected as independent variable, together with dbh. 242 

Combining these independent variables provided better fit results and estimation values than the use of 243 

dbh alone, as several authors have advocated (e.g., Henry et al. 2011; Feldpausch et al. 2012). Total 244 

height could include information about competition or fertility of the site and may yield less biased 245 

estimates. Though accurate measurement of total height may be challenging, Chave et al. (2005) 246 

observed a standard error reduction from 19.5 % when total height was not available to 12.5% when 247 

total height was available, across all tropical forests types. The independent variables of the models 248 

developed here can be easily measured in the field or are commonly recorded in forest inventories, 249 

facilitating practical, timely and virtually effortless application of these and similar models (Ketterings 250 

et al. 2001). 251 

Equations were developed for each biomass compartment according to species (Table 4). 252 

Models were developed for all biomass compartments of O. europaea, but only an aboveground 253 

biomass equation could be developed for A. abyssinicus, possibly due to the low crown and foliage 254 
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biomass weight of this species. For the other studied species (O. rochetiana, S. theifolia and R. 255 

glutinosa), stem and crown biomass compartment models were developed. Combining thick branches 256 

and thin branches with leaves into a crown biomass compartment resulted in better fitting efficiency 257 

and accuracy than individual models for each compartment. The lower prediction potential of the 258 

branch and foliage biomass models over the stem model has been confirmed in other studies (e.g., 259 

Návar 2009; Ruiz-Peinado et al. 2011; Negash et al. 2013). Cole and Ewel (2006) argue that weather, 260 

herbivores and inter-plant competition can affect the crown biomass compartment. In mixed forests, 261 

inter-specific competition due to the competition process itself or to facilitation could strongly 262 

influence crown geometry (Menalled et al. 1998; Dieler and Pretzsch, 2013), resulting in high crown 263 

biomass heterogeneity. Moreover, although Chilimo-Gaji is a protected forest, pressure from local 264 

people pruning trees for firewood might also modify crown growth and biomass weight (Smektala et 265 

al. (2002), cited in Henry et al. (2010)). 266 

All the estimator parameters for the biomass models showed positive coefficient values for all 267 

species and biomass compartments, except one parameter for crown biomass in O. rochetiana 268 

involving the combination of square diameter and total height (d2h) as an independent variable. This 269 

may indicate that taller trees allocate less biomass to the crown due to light competition processes for 270 

this species (the same tendency was found in Pinus sylvestris L. by Vanninen and Mäkelä 2000). 271 

Although some authors have proposed the use of existing generalized equations to estimate 272 

aboveground biomass in African tropical forests (e.g., Brown et al. 1989; Brown and Lugo 1992; 273 

Chave et al. 2005), others report that generalized models are unsuitable for African tropical forests 274 

(e.g., Henry et al. 2010; Ngomanda et al. 2014). So, the use of species-specific and site-specific 275 

equations are encouraged (Cairns et al. 2003; Henry et al. 2011). Such equations reflect the great 276 

variability in tree architecture and wood gravity among and within species (Henry et al. 2011; Litton 277 

and Kauffman 2008), making it possible to more accurately quantify harvestable biomass for fuelwood 278 

and other purposes. Comparison of generalized models (Brown et al. 1989; Brown 1997; Brown and 279 

Lugo 1992; Chave et al. 2005; Chave et al. 2014) to the fitted models for the species studied (Table 5) 280 
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showed that accuracy varied according to species. All generalized models tested showed a high bias 281 

and that rendered them inappropriate for biomass estimation of S. theifolia (p-value<0.0001). 282 

Similarly, Brown et al. (1989) and Brown (1997) models were unsuitable for four of the species 283 

studied (p-value>0.05 on the t-test only for R. glutinosa) having high average deviation values. Brown 284 

et al. (1989) model has already been describe as unsuitable for tropical African species by Vieilledent 285 

et al. (2012) for a dry forest and Ngomanda et al. (2014) for a moist forest. Brown and Lugo (1992) 286 

model was applicable for three species (A. abyssinicus, O. rochetiana and R. glutinosa), but showed 287 

poor statistics for the latter species. Chave et al. (2005) model proved unsatisfactory for two of the 288 

species studied (R. glutinosa and S. theifolia), but showed acceptable statistics for the other three 289 

species. This model was described as accurate for tropical species by Djomo et al. (2010) and Fayolle 290 

et al. (2013) in African moist forests and Vieilledent et al. (2012) in an African dry forest. Finally, 291 

Chave et al. (2014) model was unexpectedly unsuitable for the same two species as the 2005 model (R. 292 

glutinosa and S. theifolia) and also for O. europaea, although this model was developed with an ample 293 

dataset including trees in larger diameter ranges from tropical areas in America and Asia, including a 294 

new dataset of trees collected in Africa. In light of these results and the high species heterogeneity in 295 

tropical dry forests, the generalized models should be used judiciously and with full awareness of the 296 

potential for error in the estimations (Table 5). 297 

In recent years, several site-specific models have been developed for tropical species in 298 

general. Although the number of site-specific models for sub-Saharan species in particular have been 299 

increasing in last years (e.g, review by Henry et al. 2011; Mugasha et al. 2013; Mate et al. 2014), if 300 

possible, more site-specific models should be developed in order to obtain non-biased biomass 301 

(fuelwood or timber) or carbon estimates for REDD+ projects. So, estimations of carbon sequestration 302 

potential for Ethiopian afro-montane forests (Mokria et al. 2015) could improve accuracy using the 303 

developed biomass models. 304 

 Stem biomass proportions in O. europaea (58% in the 10 cm and 68% in the 25 cm diameter 305 

class) and O. rochetiana (66% in the 10 cm and 68% in the 25 cm diameter class) showed little 306 
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increments across the sampled diameter classes (Figure 3). For R. glutinosa (47% in the 10 cm and 307 

69% in the 20 cm diameter class) and S. theifolia (33% in the 10 cm and 49% in the 20 cm diameter 308 

class), the stem compartment exhibited rapid growth along diameter. The crown biomass fraction of S. 309 

theifolia was generally greater than the stem compartment in the sampled trees. This might be due to 310 

the large, umbrella-shaped crown of this species, which tends to result in a greater proportion of 311 

biomass in the branches than in the stem. Tropical species vary greatly in leaf morphology and crown 312 

structure, leading to differences in biomass allocation among species (Poorter et al. 2006). Our 313 

findings for biomass partitioning align with results of Mate et al. (2014) for three tropical species (of 314 

greater diameter than those sampled in this study): mean biomass partitioning values ranged between 315 

46% and 77% for stems and from 23% to 54% for crowns. Henry et al. (2010) also reported mean 316 

figures indicating higher biomass accumulation in the stem (69%) than in the crown compartment 317 

(28%) for 16 tropical rainforest species in Africa. Likewise, these authors found that stem biomass 318 

proportion tended to decrease and crown biomass proportion increase with increasing tree size (from 319 

trees with diameter larger than 20 cm to 100 cm). The latter was not corroborated for the species we 320 

examined, where the stem percentage is increased with tree size for the sampled diameter range (up to 321 

the maximum sampled dbh which ranged between 21 and 29 cm according to the species). 322 

 323 

5. Conclusion 324 

Models developed in this study for five of the most important species of an Ethiopian dry mixed forest 325 

are using tree diameter and total height as independent variables to estimate biomass for different tree 326 

compartments. Crown biomass models were fitted for three of the five species studied (O. rochetiana, 327 

R. glutinosa and S. theifolia) due to high variability in branch biomass compartments resulting from 328 

inter-specific competition in the mixed tropical forest. Similarly, an aboveground model was 329 

developed for A. abyssinicus based on its biomass heterogeneity and small crown biomass weight. 330 

These models were developed for trees in a fairly small diameter range (maximum sampled dbh: 28.8 331 

cm; maximum sampled height: 19.4 m) and their use outside this range could be biased. 332 
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 The application of generalized models for estimating aboveground biomass produced biased 333 

results for some of the species studied. Given the great diversity of species and variability within 334 

species that characterize tropical forests, the development of species-specific models is suggested to 335 

improve biomass estimation accuracy and reduce uncertainty. The equations developed in this study 336 

can be used for estimating forest carbon stocks, identifying carbon sink capacity, establishing carbon 337 

trade value and informing management policies related to sustainability and fuelwood harvesting for 338 

these species. 339 

The biomass models developed here and information about biomass distribution patterns for these 340 

species could help in sustainable management of fuelwood harvesting. Sustainable fuelwood 341 

harvesting might help to develop local fuelwood markets having an important, positive socio-342 

economic and ecological impact. Moreover, this might lead to a deforestation reduction and avoiding 343 

degradation due to firewood collector preferences for deadwood, combined with identification of low 344 

competition sites and recognized access rights (Hiemstra-van der Horst and Hovorka 2009). 345 

 346 
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 528 

Figure 1 Location map of Chilimo dry afro-montane forest in Ethiopia and pilot survey plots 529 

 530 
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531 
 Figure 2 Observed against predicted aboveground biomass values for the studied species. Dashed line 532 

is showing the adjusted line to the residuals and continuous line the 1:1 line 533 
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 534 

Figure 3 Biomass partitioning for the mean tree for the studied species and different diameter classes 535 
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Table 1 Summary of main variables of the sampled trees for the five most dominant species in Chilimo-Gaji forest 536 

Studied 

variables 

Allophyllus abyssinicus Olea europaea ssp. cuspidata Olinia rochetiana Rhus glutinosa Scolopia theifolia 

Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum Mean SD Minimum Maximum 

dbh (cm) 11.3 3.9 6.4 21.3 14.5 5.9 6.3 28.8 14.9 6.68 6.2 27.5 15.6 4.9 9.0 23.5 11.8 4.1 6.4 22.0 

db (cm) 13.9 6.2 0.2 27.3 18.2 6.3 9.9 31.9 17.9 8.36 7.6 34.8 18.8 5.0 12.7 27.5 14.6 4.1 8.0 22.9 

h (m) 10.6 3.1 7.0 17.0 10.6 2.1 5.9 14.5 12.6 2.92 7.3 19.4 11.3 3.0 6.0 17.4 8.2 1.9 5.6 13.0 

hc (m) 6.7 3.4 0.3 13.5 5.8 2.7 0.5 10.7 8.0 3.58 1.0 14.0 6.3 2.3 1.6 11.4 4.6 2.2 1.9 9.5 
hb (m) 4.7 2.6 2.0 12.7 4.0 1.5 1.7 7.0 4.7 1.62 2.0 7.4 4.6 1.9 2.2 9.2 13.7 47.4 1.8 215.0 

BS (kg) 32.3 35.6 0.0 130.4 84.2 83.5 4.9 302.9 93.5 97.33 0.0 349.9 65.2 50.4 9.0 168.8 36.3 37.2 5.3 129.3 

Br27 (kg) 12.1 4.0 4.3 17.4 19.6 11.5 6.0 46.7 26.9 20.42 7.7 89.2 17.2 7.8 5.6 28.3 23.4 14.8 9.8 72.8 

Br2 (kg) 7.7 3.5 1.5 13.2 16.7 12.2 1.4 37.9 19.2 14.05 3.0 48.3 8.8 5.7 2.4 22.5 22.6 14.8 6.3 79.1 

Crown (kg) 19.8 6.5 5.8 28.3 36.3 22.7 7.4 84.6 46.1 32.19 11.7 129.8 26.0 12.1 8.1 49.6 46.0 28.2 17.8 151.9 

Above (kg) 52.1 38.2 11.6 157.6 120.5 103.7 14.3 366.7 139.5 124.1 13.7 451.9 19.2 58.7 17.2 202.4 82.3 52.3 23.0 281.1 

n 15 15 15 15 20 20 20 20 20 20 20 20 15 15 15 15 20 20 20 20 

SD: standard deviation; dbh: diameter at breast height (1.30m); db: diameter at base; h: total height; hc: commercial height; hb: branching height; BS: biomass of stem; Br27: biomass of thick 537 
branches (diameter between 2-7cm); Br2: biomass of thin branches (diameter < 2cm) plus foliage; Crown (kg): biomass of branches plus foliage; Above: stem + thick branches (2-7) + thin 538 
branches + leaves biomass or stem + crown biomass; n: number of observations 539 

 540 
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Table 2 Biomass models evaluated for different tree compartments 

Model Equation Model Equation 

1 W=β*(d*h) 7 W=(β*d2)+(λ*h) 

2 W=β*(d2*h) 8 W=(β*d2)+(λ*h)+(θ*d2*h) 

3 W=(β*d)+(λ*d2)+(θ*d2*h) 9 W=(β*d2)+λ*(d*h) 

4 W=(β*d)+(λ*h) 10 W=β*(d2*h)+ λ *(d*h) 

5 W=(β*d2)+λ*(d2*h) 11 W=β*(dλ) *(hθ) 

6 W=β*(d2*h) λ 12 W=β*d+ λ*d2 

W: biomass weight (kg); d: dbh (cm); h: tree height (m); β, λ, θ: model parameters 

 



27 
 

Table 3 Spearman correlation coefficients between biomass compartments and dendrometric 

variables for the studied species 

Species Biomass comparments Dendrometric variables 

h hc hb dbh db   

 

Allophyllus abyssinicus 

Stem 0.72** 0.96*** 0.32 0.85*** 0.82***   

Thick branches  0.20 0.02 0.01 0.22 0.25   

Thin branches + leaves 0.64* 0.58* 0.38 0.65** 0.64*   

Crown 0.48 0.36 0.19 0.54* 0.48   

Above 0.86*** 0.93*** 0.24 0.91*** 0.89***   

Olea europaea ssp. cuspidata Stem 0.71*** 0.81*** 0.09 0.95*** 0.89***   

Thick branches  0.70** 0.86*** 0.08 0.89*** 0.84***   

Thin branches + leaves 0.54* 0.76*** -0.11 0.92*** 0.88***   

Crown 0.62** 0.84*** -0.02 0.95*** 0.91***   

Above 0.68** 0.85*** 0.05 0.96*** 0.93***   

Olinia rochetiana Stem 0.84*** 0.87*** 0.36 0.92*** 0.93***   

Thick branches  0.69** 0.57** 0.41 0.76** 0.83***   

Thin branches + leaves 0.67*** 0.56** 0.29 0.82*** 0.82***   

Crown 0.69** 0.57** 0.37 0.83*** 0.87***   

Above 0.83*** 0.83*** 0.40 0.94*** 0.95***   

Rhus glutinosa Stem 0.49 0.88*** 0.19 0.98*** 0.94***   

Thick branches  0.63* 0.36 -0.38 0.41 0.44   

Thin branches + leaves 0.61* 0.59* 0.04 0.68* 0.68*   

Crown 0.61* 0.52 -0.26 0.68* 0.71**   

Above 0.63* 0.83*** 0.10 0.92*** 0.89**   

Scolopia theifolia Stem 0.90*** 0.89*** 0.14 0.92*** 0.88***   

Thick branches 0.79*** 0.81** 0.02 0.73*** 0.71**   

Thin branches + leaves 0.49* 0.53* 0.17 0.70*** 0.70**   

Crown 0.76*** 0.81*** 0.05 0.85*** 0.88***   

Above 0.87*** 0.90*** 0.16 0.89*** 0.83***   

Thick branches: biomass of branches with diameter between 2 and 7 cm; Thin branches + leaves: biomass of 
branches with diameter lower than 2 cm, including leaves biomass; Crown: thick branches + thin branches + leaves 
biomass; Above: stem + thick branches + thin branches + leaves biomass or stem + crown biomass; * = p ≤ 0.05, **= 
p ≤ 0.01, ***= p ≤ 0.001; hc: commercial height; hb: branching height; h: total height; dbh: diameter at breast height; 
db: stump diameter; cd: crown diameter; cl: crown length 
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Table 4 Simultaneous fit of biomass models for the studied species 

Species Compartment MRES RMSE R2
adj Selected model Estimated 

parameters 

Pr > |t| 

Allophyllus 

abyssinicus 

Above 0.01 10.27 0.84 Wabove = β*(d*h) 0.3937 <.0001 

Olea europaea 

ssp. cuspidata 

Stem 0.72 12.01 0.93 Wstem = β*(d2*h) 0.02746 <0.0001 

Br27 -0.53 4.47 0.79 WBr27 = (β*d2)+(λ*h) 0.05744 <.0001 

0.6856 0.0008 

Br2 0.09 5.29 0.69 WBr2 = β*(d2*h) 0.006584 <.0001 

Above 0.27 12.03 0.96 Wabove =∑Wi   

Olinia 

rochetiana 

Stem 0.25 35.06 0.76 Wstem =β*(d*h) 0.3990 <.0001 

Crown 1.31 14.41 0.58 Wcrown = 

(β*d2)+λ*(d2*h) 

0.4550 <.0001 

-0.02163 <.0001 

Above 1.56 33.38 0.85 Wabove =∑Wi   

Rhus glutinosa Stem 3.34 10.57 0.79 Wstem =β*(d2*h) 0.01604 <.0001 

Crown -1.24 6.28 0.68 Wcrown = (β*d2)+(λ*h) 0.04867 0.0017 

1.3033 <.0001 

Above 2.11 11.11 0.88 Wabove =∑Wi   

Scolopia 

theifolia 

Stem 1.52 6.94 0.75 Wstem =β*(d2*h) 0.02107 <.0001 

Crown 0.65 7.67 0.55 Wcrown = β*(d*h) 0.4253 <.0001 

Above 2.17 11.04 0.79 Wabove = ∑Wi   

Stem (kg): stem biomass; Br27 (kg): biomass of thick branches (diameter between 2-7cm); Br2 (kg): biomass of thin 
branches (diameter < 2cm) plus foliage; Crown (kg): biomass of branches plus foliage; Above (kg): stem + thick branches 
(2-7) + thin branches + leaves biomass or stem + crown biomass; Wi (kg): biomass weight of the different compartments; 
d: dbh (cm); h: tree height (m); β, λ: parameters of the models; MRES: mean residual (kg); RMSE: root mean square error 
(kg), R2

adj: r2 adjusted coefficient of determination 
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Table 5 Comparison of models for aboveground biomass estimation (site-specific and generalized equations) 

 

 

Species Model reference Relative 
bias (%) 

Average 
deviation (%) 

Relative 
RMSE 

t-test 
t-Statistic p-value 

Allophyllus abyssinicus This study -7.41 21.09 0.280 0.0040 0.9969 

Generalized Brown et al. (1989) 36.14 38.95 0.416 4.4287 0.0006 

Generalized Brown and Lugo (1992) -2.58 23.36 0.342 -0.8096 0.4327 

Generalized Brown (1997) 18.45 25.31 0.287 24.4615 0.0286 

Generalized Chave et al. (2005) -4.50 19.97 0.298 -0.8262 0.4236 

Generalized Chave et al. (2014) 7.21 23.38 0.303 0.1729 0.8654 

Olea europaea This study -5.29 14.32 0.204 0.0955 0.9251 

Generalized Brown et al. (1989) 40.81 43.21 0.445 6.2926 <0.0001 

Generalized Brown and Lugo (1992) 15.12 18.41 0.216 4.0902 0.0008 

Generalized Brown (1997) 28.41 30.12 0.331 5.0996 0.0001 

Generalized Chave et al. (2005) 1.54 14.16 0.188 0.7807 0.4464 

Generalized Chave et al. (2014) 6.96 14.00 0.180 2.4653 0.0254 

Olinia rochetiana This study -19.43 29.18 0.408 0.2015 0.8427 

Generalized Brown et al. (1989) 44.16 46.50 0.497 4.2731 0.0005 

Generalized Brown and Lugo (1992) 9.46 22.23 0.303 -0.2241 0.8253 

Generalized Brown (1997) 35.11 36.90 0.398 3.8545 0.0013 

Generalized Chave et al. (2005) 5.27 17.30 0.243 -0.1119 0.9122 

Generalized Chave et al. (2014) 12.09 21.84 0.287 0.2137 0.8333 

Rhus glutinosa This study 4.17 13.32 0.156 0.6595 0.5244 

Generalized Brown et al. (1989) 13.07 32.05 0.374 0.4016 0.6965 

Generalized Brown and Lugo (1992) -22.89 29.77 0.390 -2.126 0.0593 

Generalized Brown (1997) -4.19 31.22 0.340 -0.7757 0.4559 

Generalized Chave et al. (2005) -44.03 44.03 0.532 -3.0834 0.0116 

Generalized Chave et al. (2014) -34.32 37.04 0.472 -2.5783 0.0275 

Scolopia theifolia This study 2.43 13.59 0.168 0.4193 0.8290 

Generalized Brown et al. (1989) 55.45 58.71 0.582 10.1593 <0.0001 

Generalized Brown and Lugo (1992) 40.91 43.31 0.444 9.2180 <0.0001 

Generalized Brown (1997) 42.49 44.99 0.458 8.5675 <0.0001 

Generalized Chave et al. (2005) 36.78 38.94 0.401 8.4323 <0.0001 

Generalized Chave et al. (2014) 43.88 46.46 0.470 9.7447 <0.0001 


