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Abstract

Si is a semiconductor material whose relevance in the industry is undeniable, being
implemented in every generation of the transistor scaling over the last decades thanks
to their excellent properties and easy production. During the fabrication process it is
common to deal with the diffusion of impurity atoms in Si, which is critically influenced
by intrinsic defects such as self-interstitials and vacancies. Point defects tend to aggre-
gate forming small clusters and extended defects and therefore, the dopant diffusivity is
enhanced and leakage currents are increased in the final device.

The aim of this work is to study the energetic characteristics of small Si interstitials
clusters from an atomistic point of view, determining their formation enthalpies and
energy barriers for each cluster size. To do so, we have run simulations with the kinetic
Activation-Relaxation Technique. We have characterized each geometrical configuration
based on energetic and visual criteria, classifying the small clusters in chainlike, compact
or {111} configurations. The transition barriers between these structures have been also
determined. This information is useful to understand the behaviour of small clusters in
crystal and how they can evolve to extended defects. This study can also be applied to
other semiconductor materials.

Keywords

Silicon, crystalline, small clusters, chainlike, compact, formation enthalpy, energy
barrier, kART, simulation.





Resumen

La evolución de la industria micro y nano-electrónica se ha basado en el escalado
continuado de los dispositivos, siguiendo la conocida Ley de Moore. La construcción de
transistores con dimensiones cada vez más reducidas y con un menor consumo, requiere
de un estricto control de la profundidad de los dopantes, y de la existencia de corrientes
de baja intensidad. Los procesos de implantación iónica utilizados en la fabricación de
dispositivos dan lugar a la formación de defectos de intersticiales en Si. Estos defectos
afectan negativamente a las prestaciones de los dispositivos, pues son responsables del in-
cremento en la difusión de los dopantes, de la degradación de la movilidad o del aumento
de las corrientes de fuga. Durante los recocidos térmicos los defectos experimentan un
mecanismo de Ostwald ripening, en el que los más grandes y estables absorben intersti-
ciales liberados por los defectos de menor tamaño. Este crecimiento, motivado por la
reducción de la entalṕıa de formación de los defectos con el tamaño, hace que los clusters
de intersticiales se transformen en defectos extensos. Entre ellos destacan los defectos
tipo {113}, que son cadenas en la dirección <110> a lo largo de planos {113}, y los lazos
de dislocación en planos {111} y {100}.

El papel fundamental que juegan los defectos en el comportamiento de los disposi-
tivos ha propiciado el desarrollo de modelos para su formación, crecimiento y disolución,
utilizados ampliamente en los simuladores de procesos de la industria microelectrónica.
En ellos se asume que la enerǵıa de los defectos extensos se reduce monótonamente con
su tamaño y para clusters pequeños se asigna una enerǵıa concreta a cada tamaño, y se
considera que existen unos números mágicos, es decir, determinados tamaños que son es-
pecialmente estables y con una enerǵıa inferior. En todo caso, los modelos de evolución de
defectos existentes hoy en d́ıa fallan en determinadas situaciones. Los clusters pequeños
de intersticiales presentan un escenario mucho más rico que el considerado por los mod-
elos clásicos. Un cluster de un determinado tamaño puede encontrarse en diferentes
configuraciones, cada una caracterizada por una simetŕıa y una entalṕıa de formación.

En particular, se han estudiado configuraciones tipo cadena alargadas en la dirección
<110>, configuraciones compactas en los planos {100} o configuraciones simétricas en
los planos {111}, que podŕıan ser las precursoras de defectos extensos tipo {113} o de
lazos de dislocación en los planos {111} o {100}, respectivamente. La prevalencia en las
primeras fases de un recocido térmico de una determinada configuración de clusters de
intersticiales, podŕıa condicionar el crecimiento de los defectos y favorecer la formación
de un tipo concreto de defecto extenso. La inclusión de estos tres caminos de crecimiento
permitiŕıa el desarrollo de modelos de evolución de defectos más precisos. Para ello es
necesario no solo conocer las entalṕıas de formación de cada configuración de clusters de
intersticiales, sino las barreras de enerǵıa que controlan las transiciones entre las diferentes
configuraciones. Aśı, en este trabajo se han determinado las barreras de enerǵıa para las
transiciones estructurales entre las configuraciones tipo cadena, compacta y simétrica en
el plano {111} de clusters de intersticiales de Si, con tamaños de 2 a 5 intersticiales.
Hasta la fecha, este es el único estudio en el que se calculan estas barreras, parámetros
necesarios para la implementación de modelos más precisos de evolución de defectos.



El pequeño tamaño de los clusters de intersticiales hace muy dif́ıcil su caracterización
experimental, por lo que se utilizan técnicas de simulación para su estudio. La técnica
de dinámica molecular clásica (DMC) es especialmente adecuada, pues abarca las dimen-
siones espaciales y temporales caracteŕısticas de la evolución de defectos. Aśı, se ha em-
pleado esta técnica para obtener la entalṕıa de formación de los clusters de intersticiales,
pero no permite determinar barreras de transición. La Técnica de Activación-Relajación
cinética (kinetic Activation-Relaxation Technique, kART) ha sido diseñada para poder
caracterizar los puntos de transición o saddle points en la evolución entre dos mı́nimos
de enerǵıa del sistema, y obtener la barrera de enerǵıa de esa transición. Además, al
incorporar el método de Monte Carlo cinético permite simular tiempos macroscópicos,
inalcanzables con DMC, y acceder de este modo a barreras de enerǵıa elevadas.

Para ello, kART combina la Técnica de Activación-Relajación (Activation-Relaxation
Technique, ART) con una clasificación topológica de eventos bajo un algoritmo de Monte
Carlo cinético. En primer lugar, realiza un desplazamiento aleatorio de los átomos y lleva
a cabo la clasificación de las diferentes topoloǵıas encontradas en la red y la generación
de eventos a partir de ellas, cada uno con su barrera de enerǵıa asociada. Un evento
lo componen los mı́nimos de enerǵıa inicial y final, y el punto de transición que ha de
superarse, que determina la altura de la barrera. Seguidamente se procede a refinar
aquellos eventos con barreras de enerǵıa pequeñas, pues serán los que presenten mayor
probabilidad de ser seleccionados al ser aplicado el método Monte Carlo con posterioridad.

Todas las simulaciones se han llevado a cabo en celdas a 0 K y a 0 GPa, si bien
se ha utilizado una temperatura de 500 K para el algoritmo Monte Carlo. Asimismo,
se han modificado los parámetros adecuados de kART para lograr transiciones entre
configuraciones. Se ha utilizado SEARCH FREQUENCY a 50 para poder encontrar una
mayor cantidad de eventos por topoloǵıa e INCREMENT SIZE a 0,3 Å para permitir
mayores desplazamientos de los átomos. Se ha empleado el potencial interatómico Tersoff
3 para calcular las enerǵıas de la red aprovechando la compatibilidad de kART con
las libreŕıas del simulador de DMC LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator).

Las configuraciones iniciales de los clusters han sido obtenidas gracias al trabajo de
varios autores. Partiendo de una red cristalina perfecta, se inserta el número correspon-
diente de intersticiales en posiciones cercanas para cada tamaño de cluster, y se deja
evolucionar el sistema a 1200 K durante 25 ns, mediante simulaciones de DMC. En este
trabajo hemos utilizado como punto de partida los estados de mı́nima enerǵıa de cada
una de las configuraciones obtenidas de esta forma. Para las simulaciones de kART del
di- y el tri-intersticial se ha utilizado una celda cúbica de 6a de lado, con un total de
1728 + n átomos, mientras que para el tetra-, el penta- y el hexa-intersticial se ha em-
pleado una celda cúbica con 8a de lado, conteniendo 4096 + n átomos, siendo n es el
número de intersticiales insertados y a el parámetro de red del Si (5.432 Å). Como re-
cursos computacionales se ha dispuesto de los clusters de ordenadores Linux del grupo
de investigación MMM (Multiscale Materials Modeling Group). El coste CPU que han
conllevado las simulaciones es elevado, alcanzándose un total de 6500 h.



Procediendo a analizar los resultados obtenidos, primero es necesario destacar que a
lo largo de una simulación un cluster puede recorrer distintas configuraciones (cadena,
compacta, simétrica en {111}) y presentar varias topoloǵıas y niveles de enerǵıa dentro
de una misma configuración. Las transiciones entre los estados de mı́nima enerǵıa de las
diferentes configuraciones no han sido nunca directas, sino que para evolucionar de una a
otra se han atravesado estados de mayor enerǵıa. La barrera de enerǵıa para la transición
entre dos configuraciones viene determinada por el punto de transición de mayor enerǵıa
que se visita, y se calcula como la diferencia de enerǵıa entre el punto de transición y el
estado de mı́nima enerǵıa de la configuración de partida.

Una vez determinadas las entalṕıas de formación de cada configuración para casa
tamaño, se puede observar cómo tanto la configuración cadena como la {111} dismin-
uyen en enerǵıa con el tamaño, lo que favorece el crecimiento de estos tipos de defectos
al reducirse la enerǵıa total del sistema, dando lugar eventualmente a la formación de
defectos extensos. Esta tendencia no se cumple en todos los tamaños de la configuración
compacta. Debido a la gran estabilidad (baja enerǵıa) del tetra-intersticial compacto el
crecimiento al penta-intersticial no es favorable, pues da lugar a un aumento de enerǵıa.
La configuración {111} es la más energética de todas las estudiadas, aunque las diferen-
cias con respecto al resto de configuraciones se reducen con el tamaño. En todo caso,
conviene recordar que los lazos de dislocación habituales en Si se encuentran en planos
{111}, lo que indica que debe existir la posibilidad de que los defectos {111} aumenten
en tamaño o bien que se llegue a ellos desde otras configuraciones de defectos.

Si analizamos las barreras de enerǵıa entre las configuraciones compacta y cadena,
en el di-intersticial las barreras son similares, mientras que en el tri-intersticial la menor
entalṕıa de formación y una barrera más elevada hacen que la configuración cadena
prevalezca. Los clusters compactos con 4, 5 o 6 intersticiales son menos energéticos que
las configuraciones cadena y además poseen barreras de salida elevadas. La baja enerǵıa
del tetra-intersticial compacto unido a la elevada barrera de salida hacen que este defecto
pueda ralentizar el crecimiento de los clusters. En cuanto a la configuración {111},
en general existen barreras reducidas para abandonarla pero hay que superar barreras
elevadas para llegar a esta configuración desde los clusters tipo cadena o compacto. Todo
esto indica que en los tamaños estudiados la configuración {111} es inestable y dif́ıcil
de alcanzar desde otras configuraciones, salvo para el caso del penta- y hexa-intersticial
donde su barrera de salida es elevada, favoreciendo que permanezca en ella.

Aśı, se pueden extraer varias conclusiones importantes de este trabajo. Nuestros datos
muestran que el tetra-intersticial compacto es muy estable y con barreras elevadas para
su evolución, mientras que los clusters con simetŕıa en planos {111} son energéticos y en
general evolucionan rápidamente a otras configuraciones. Hemos observado la existencia
de barreras significativas incluso para abandonar configuraciones de alta enerǵıa, lo que
aumenta su vida media y retrasa su transformación estructural en otras configuraciones,
posibilitando aśı su crecimiento y abriendo nuevos caminos para la evolución de los de-
fectos. Las barreras de enerǵıa proporcionadas en este trabajo son parámetros necesarios
para el desarrollo de nuevos modelos de evolución de defectos de intersticiales en Si.
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Chapter 1

Introduction

There is plenty of room at the bottom.
∼ Richard Feynman ∼

T
he aim of this work is to study the growth and transitions of small self-

interstitial clusters in crystalline Si, analysing their formation enthalpy and

the energy barriers between different configurations, which are characterized

by a certain spatial arrangement of atoms.

Si is at the heart of the semiconductor industry, being implemented in every gener-

ation of the transistor scaling over the last decades. During the fabrication process of

devices dopant atoms are usually introduced by ion implantation, which is followed by

the subsequent annealing to remove the damage. This thermal process implies the dif-

fusion of impurity atoms, which is critically influenced by intrinsic point defects such as

self-interstitials and vacancies. Point defects tend to aggregate forming extended defects

and therefore, the dopant diffusivity is enhanced and leakage currents can exist in the

final device. Both are common problems to be addressed and investigated.

To carry out this work, atomistic simulations have been run using kART (kinetic

Activation-Relaxation Technique). It is an off-lattice, self-learning, on-the-fly method

which identifies and evaluates activation barriers using ART nouveau and a topological

description of events, enabling us to access the time and size scales typical of defect

evolution.

1



2 Motivation

1.1 Motivation

Looking back at when the integrated circuit was invented, the price of a single Si

transistor was about $10. Today, however, one can buy more than 50 thousand million

transistors with the same budget. In fact, a current transistor represents less cost than

the ink for one letter of newsprint. And this is only an example of the economic impact of

the device scaling. This progress could not be achieved without the work of very capable

engineers and scientists who have reinvented and improved every step of the fabrication

process, from the preparation of pure Si materials to the final packaging operation.

After elapsing some years from the first stages of semiconductor device development

when the bipolar transistor was the most widespread device, Si MOSFET (Metal Oxide

Semiconductor Field Effect Transistor) became the preferred device type in the 1970s. It

has eventually grown to dominate the use of semiconductor devices in integrated circuits

due to the large scale of integration and the development of CMOS (Complementary

MOS ) technology [1].

The competitive drive for improved performance and cost reduction of CMOS based

devices has resulted in the scaling of each generation of circuit elements to ever-smaller

dimensions, as it can be seen in figure 1.1. Hence, MOSFET dimensions have shrunk from

a gate length of 5 mm in its origin to 10 nm today, i.e., in only 45 years. Furthermore,

according to what Intel has already forecast, the 5 nm node will be reachable in about

2020.

According to the ITRS (International Technology Roadmap for Semiconductors) [2]

predictions, we are attending to the end of Moore’s Law due to the nanometer effects

which have appeared in this level, highlighting the sub-threshold leakage current, the

threshold voltage variation and the carrier mobility degradation in the channel, the direct

tunnelling leakage current and the depletion in the gate, and the parasitic resistance and

capacitance between source and drain. Although some alternatives have been proposed,

such as spintronics, carbon based devices or quantum electronics, the semiconductor

industry is struggling to extend de miniaturization of CMOS devices, fighting against

processing and physics limits. What strikes more about it is that they are achieving their

aim thanks to the effort and creativity of each generation, despite of each one used to be

seen as the last one.

Faculty of Sciences, University of Valladolid



Chapter 1. Introduction 3

Figure 1.1: Projected scaling results from last ITRS documents [1].

In any case, Si is the main material in the microelectronics industry due to its terres-

trial abundance and the great stability and ease of production of its oxide, and therefore

a deeper understanding of it is essential for the fabrication of next generations of semi-

conductor devices. Ion implantation is the main doping technique in Si based integrated

circuit manufacturing, however, it gives rise to a damage in the semiconductor lattice

that has to be removed with a subsequent annealing. During this thermal budget it

has become notorious the diffusion of dopant atoms, one of the main problems in the

manufacture of sub-micron devices, limiting how small they can be made [1].

A knowledge of diffusion on the microscopic scale in situations far from equilibrium

is required in order to understand these effects. The diffusion of impurity atoms in Si

is critically influenced by intrinsic point defects such as self-interstitials and vacancies,

which nucleate into extended defects, ripen and eventually dissolve in the annealing.

Consequently, it is of great importance to improve our understanding of the behaviour of

these defects, which play a crucial role on the dopant diffusion during device processing.

Additionally, figure 1.2 verify the interest in this area, whose number of papers have been

increased since 1980.

Diego Calvo Ruiz
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Figure 1.2: Number of published articles in scientific journals and patents about Silicon
and Defects from 1980 to the present day according to Google Scholar.

The extended defects can present various types of atomic arrangement, being all of

them widely known in the literature and they are represented in figure 1.3. Among them,

it should be emphasized the {311} defects [3], which are chains in the <111> direction

in {311} planes, and the dislocation loops in planes {111} [4]. In addition, dislocation

loops have been observed in planes {100} at high temperatures annealing [5]. Although

they are very frequent in Ge, Si has presented them recently [6]. These defects are

energy favourable, having lower free energy than individual interstitials. It gives them

metastability, being dissolved with continued annealing at high temperature. However,

as the dissolution takes place, they release excess interstitials into the lattice, enhancing

the dopant diffusivity and also giving rise to leakage currents in the final device, which

are common problems in the manufacturing process [7, 8].

Conversely, implantation damage has recently developed a new field of Si based op-

toelectronic devices. Although the Si indirect band-gap has generally limited the optical

applications, optically active small defect clusters and extended defects are being ex-

plored for efficient light emission in Si, which has attracted much attention. Converting

Si into a light-emitter semiconductor will make optoelectronics take advantage of the Si

microelectronic industry technology, and will result in a large reduction of the fabrication

costs of their devices [9].

Faculty of Sciences, University of Valladolid
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Since the size of today devices is nanometer scale and their profiles are very abrupt, the

current requirements demanded by the industry need a minimum movement of dopant

atoms due to thermal processes. Hence, it is needed to predict the right temperature

and time to vanish these defects. To do so, one has to know the physical behaviour of

these defects and also their geometrical configurations, which is especially important for

extended defects.

Figure 1.3: TEM image of {311} defects seen through cross-section high-resolution
micrograph (a) and WBDF TEM images of dislocation loops from samples implanted
with 150 keV Ge+ ions to a dose of 2 · 1015 ions/cm2 after annealing at 900o in a N2

ambient in (1) t=10s, (2) t=100s and (3) t=400s (F: Faulted, P: Perfect) (b) [8].

Diego Calvo Ruiz
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There has been a lot of driven force to understand this kind of defects. The {311}s are

usually associated with the transient enhanced diffusion of dopant atoms such as Boron,

presenting stability thanks to their spatial configuration. On the other hand, when the

doses and the temperature are even higher one can find dislocation loops, which can be

faulted or perfect. The first type consist of a circular stacking surrounded by a dislocation

line whereas the second one refers to an extra plane of atoms instead of the stacking and

are elongated through <110> direction, having less formation enthalpy than the faulted

configuration.

The growing mechanisms of the previous defects are quite curious. When the temper-

ature goes higher, the morphology of the defects is evolving. Firstly, the point defects,

thanks to their high mobility, group into small clusters, characterized by being almost mo-

tionless. Then it happens the maturity process: the small clusters begin to dissolve and

vanish whereas the big ones end up in a {311} configuration. Additionally, it is believed

that in case the {311}s are next to the surface and the doses are high, they can evolve to

an imperfect dislocation loop and, eventually, to a perfect one. However, the transition

between both configurations remains unclear, giving rise to a lot of controversy [8].

At this point we need to point out that it is likely that certain small clusters configura-

tions are the previous stage of the bigger ones we have already described and illustrated.

In this sense (110) chainlike defects can be the precursor of the {311} defects, compact

configurations can be the herald of {100} dislocation loops and symmetrical in {111}
plane can be the precursor of {111} dislocation loops. Although significant experimental

and theoretical efforts have been made to determine the structure and stability of small

self-interstitial clusters as well as their growth to larger extended defects, it is still un-

clear. In any case, these small aggregations can also play an important role in the already

mentioned transient enhanced diffusion and, in the end, they may act as a restriction in

the device scaling [10].

Unfortunately, the small clusters of interstitials cannot be detailed experimentally

using structural techniques, sush as TEM (Transmission Electron Microscopy). Their

instability together with the technical difficulties to measure many defects at the same

time, makes the interpretation of the results difficult. Hence, the identification of such

defects mostly relies on spectroscopic techniques as electron paramagnetic resonance, deep

level transient spectroscopy, photoluminescence and infrared absorption. Nevertheless,

one can address the problem thanks to the modelling of materials and the computational
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advances we can dispose nowadays, being able to provide a more detailed description. It

is here when the relevance of the atomistic simulation techniques should be stressed.

Regarding to the interest of our technique, kART, which is detailed in chapter 2, we

should mention that is a novel powerful tool in the field. Standard kinetic Monte Carlo,

which was developed in the 1970’s and applied to materials science in the end of the

1980’s, is limited to on-lattice configurations. This meant very limited applications in

the study of semiconductors, alloys, interfaces and, in general, complex systems where it

is not possible to identify diffusion mechanisms beforehand and off-lattice positions and

elastic effects are important. This context gives rise to kART, a very solid code that can

now produce exciting new science.

In fact, kART is the only kinetic Monte Carlo method that can be applied to disor-

dered or complex materials such as ion-bombarded crystal, amorphous semiconductors

and glasses at the moment. As such, the method opens new fields of simulations and it is

attracting considerable attention that should be growing with the publication of recent

atomistic simulations of the evolution of complex systems over time scales of 1 second or

longer, more than 10 million times longer than anything available until now. Summariz-

ing the technique very briefly, kART is a powerful both on-the-fly and off-lattice kinetic

Monte Carlo method for generating events and calculating energy barriers while retain-

ing a complete description of long-range elastic interactions due to the discretization of

events even for disordered systems.

Thus, in the light of the above it should be clear that self-interstitial clustering in Si

has attracted the curiosity of a large number of researchers around the world. In our case,

to conclude this section, we should stress that this area is one of the research lines of the

group in which has been developed this work (see section 1.4 for more information).

1.2 State of art

The current bibliography about small clusters in Si is not quite rich if we compare

it with what has been done about extended defects. This section is going to outline

the main studies which have analysed the formation enthalpy and the energy barrier

between different configurations of small clusters, giving an insight into extended defects

transitions due to their interest in our work.
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We have already mentioned that, under certain conditions, which are not clear by

now, the transition between {311}s to dislocation loops takes place, as it can be seen in

figure 1.4. Although it is experimentally obvious that the implantation dose must be high

in order to achieve the dislocation loops structure and the transition is not instantaneous,

one can find several kinetic Monte Carlo simulation models which affirm that either the

defect size or a fixed energy threshold determine this configurational change.

Figure 1.4: Schematic diagram of the behaviour of Si interstitial defects as a function of
implant dose and thermal budget [9].

In this sense, some authors have proposed models which assume that the transforma-

tion rate does not depend on defect size, describing correctly the nucleation and evolution

of the dislocation loops in amorphizing implants but predicting their formation also for

low-dose implants due to this independence [11]. On the other hand, others support that

the transformation rate must depend on a fixed threshold, agreeing with the experimental

dose and describing properly the overall evolution of the {311} and dislocation loops pop-

ulations [12]. This idea, however, implies that the transformation is almost instantaneous

and eludes whether or not the defects nucleate. Furthermore, there is a third approach

that tries to combine the advantages from the previous ones, i.e., a size dependent energy

barrier between both configurations [13].
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Figure 1.5: Formation energy of the different types of interstitial agglomerates as a
function of size [9].

Regarding the formation enthalpy of each extended defect configuration, figure 1.5

shows the results of Cristiano et al. [14], who determined it as a function of size by an

Ostwald Ripening model. It should be noted that the microstructural evolution of the

material can be extracted from it. N. Cowern et al. [15] carried out the calculation of

the energies of small clusters with the same model. It was one of the first attempts to

characterize energetically these defects, though, it does not take into account the different

structures which appear for the same number of interstitials. In any case, the energy

oscillations of small aggregations are due to the fact that specific small cluster sizes have

been marked as magic numbers, which correspond to stable configurations where atoms

remain fourfold coordinated [9].

In this sense, there has been a large number of authors who have determined the

minimum energy configurations of small interstitial clusters in Si by first principles cal-

culations [16–19], highlighting the work of Kim et al [20] and A. Bongiorno et. al. [21]

They were pioneers in distinguishing between chainlike and compact configurations for

clusters sizes smaller than 10 interstitials and also proposed a theory about the growth of

chainlike to rodlike {311} configurations, which is believed to stabilize as it elongates in

the chain direction. Moreover, the stable configuration is found to be compact for small

clusters, elongated for medium clusters, and planar for large clusters.
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However, Sangheon Lee and Gyeong S. Hwang are the ones who have performed the

most detailed analysis of the structure and energy of these defects, discretizing between

chainlike and compact configurations, through a combination of CRN-MMC (Continuous

Random Network model based Metropolis Monte Carlo), TBMD (Tight Binding Molecular

Dynamics) and DFT (Density Functional Theory) calculations [22–24].

Figure 1.6: Predicted minimum energy configurations for (I4−12) defects in Si for [1-11]
and [001] orientations with the associated symmetry (Grey: Bulk atoms, Gold:

Displaced atoms) [23].

After analysing the formation energies and the structures of self interstitial clusters

up to a size of 16 atoms of both chainlike and compact configurations, they conclude that

small clusters tend to favour compact structures, but the compact geometry is no longer
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energetically favourable when the cluster size is greater than 10 interstitials. Additionally,

this study also emphasizes that tetrainterstitial (I4) and octainterstitial (I8) compact

clusters would kinetically or/and thermodynamically inhibit the formation of chainlike

clusters. The higher symmetry of fourfold configurations can be seen in figure 1.6, which

also shows minimum energy configurations for each size from 5 to 12 interstitials.

Based on their results, they also try to forecast the compact to elongated transition,

giving two possible growth mechanisms. The first one may involve the evolution from the

fourfold compact to chainlike elongated structures at I10 configuration, followed by the

capture of additional interstitials at <110> edges. The second one, however, is based on

the elongated fourfold I11 and I12. Since these configurations are quite well ordered and

present high thermal stability, the interconversion between them and the chainlike ones

is not likely to happen. Furthermore, they also study the growth of these small defects

to {311}s, assuring that the {311} core structure becomes favoured when the cluster size

is greater than 20 atoms, below which the fourfold I12 seems to be prevail.

Once having characterized the small clusters, R.J. Bondi et al. were interested in

the variation of their energies under different strain fields (uniaxial and biaxial) through

DFT calculations [25, 26]. They focused on clusters smaller than 4 atoms and simulated

the cell with positive and negative strain (−4% ≤ ε ≤ 4%), revealing that the minimum

energy configuration is a function of the strain conditions presented in the system. In

addition, they confirm qualitatively that interstitial clusters with fourfold coordination

generally introduce less changes in and around the Si band-gap than clusters without

complete fourfold coordinated bond topology by analysing its total density of states.

On the other hand, S.S. Kapur et al. have studied the formation energy of the small

defects identified in figure 1.6 in terms of large-scale Molecular Dynamics simulations at

1100 K based on the empirical Environment-Dependent Interatomic Potential [27–29],

taking into account the vibrational and configurational entropies. As such, launching

conjugated gradient minimization at constant volume or pressure they get the energy

values. Furthermore, they have computed the probability distribution functions of cluster

formation energies at 1100 K for different pressures (−1% ≤ ε ≤ 1%, i.e., from -3 to 3

GPa). On this basis and considering also the large vibrational entropy of each cluster size,

they have outlined the growth mechanism as figure 1.7 shows. An important idea which

can be extracted from it is that the evolution of cluster morphology with size depends

strongly on both temperature and stress, whose effects have entropic means.
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Figure 1.7: Evolution map for self-interstitial aggregation as a function of cluster size
and temperature/pressure [29].

In this approach, they also used the Tersoff potential and contrasted it with Environment-

Dependent Interatomic Potential, concluding that the potential landscape associated with

self-interstitial clusters of the last one may be rougher than the Tersoff one. In other

words, it contains a larger number of local minima, making it more difficult for a single

configuration to dominate even if it is entropically favourable.

C.Y. Chuang et al. have recently made a comprehensive work obtaining the forma-

tion enthalpies of clusters whose size ranges from 2 to 150 interstitial through molecular

dynamics based on the Erhart-Albe parametrization of the Tersoff potential [30]. Their

simulation procedure was the same as the previous one but extending their work for

temperatures from 1500 to 2500 K.

In the light of what has been done until now, defects play a key role in the behaviour

of devices. Indeed, they have given rise to the development of models to analyse their

formation, growth and dissolution. The microelectronic industry makes use of them

in their process simulators, assuming that the energy of extended defects is reduced

monotonously when the defect is getting bigger. For the small clusters they used the

magic numbers of N. Cowern et al. [15] we have already mentioned. In addition, these

simulators consider that a small cluster is transformed to a {113} defect when it reaches

a given size, and the same takes place for the transition of {113} defect to a dislocation

loop [12]. Therefore, current models fail to reproduce certain situations, such as very

superficial implantations in Ge (dislocation loops are formed before other defects) [31].
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The prevalence of a certain configuration in the first stages of an annealing can in-

fluence the growth of defects, favouring the formation of a given extended defect. If one

includes this idea in the simulators more accurate models of defects evolution could be

developed. To do so, it is not only necessary to know the formation enthalpies of each

configuration, but also the energy barriers of the transitions between the different con-

figurations. Low energy barriers would make easy the change of configuration while high

ones would make it difficult. As a result, the evolution of defects would be determined by

the initial configuration of the cluster for the second case. In any case, despite the fact

that there has been some studies which have determined the energy of small interstitials

aggregations in Si and predict their growth as we have described in this section, one can

not find an approach which calculates the energy barriers between the configurations of

small interstitial clusters.

1.3 Aims

The aims of this work can be outlined as it is showed below:

• Characterization of chainlike, compact and {111} configurations of small intersti-

tials clusters (up to 6 atoms), determining their formation enthalpy and topology

and the energy barriers of their associated transitions.

• Study of the variation of formation enthalpies and energy barriers of small clusters

with different pressures, either positive or negative.

• Implementation of Tersoff interatomic potential through a kART scheme.

1.4 Computational resources

It should be stressed that this work has been made within the acknowledged MMM

(Multiscale Materials Modelling) [32] research group of the Electricity and Electronics

Department of University of Valladolid. Semiconductor defects is one of the research

lines MMM group is studying, as well as the area of irradiation of materials, technolog-

ical processes involving ion beam processing and annealing and the development of new

models and computational methods to improve predictive capabilities and applications
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of computer simulation to science and engineering. To do so, a wide range of atom-

istic modelling techniques, including fundamental ab-initio calculations are combined,

Tight-Binding and Classical Molecular Dynamics, and Kinetic Monte Carlo simulations.

The computational resources which have made it possible to undertake this study

belong to this group and it is owned by the mentioned institution. Two Linux clusters

have been used to run the simulations: Beta [33], which consists of 15 nodes of 2 Intel

Xeon E5450 quadcore each one with 8 GB RAM, and Gamma [34], which consists of 6

nodes of 2 Intel Xeon X5650 hexacore each one with 192 GB RAM and also 8 nodes of

2 Intel Xeon E5-2660 v2 decacore each one with 256 GB RAM. Furthermore, Beta has a

total disk memory of 8 TB whereas Gamma have 10 TB for the data storage. Both of

them have a UPS (Uninterruptible Power Supply) in case of a power supply failure. Beta

cluster technical specifications can be seen in figure 1.8 and Gamma features are showed

in figure 1.9. Additionally, figure 1.10 displays a picture of both clusters.

All the described resources have been essential in this work. The simulations which

we are going to refer to in the following chapters have required high computational cost

due to the fact that we have reproduced the behaviour of relative big cells during long

times, nanoscale speaking. In this sense, the considerable operational requirements of

kART simulations adds to the previous statement. As an example, figure 1.11 shows the

activity for a day, when after several simulations were launched in nodes from 0 to 6 and

from 8 to 15. Similarly, figure 1.12 presents the load distribution for a week, so that we

can see the work of each node during our simulations.

Figure 1.8: Detailed technical information of Beta cluster by Ganglia cluster
Toolkit [33].
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Figure 1.9: Detailed technical information of Gamma cluster by Ganglia cluster
Toolkit [34].

Figure 1.10: Picture of Beta and Gamma clusters and their UPSs taken in the
Simulation Laboratory of the Higher Technical School of Telecommunications

Engineering.

Diego Calvo Ruiz



16 Computational resources

Figure 1.11: Instance of activity report of each Beta node by Ganglia cluster
Toolkit [33].

Figure 1.12: Instance of aggregate load in Beta cluster by Ganglia cluster Toolkit [33].
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1.5 Memory structure

Our contributions have diversified into various topics, which have served to structure

this report:

• Firstly we have motivated this Master Dissertation and reviewed the state of the

art of small and extended interstitial clusters in crystalline Si. These issues, as well

as the formal presentation of the study, are the subject of Chapter 1.

• Since all our work is to be performed using the same simulation technique, a detailed

explanation of it is given in Chapter 2, comparing it with other similar methods.

The description of software is also included.

• Chapter 3 describes the methodology we have used to run the simulations: the

main features of the simulation cells, parameters used to run a kART simulation,

its data processing and how we have carried out the energetic characterization.

• Before working with small clusters, Chapter 4 presents a checking of the simulation

technique, inserting only a self-interstitial atom.

• Afterwards the obtained results of interstitials clusters whose size ranges from 2 to

6 atoms are presented in Chapter 5.

• Once having characterized each cluster aggregation, Chapter 6 compares the evo-

lution of the analysed properties with the size and how pressure modify them.

• Eventually, Chapter 7 includes the main conclusions which can be extracted from

this work and some possible future research lines are raised.
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Chapter 2

Simulation method and tools

Our virtues and our failings are inseparable, like force
and matter. When they separate, man is no more.

∼ Nikola Tesla ∼

T
his part aims to describe the theoretical aspects about the simulation tech-

nique we have used. We should realize and keep in mind all the approxima-

tions which are implemented and verify they match with our work context in

order to be sure we have made a correct use of the simulation technique. Hence, we are

going to define what is the simulation method we have chosen, highlighting its special

features as well as important technical parameters to consider. In addition, the method is

going to be contextualized, mentioning related techniques and their connexion with ours.

This idea is essential due to the fact that we have run our simulations by embedding

other technique in our used method in order to be able to use the desired interatomic

potential.

Likewise, the processing programs we have developed and the visualization tools we

have used should not be avoid. Both utilities have had a great importance owing to the

type of data we have worked with and have played a major role in the conclusions which

can be extracted about them. Additionally, the end of the chapter will include other

tools which we have frequently used, having made easier our work.
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2.1 Introduction

While computer simulation methods were seen only as a powerful but complementary

tool in many fields of science some years ago, nowadays they are a well-established research

area almost present in every sector. The possibility of avoiding the typical approaches of

analytical problems gave rise to a widespread use, whose applications continue expanding.

Thus, the computational techniques allow us to study the behaviour of complex systems

that could not be solved by analytical techniques [35].

In fact, certain properties of complex systems can only be studied through simulation

under some circumstances. The reason of the previous statement lies in the impossibility

of measuring specific aspects by analytical techniques despite how sophisticated they

may be. Besides this idea, computing a great deal of data is no feasible if we use these

traditional methods. In any case, we should consider the simulation techniques in the

middle of theory and experiment, filling the gap between them, as it can be seen in

figure 2.1. They provide an accurate comparison between model and experiment, letting

us determine the validity of the first one. As a result, one can experiment through the

computer.

Complex Fluid
(real system)

Complex Fluid

(model system)

Make model
Simulation

Experimental
Results

Results

Predictions
Theoretical

Test theory

Test model

Figure 2.1: Connexion between theory, experiment and simulation [35].

In this sense, we have to compare directly the theoretical results with the experi-

mental ones to check the simulation methods. This affirmation, however, cannot be true

due to the fact that there is no detailed information during an experiment, measuring

macroscopic properties. Statistical mechanics raise to solve this issue.
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2.1.1 Deterministic and stochastic methods

Taking into account that in order to obtain a mean value of a certain property of our

system we have to propagate the system through a path in the phase space (positions

and momentums), there are two possibilities to implement this propagation [36]:

• Deterministic methods. They propagate the system though the phase space by

making use of their intrinsic dynamic, calculating the movements equations and

integrating them every time step. MD (Molecular Dynamics) is the most extended

method.

• Stochastic methods. They evaluate only the configurational part of the problem,

integrating the moments of the particles every time. Thus, moment transitions

have to be introduced to pass from one configuration to another. To do so, they

are based on a probabilistic evolution. Consequently, an important advantage they

have is to be able to simulate systems without intrinsic dynamic. Considering the

research efforts in this area, MC (Monte Carlo) is the most common technique and

we are going to give some details about it in next section.

2.1.2 Classification according to system size and simulation time

A convenient way to address the issue of modelling materials is to separate all the

techniques according to the entity whose behaviour is described. Commonly speaking

there is a four level approach depending on this minimum element to consider. They can

be seen in the table 2.1.

Method Entity described Number of units Length scale Time scale

Electronic models electron 10 - 100 0.1nm - 1nm -

Atomistic models atom 102 - 109 0.1nm - 100nm fs - µs

Mesoscopic models nanoparticle, grain 106 - unlimited 100nm - mm ms - s

Continuum approaches continuum unit cell unlimited nm - m s - ks

Table 2.1: Considered entities according to the size and simulation time for different
models [37].

It should be noted that when we decrease or increase the system size the models

should be adjusted to their respective systems, reproducing the right behaviour by using
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the corresponding physical or chemical expressions. At the same time, the simulation

time should not be very long, making it feasible. In this way, a certain time scale is

linked to the systems which can be simulated.

The following points summarize the main aspects of each approach [37]:

• Electronic models. They follow quantum mechanics laws, which enable them

to characterize the system by knowing the wave function and their Hamiltonian

operator. We can find different variants inside this model, highlighting textitab-

initio, MB (Many Body), HF (Hartree-Fock), and TB (Tight Binding). In this

point, we have to emphasize that ab-initio models are a very widely used approach

for isolated systems at 0 K, being able to develop models to upper scales by using

DFT (Density Functional Theory) [38].

• Atomistic models. This is the point in which our work is located. They are based

on statistical mechanics, statistical thermodynamics and probability theory. The

interatomic forces between the atoms are determined by the interatomic potential,

which is parametrized through analytical expressions obtained from a lower abstrac-

tion level such as ab-initio techniques. They avoid the interaction of electrons inside

the network but they are able to reproduce systems of ∼100 nm size (∼ 109 atoms)

during ∼µs time. Hence, being strict we cannot argument that they can simulate

macroscopic systems, but instead they are likely to reveal the microscopic origin of

them getting macroscopic properties similar to the experimental ones. There is a

long list of techniques to emphasize in this category: MD and MC (we have already

mentioned and we are going to give some details below), atomistic spin models and

statistical atomistic models.

– MD is a simulation technique which calculates the atom displacements in a

dynamic system. It implies that the system is influenced by certain physical

forces during a particular period. To do so, it solves the Newton’s equations

of movevement for a multimass system with interactions between themselves.

Using a numerical integration scheme, the dynamics of each atom in the system

under the effect of the interatomic forces are calculated for each time step. The

length of the chosen time step is a compromise between a value large enough

to allow a long simulation time for the purpose of the study and a value

small enough to capture all the required fundamental frequencies of motion

in the system and conserve the energy between integration steps. This is
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typically in the range of 1-10 fs, but depends on the range of motions allowed

in the system. Multiple time scale calculations, where rapidly changing forces

are updated more frequently than slowly changing forces, are also possible in

order to reduce the required computational time. In addition, the control of

the temperature and the pressure is done by either stochastic or numerical

methods.

The main advantage of this technique is that we can obtain the trajectory

of the system during the simulation, from which dynamical and structural

quantities can be obtained, as well as macroscopic properties (e.g. tempera-

ture, pressure, work, heat, free energy, and entropy) as other methods usually

do. Furthermore, within this technique we can find several variations, such

as CMD (Classical Molecular Dynamics), MD ab-initio or QM/MM methods

(Quantum Mechanics/Molecular Mechanics).

In any case, we have to bear in mind that its aim is to determine the applied

force to each atom of the system by keeping constant some physical magni-

tudes: the number of atoms, the volume and the energy, which is called NVE

(Microcanonical ensemble), the number of particles, the temperature and the

volume, which is called μVT (Gran canonical ensemble), the number of atoms,

the pressure and the temperature, which is called NPT (Isothermal–isobaric

ensemble) or other variations.

The development of this technique dates back to 1960, when J. Alder y Thomas

E. Wainwright took advantage of the technological advances of their time and

simulated perfectly elastic collisions between hard spheres. Since then MD

have become a very remarkable simulation technique in several areas, including

physics and chemistry, and they have given rise to interesting applications in

many other fields. In fact, it is being widely used to study protein structures,

nuclei acids, biomolecules and complex fluids. Looking for the causes of this

diverse range of application it can be attributed to the fact that depending

on the interatomic potential which is being used it can be adapted to almost

every kind of system [36,39].

– MC is a simulation method which does not follow the Newton’s equations at

all, but instead it proceeds in a stochastic way which depends on a sequence

of random numbers which are generated during the simulation. Thus, the

purpose is to use these random numbers to determine the events of a system

and its particles, each of them with an associated probability.
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Taking into account that with a different sequence of random numbers the

simulation will not give identical results, but it will yield values which agree

with those obtained from the first sequence to within some statistical error, a

very large number of problems can be addressed with this technique.

It should be noted that although we may not be moving within the phase

space along the same path we may be attempting to sample a region of the

phase space in order to estimate certain properties of the model. In order

to find the cause of the last statement, we should consider that the task of

equilibrium statistical mechanics is to calculate thermal averages of interacting

many-particle systems, taking proper account of statistical fluctuations and

their effects in such systems. Moreover, since the accuracy of a Monte Carlo

estimate depends upon the thoroughness with which phase space is probed, a

substantial improvement may be obtained by simply running the calculation

a little longer to increase the number of samples [40].

Among this category we have kMC (kinetic Monte Carlo) technique, which

keep the same statistical principles but using a variable time step, which en-

able us to reach longer time scales (∼h). It is quite useful to reproduce the

behaviour of materials in technological processes such as interactions between

dopant atoms during annealing, being that the main reason for what we have

used this method in this work. In addition, we have to mention that BCA

(Binary Collision Approximation) method is also very common to study ion

implantation.

Looking back about its origin, the modern version of the Markov Chain Monte

Carlo method was invented in the late 1940s by Stanislaw Ulam, while he was

working on nuclear weapons projects at the Los Alamos National Laboratory in

collaboration with John Von Neumann. It is thought that Ulam while playing

solitaire tried to calculate the likelihood of winning based on the initial layout

of the cards and he named MC after a casino in Monaco.

• Mesoscopic models. They focus on describing the behaviour of entities like

nanoparticles, grains, agglomerates, large biomolecules or macrospins. In this sense,

molecular models belong to this class. The method consists of grouping more than

one atom together in an entity whose behaviour is described by an equation in order

to allow the simulation of larger systems and for longer times, although it implies

loosing some atomistic details. Additionally, there are two main techniques inside
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these models: Statistical Mesoscopic Models and Micromagnets Models, although

their implementation is not as widespread as MD and MC.

• Continuum models. They can simulate bigger structures reaching macroscopic

levels without accuracy. All the previous abstraction levels take into account that

the materials are composed by molecules that separated by empty gaps. However,

these models consider the matter as a continuum. In other words, they assume the

matter distributes filling all the gaps. Therefore, they lose touch with reality but

can simulate certain physical phenomenons.

Figure 2.2 shows the contextualization of some simulation methods we have described

in comparison with the corresponding experimental techniques of the same size scale.

Anyway it is necessary to stress that almost every physical process cannot be reproduced

by a single model because it would be tough to follow the real behaviour accurately. What

researchers in this area usually do is a multiscale approach due to the intrinsic nature of

the physical and chemical phenomenons. Therefore, these methods are characterized by

combining themselves to simulate a system properly, being this idea the fundamental key

of the MMM [32] research group.

Figure 2.2: Simulation techniques and experimental methods depending on size and
time scales [41].
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2.2 Kinetic Activation-Relaxation Technique

After giving a general view to the simulation methods we can find in the literature, we

are going to describe in detail kART (Kinetic Activation-Relaxation Technique), which

is the key in this work. Firstly it should be clarified why we have chosen this simulation

method and its role in sampling the energy in complex materials, indicating a brief

summary of the theoretical background behind it. Lately we will focus on describing our

technique.

2.2.1 Theoretical basis

The calculation of transition rates for diffusion events has been a common problem

in condensed matter physics. During this kind of events the configuration of atoms is

changed in some way during the transition, obtaining the interaction between the atoms

from an approximate solution of the Schrödinger equation describing the electrons or from

an otherwise determined potential energy function. It should be noted that although a

classical mechanics treatment of the motion is usually sufficient, the transitions of interest

are typically many orders of magnitude slower than the vibrations of the atoms [42].

Hence, a direct simulation of the classical dynamics is not useful. If we follow the

traditional approach for this context, it is likely that we cannot access to rare events

whose energy barrier is about 1 eV and occur many times per second. This kind of

phenomena would involve the track of too many vibrational periods (∼1010) and a direct

classical dynamics simulation, which necessarily has to faithfully track all this vibrational

motion, would present an infeasible computational cost. In order to reach longer time

scales, as it has been already introduced in kMC methods, purely statistical methods

based on the TST (Transition State Theory) are used.

Giving an insight into this theory, TST relies on the Born-Oppenheimer approximation

and two basic assumptions. The first one points that the rate should be slow enough that a

Boltzmann distribution is established and maintained in the reactant state. The second

one establishes that a dividing surface of dimensionality D-1, where D is the number

degrees of freedom in the system, can be identified such that a reacting trajectory going

from the initial state to the final state only crosses the dividing surface once. The dividing
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surface must, therefore, represent a bottleneck for the transition. The TST expression

for the rate constant r can be written as [42]:

r =
〈|v|〉

2

Q‡

QR

(2.1)

Where 〈|v|〉 is the average speed, Q‡ is the configurational integral for the transition

and QR is the configurational integral for the initial state.

Consequently, the TST rate estimate gives an approximation for the rate of escape

from the initial state without considering the final state. However, it can be determined by

short time simulations of the dynamics starting from the dividing surface, which also give

us an estimate of the correction to TST which is needed to improve the approximation.

This is what is widely called as dynamical corrections.

In any event, the previous expression is a general equation which is not usually ap-

ply for crystals whose atoms are tightly packed and the relevant temperatures are low

compared with the melting temperature. To achieve this, the harmonic approximation to

TST takes it into account and can typically be used in studies of diffusion and reactions

in crystals. In addition, it estimates the rates more accurate. Following this approach,

the search for the optimal transition state then becomes a search for the lowest energetic

saddle points at the edge of the potential energy basin corresponding to the initial state.

Thus, the rate constant for transition through the region around each saddle point can

be obtained from the energy and frequency of normal modes at the saddle point and the

initial state [42]:

rhTST =

∏3N
i −υiniti∏3N−1
i υ‡i

e−(E
‡−Einit)/kBT (2.2)

Being E‡ is the energy of the saddle point, Einit is the local potential energy minimum

regarding to the initial state, and υi are the corresponding normal mode frequencies.

As it happened before, the mechanism of the transition is reflected in the saddle point

and when it is found one can follow the gradient of the energy downhill, both forward and

backward, and map out the minimum energy path. Nevertheless, it should be stressed

that finding a relevant saddle point is quite tough, being one of the most challenging tasks

in theoretical studies of transitions in condensed matter. In addition, when a search is

launched it is not sufficient to find a saddle point, but rather one needs to find the highest
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saddle point along the minimum energy path, in order to get an accurate estimate of the

rate from harmonic approximation to TST. Figure 2.3 gives an excellent representation

of this idea.

Figure 2.3: Sample of an energy landscape showing a saddle point and adjacent energy
minima linked by the minimum energy path [43].

Many methods have been proposed for finding the minimum energy paths and saddle

points. They basically involve some kind of maximization of one degree of freedom

and minimization in other degrees of freedom. The key is to find a good and inexpensive

estimate with the more freedom as possible. Here we are going to describe briefly Lanczós

[44] and DIIS (Direct Inversion in the Iterative Subspace) [45], which are the methods

used by kART in order to converge to a first-order saddle point, which is a position on

the potential energy surface corresponding to a minimum in all directions but one.

2.2.1.1 Lanczós

kART makes use of Lanczós algorithm to determine the lowest eigenvalue of the Hes-

sian ∂∂E/∂ri∂rj and its corresponding eigenvector ui necessary in its first two operation

stages: leaving the harmonic well and activation and convergence to a first-order saddle

point (see section 2.2.3.1 for more information). In the first phase, when this eigenvalue

falls below a certain negative threshold, the system is considered to have left the harmonic

well and we move to the activation regime. In the second one, Lanczós is used to obtain

a direction of negative curvature.
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Because of the recursive application of the method, it was shown that only 13–16

force evaluations provide an accurate value of the lowest eigenvalue, without having to

compute and diagonalize the 3N-dimensional Hessian at every step. Actually it is not

a direct implementation of Lanczós but a modification which reduce systematically the

number of force evaluations during the activation stage while converging with a much

greater precision onto the saddle point [46].

Expressing the fundamentals of the method mathematically, it is basically an adapta-

tion of power methods to find the most useful eigenvalues and eigenvectors of nth order

linear system with a limited number of operations, which should be lower than the or-

der. Its aim is to calculate the tridiagonal and symmetric matrix Tmm = V ∗mAVm. Once

calculated, one can solve its eigenvalues λ
(m)
i and their corresponding eigenvectors u

(m)
i

by a complementary algorithm such as the widely known QR (A = QR, where Q is an

orthogonal matrix and R is a triangular matrix).

To do so keeping the stability the following algorithm is used:

v1 ← random vector with norm 1.

v0 ← 0

β1 ← 0

forj = 1, 2, · · · ,m− 1

w′j ← Avj

αj ← w′j · vj
wj ← w′j − αjvj − βjvj−1

βj+1 ← ‖wj‖

vj+1 ← wj/βj+1

endfor

wm ← Avm

αm ← wm · vm
return
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Where the diagonal elements are denoted by αj = tjj, and the off-diagonal elements

are denoted by βj = tj−1,j. It should be noted that tj−1,j = tj,j−1, due to its symmetry.

As a result, we get the αj and βj from each iteration, constructing the tridiagonal matrix:

Tmm =



α1 β2 0
β2 α2 β3

β3 α3
. . .

. . . . . . βm−1
βm−1 αm−1 βm

0 βm αm


(2.3)

2.2.1.2 DIIS

An important acceleration of the technique was due to the combination of DIIS

method with the previous one in the activation phase. This enable kART to improve

the convergence and can significantly decrease the computational costs of this stage. It

should be stressed that DIIS is much less demanding that Lanczós in terms of force eval-

uation per step: it only demands one, a crucial advantage when calculating the energy

and forces is costly [46].

If we define the method in a mathematical approach, at a given iteration, the algorithm

combines previous iterations ei to construct a linear combination of approximate error

vectors em+1:

em+1 =
m∑
i=1

ciei. (2.4)

Their coefficients ci are determined so to best approximate by equating zero to the

derivatives of L with respect to the coefficients:

L = ‖em+1‖2 − λ

(∑
i

ci − 1

)
=
∑
ij

cjBjici − λ

(∑
i

ci − 1

)
(2.5)

Where Bij = 〈ej, ei〉. Then, these coefficients are used to extrapolate the function

variable for the next iteration.
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2.2.2 Comparison with similar techniques

Over the last decades there has been a incremental effort to get an effective method

for sampling the energy landscape of complex materials, especially in the field of semicon-

ductors. In this area, the aim is to understand the long-time kinetics of defects diffusion

inside a lattice containing from many tens to many thousands atoms.

Thus, before kART was launched the following methods were available [47–49].

2.2.2.1 MD extensions

Some of the proposed methods are variations of MD. For instance, the Voter’s hyper-

dynamics [50], which provides an accelerated scheme that incorporates directly thermal

effects, the Laio and Parrinello’s metadynamics [51], which focuses on computing free-

energy barriers for specific mechanisms, and the basin-hopping method by Wales and

Doye [52] and Goedecker [53].

Although the traditional approach would point that MD simulations is the right way

to address this kind of problem, we have to keep in mind that the computational cost is

extremely high and the simulation times it can reach are too short for our interest. We

should not forget that many problems in condensed matter and materials science involve

stochastic processes associated with the diffusion of atoms over barriers that are high

with respect to temperature. Therefore, we would not be able to overpass them under

normal conditions, which is what can be done with MD [47].

2.2.2.2 Based on kMC algorithm

They treat the thermal contributions in a quasi-harmonic fashion, in accordance with

the transition state theory so that they are really aimed to search for transition states

and the computation of energy barriers. Consequently, applying this approach we can get

access to events which have small rates, in other words, we can avoid the MD problem by

considering these processes independent and neglecting the thermal motion of the atoms.

This is the key of kMC based methods.

In kMC simulations, the clock is then advanced using Poisson’s law, a move is selected

with the appropriate rate, and a dynamical trajectory is constructed. While time steps

in kMC are dominated by the lowest energy barriers, it is possible, under the right
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conditions, to simulate experimental time scales. Anyway, the time scale is determined

by the fastest activated processes, reaching time scales of ∼ms, much longer than those

accessible with MD. That is the point why kMC has been extensively and successfully

used over the past 20 years.

Nevertheless, it presents a few drawbacks to bear in mind [49]:

• The systems investigated must be discretized and mapped onto a fixed lattice in

order to define the various diffusion mechanisms that need to be considered at a

given moment.

• The simulations simply consist in operating a diffusion event picked at random,

updating the list of possible moves in the new configuration, which is not suitable

for certain systems whose complexity is high. For instance, it fails when the sys-

tems undergo significant lattice deformations or when long-range elastic effects are

important.

Lifting these limitations has been an active field of research for many years. Gener-

ally speaking we can classify all the solutions in two categories: ones which implement

continuum approximations for the long-range strain deformations and others which are

based on an on-the-fly evaluation of the energy barriers. The way the first category works

to determine the barriers is by using extrapolation schemes from these long-range con-

tributions. However, there is a need for setting up a catalogue of all possible activation

mechanisms [48].

In any event, regardless of whether we chose one or another, we should be sure about

where the displacement can take place. Whereas in MD it is assumed an off-lattice

approximation, it can be distinguished two approaches with kMC methods:

• On-lattice. They limited the displacements of the atoms to the lattice we are

working with. In other words, a fixed grid is given and atoms can only move from

one site to another. Such an on-lattice approach is no the best choice for treating

defects.

• Off-lattice. They operate can outside the lattice by defining a set of mobile sites

in space on which events occur. Each site’s neighbourhood of nearby sites is defined

by a cut-off distance and forces are calculated through a potential. The problem
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with on-lattice kMC methods is that rules are set up for defining movements and

their energy barriers, being unlimited in complexity in principle.

Thus, the proposed solution which implement continuum approximations we have

already mentioned above tend to be on-lattice. Therefore, it is not the right option for

our work, being preferable an on-the-fly and off-lattice technique approach. In this sense

we have two possible approaches which fulfil both requirements [47]:

• Closed-ended methods. They require the knowledge of both the initial and final

states. Hence we do not let the system evolve freely and it adds to the fact that

there are some complex systems whose list of states are almost empty beforehand.

This is the case, for example, for the NEBM (Nudged-Elastic Band Method) [54]

and the GSM (Growing-String Method) [55].

• Open-ended methods. To solve the previous problem, there has bees proposed

some methods which gives freedom to the evolution of the systems, achieving tran-

sitions without indicating final energy state a priori. They tend to follow the pre-

scriptions proposed by Cerjan and Miller [56] and Simons et al. [57], highlighting the

ART (Activation-Relaxation Technique) [58–60], also known as ART nouveau, the

eigenvector-following method [61], an hybrid version [62] and the dimer method [63].

When the final state of the transition is known, both the initial and final coordinates

of the atoms can be used as boundary conditions in the search. When only the initial state

is known, the problem is more challenging and the search for the saddle point represents

also a search for the optimal transition mechanism [42].

In any case, whereas all the methods described above have the advantage of being

more flexible due to the off-lattice approach, the vast of them are currently inefficient as

they do not take advantage of the knowledge of previously encountered events, and are

therefore only useful for small systems with very few barriers. In other words, they are not

self-learning methods. It should be stressed that once a method is available for finding

saddle points and adjacent minima, there are several ways to treat this information.

Additionally, in the end researchers have a strong interest in understanding the underlying

kinetics controlling the complex systems. To this purpose, it is no longer sufficient to

collect these saddle points: they must be ordered and connected in some fashion to

reconstruct at least a reduced representation of the energy landscape.
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In this way, there are many options available to address the problem, highlighting

kART [49] and Wales [64] approach. The second method is based on constructing a

connectivity matrix that links together minima through saddle points after starting from a

large catalogue of events, and then applying a master equation to solve the kinetics. Thus,

it benefits from the discrete path sampling in terms of providing a complete solution to the

system’s kinetics. However, the matrix increases rapidly with the system’s complexity,

making it difficult to address the kinetics of large and complex problems.

Hence, a more straightforward manner to generate kinetics with these methods is

to apply an on-the-fly kMC procedure. The main point here is that from a given local

minimum, a finite number of open-ended event searches are launched and the resulting

barriers are used to estimate a probable time scale over which an event will take place.

In addition, to be feasible an extensive sampling of activated events is performed before

each kMC step. In this sense, some authors proposed several open-ended methods but

all of them are characterized by not recycling unaffected events. There is a widespread

effort for years in order to implement cataloguing for these events, which most of the

time involve off-lattice positions.

It should be noted that the need for such a method is very strong, as is confirmed by

the multiplications of other algorithms that also address various limitations of standard

kMC published recently. Besides kART, there are other research groups which have

recently implemented a simple on-the-fly kMC approach with sampling of events after

every step but no making use of previously found events, such as the already mentioned

Henkelman and Jónsson approach [63] but adding it kinetics, the self-learning kMC [65],

the self-evolving atomistic kMC [66], the local-environment kMC [67] and the molecular

dynamics saddle-search adaptive kMC [68]. All of them are based on the scheme showed

in figure 2.4.
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Figure 2.4: Simplified workflow for on-the-fly kMC algorithms [69].

In any case, the challenge, for all these methods, is threefold [47]:

1. Ensuring there are not relevant event missing in the catalogue.

2. Devising a classification which can correctly discriminate events even in complex

environments, for example in materials with defects.

3. On-the-fly updating of the energy barrier in order to fully consider elastic deforma-

tions.

That is the point where kART has come onto the scene, developed by the same

research group as ART. It is a powerful both on-the-fly and off-lattice kMC method
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based on ART algorithm for generating events and calculating barriers, achieving speed-

ups as large as 4000 over standard MD for complex systems, while retaining a complete

description of the relevant physics, including long-range elastic interactions due to the

discretization of events even for disordered systems. The gain in efficiency is achieved

through a topological classification of atomic environments, which allows configurations

and events to be recognized and stored efficiently, and used again as the simulation

proceeds [49].

Task kART
Self-evolving atomistic

kMC

Identification of
local configurations

Local configurations are
well described by topology

of connectivity graph

Local configs are well
described by distances of
atoms from the perfect

lattice

Association of
events to local
configurations

Events can be catalogued
using topology

Only a subset of atoms are
necessary to handle elastic

effects on saddle-point
Events can be mapped
using graph canonical

representation

Sometimes neglect checks
for duplicity of events

Most important events are
sampled when encountering

a new topology

Neglect detailed balance.
(Formally, a large number
of searches will still lead to

micro-reversibility.)

Expansive, but incomplete,
catalogue is rarely

resampled

Catalogue is resampled
with uncorrelated random

searches at every kMC step
to compensate limited

number of searches
Harmonic version of TST Harmonic version of TST

Constant prefactor Constant prefactor

Event execution

Poisson process Poisson process
Uncorrelated processes Uncorrelated processes

Mean-passage time
correctly describes kinetics

of flickers

Table 2.2: Technical comparison between k-ART and Self-evolving atomistic kMC [69].
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Apart from kART, if we have to emphasize one alternative methods described above,

it would be the self-evolving atomistic kMC. It has a lot of characteristics shared with

kART, as it can be seen in table 2.2, but it samples a relatively small number of such

transition states each step, identifying local configurations and also associating events to

these configurations in a different way. In any case, the way this method works does not

match our interest. It simply identifies defects by comparing the atomic positions of atoms

to those of a perfect lattice or can be based on energy or stress criteria. The topology-

based approach implemented by kART, however, is more flexible and demands less a

priori knowledge of the system. At the same time, by precisely identifying defects, kART

can make saddle-searches more effective by centring them on these positions, increasing

the success rate of finding interesting events [69].

On the other hand, one can consider inserting kART in another method, such as the

well-known BEP (Bell Evans Polanyi) principle. However, it has been recently shown that

pure BEP simulations become trapped rapidly in relatively high energy configurations,

while KMC runs manage to find ever lower energy states. In addition, if these issue is

corrected then the kinetics of the system is lost [70].

2.2.3 Review of the technique

As we have already introduced in the previous section, kART is an on-the-fly, off-

lattice and open-ended method which combines ART with a self-learning topological

classification of atomic environments behind a kMC algorithm. In this section we are

going to explain ART in detail and describe all the essential steps that kART follow

during a simulation, giving extra information to the most influential parts.

2.2.3.1 ART nouveau

In this section we are going to explain the first-order saddle point search carried out

every step in kART. The ART nouveau method is an algorithm which has been developed

over the last 15 years. In short, it incorporates a search in line with the eigenvector-

following and the dimer method, through the use of the Lanczós algorithm (see section

2.2.1.1 for more information about how it proceeds).

The method is structured in three steps which form an event [47]:
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1. Leaving the harmonic well. Taking as a point of origin a local energy minimum,

the aim is to identify a direction of negative curvature on the energy landscape

because it would imply the presence of a nearby first order saddle point. In this

point it is recommended to keep in mind that, mathematically speaking, a first

order saddle point is characterized by conforming ∂E/∂r = 0 and the Hessian

matrix with one negative eigenvalues.

Figure 2.5: Sketch of minimum energy pathways from various first order saddle points
to the local energy minimum in ART [47].

The critical issue here is to select the right direction for leaving the harmonic well,

which is defined as a region of the energy landscape surrounding a local minimum

with only positive curvature, as figure 2.5 shows. In this sense, it cannot make use

of the Hessian matrix given by Lanczós, but instead it uses random directions of

deformation. Nevertheless, as following this approach tend to favour certain events,

ART let us be focused on particular subsets of a system, which has a strong interest

when working with defects.

This procedure can be divided into 4 steps:

(a) Selection a random atom from the whole network or a specific region.

(b) Identification of this atom and its neighbours by using a cut-off distance and

displacement of them along a random direction.

(c) Minimisation in the perpendicular hyperplane in order to avoid collisions and

allow the full system to react the deformation carried out in the previous step.
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It should be slight to not fall in the well again. This plane can be seen in

figure 2.6 for the initial position.

Figure 2.6: Perpendicular hyperplane to the initial energy minimum designed with
Matlab.

(d) Launching of Lanczós algorithm to determine the lowest eigenvalue of the

Hessian matrix. At the time this eigenvalue falls below a certain negative

threshold, the system is considered to have left the harmonic well and we

move to the activation regime.

2. Activation and convergence to a first-order saddle point. The task of this

step can be seen as straightforward due to the difficulties of the previous one. At

first sight, what it only needs to do is bringing the system to a first-order saddle

point by pushing it along the selected direction while the energy is minimised in

the perpendicular hyperplane to ensure we are on the right way.

Nevertheless, if we translate this idea into computational methods it can be expen-

sive due to the requirement of partial knowing of the Hessian matrix. Here Lanczós
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plays an essential role again because has the advantage of building on the previ-

ous results to identify the next lowest eigendirection, decreasing considerably the

computational cost. It is affirmed that a 15x15 matrix would be enough to ensure

a stable activation, irrespective of the system size, which would only need 16 force

evaluations. In any case, depending on the system this situation can be altered so

that the number of evaluations decrease.

Although the problem seems to be solved, we have only addressed it when the acti-

vation takes place, i.e., when pushing the system next to the initial minimum. The

dual approach of activation with Lanczós and minimization in the perpendicular

hyperplane is not optimal near the saddle point, so in order to converge to a first

order saddle point, it is preferable to use other algorithm instead the hyperplane

minimisation.

In this sense, the authors of ART have chosen DIIS, an integrated algorithm that

can converge efficiently on inflection points (see 2.2.1.2 for to know more details).

This algorithm enable ART to accelerate the convergence phase and it also increases

the accuracy.

In summary, this procedure can be divided into 4 steps:

(a) Determination of the direction of negative curvature through Lanczós algo-

rithm.

(b) Push the system along this direction keeping a displacement which is decreas-

ing with the number of interactions.

(c) Relaxation of the system in the perpendicular hyperplane, decreasing the num-

ber of iterations when we are closed to the energy minimum in order to not

fall again into the harmonic well.

(d) Depending on if DIIS is or not used, we have two possibilities:

- In case DIIS is avoid, the first three steps are repeated until the system reach

to a first order saddle point, which will occurs when total force falls below a

predefined threshold. Alternatively, if the lowest eigenvalue becomes positive,

it would imply that the system has found its way back into the harmonic well.

- As long as DIIS is applied, Lanczós algorithm will be launched until the

negative eigenvalue has reached a minimum and has gone up for 4 sequential

iterations. Once completed this task, DIIS will be in charge of reaching the

convergence criterion. Finally, a Lanczós calculation is then performed to

ensure we are actual in the aimed saddle point.
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3. Relaxation into a new minimum. At this point, the purpose is to push again the

system to in order to converge into a new energy minimum. The nudge should be

slighter than the previous ones, being typically pushed over a distance of 0.15 times

the distance between the saddle and the initial minimum along the eigenvector.

To conclude, the system is brought into the new minimum by using any controlled

algorithm which ensures the convergence to the closest minimum such as FIRE

(Fast Inertial Relaxation Engine) [71]. In this way, the algorithm selection does

not present the importance as the ones implemented before.

In light of the the three steps which conform an event we have described above, we

already know the initial minimum, the transition state and the final minimum, so that it

is possible to characterize the local energy landscape. In any case, with this approach we

get energy points of the landscape without connexion between them. Thus, by inserting

ART within a Metropolis scheme or to generate a kinetic trajectory using a kMC approach

all points generated would be fully connected. This idea will be discussed in the following

section.

2.2.3.2 Operating mode of kART

If one want to evaluate the dynamics of a system ART is not enough. In this sense,

the bias for selecting a specific barrier over the others should be known besides finding

saddle points. Thus, a very efficient solution would be sampling all possible events with

ART to serve in a kMC scheme.

Summarizing the technique in two lines, kART uses ART nouveau for generating

new events and update energy barriers, coupled with a topological classification for local

environments, which allows the construction of a discrete event catalogue. Anyway, the

kART procedure is described further below, classifying its operation method in three

steps which are launched in a loop [47]:

1. Topological characterization and generation of events. Starting from a local

energy-minimum, the first task is to analyse the topology associated with each atom.

This topological description of local environments has to be accurate due to its later

use for mapping events uniquely, establishing the basis to describe environments of

any chemical and geometrical complexity.
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To do so, a central atom is selected and all its neighbours within a given cut-off

radius, connecting them. Then it follows a predefined procedure which forms a

graph which is analysed by a software which returns a unique tag associated with

the topology and an ordered list of cluster atoms. Regarding to this issue, the used

program is NAUTY [72], which provides the permutation key needed to reconstruct

a specific geometry from the generic topology and a set of reference positions. As

it can be seen in figure 2.7, a truncated graph (b) is extracted from the complete

lattice (a) and this graph is analysed through NAUTY (c), which returns a unique

key and the associated topology (d).

Figure 2.7: Example of topological analysis in kART using NAUTY [73].

The the size of the truncated region are selected to ensure that the configuration

is uniquely defined through this network, that is, the connectivity graph must lead

to a unique structure once relaxed with a given interatomic potential. In the case

of crystalline Si, for example, it is defined the local environment around an atom

by a sphere of radius 5.0 Å, which includes about 40 atoms considering 2.8 Å as a

cut-off distance to link two atoms.

The critical point here is to ensure that the topological description and the real-

space geometry of this local region follow a unique correspondence. To do so, one

can suppose that the graph has to be embedded into a well-defined surrounding
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geometry. This idea is fulfilled the majority of conformations, but it is not true

when the following cases take place so that they have to be addressed:

• One topology is associated with the same geometry: it is likely to happen when

working with very flat minima or saddle points, overcounting events then. It

is solved by comparing other known parameters such as the barrier height, the

absolute total displacement and the direction of motion of the main atom both

between initial and final state and between initial state and the saddle point.

• A single topology corresponds to more than one geometry: quite common for

highly symmetric systems when two topologically identical events which differ

only in the direction of motion. In order to solve this issue, several extra

searches of ART nouveau are launched to reconstruct the geometry, ensuring

that motion takes place in different directions.

• A topology is associated with fundamentally different geometries: although is

strange to occurs, it can be an internal failure which is automatically solved.

Since it leads to incorrect saddle-point reconstruction that cannot be converge,

the algorithm modifies the first neighbour cut-off by itself until the multiple

geometries are separated into unique topologies.

Once the topological characterization has been described, now we are going to focus

on the event generation. In this sense, as long as a new topology is identified, ART

nouveau is launched from the central atom in order to determine the associated

saddle point. This procedure is done a certain number of times depending on the

system. An estimate number between 25 and 50 searches for every log10 times we

see a topology is given by the manual, saving all the associated states (initial and

final energy minimum and saddle point) to each one. Hence, it should be noted

that event searches are not limited to new topologies. All these events are called

generic events and stored and accumulated in the catalogue. kART make use of

them to reconstruct specific events associated with a given configuration, being able

to decrease the computational cost in further studies.

One of the major advantages of this approach is that this catalogue of generic

events and topologies can be saved to an external disk, made available to reuse it

on similar systems. Even multiple catalogues from different kART simulations can

be merged, creating a larger database that can be used increase the speed in next

simulations [48].
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2. Reconstruction of the geometry and refinement of low energy events.

Although it is assumed that all atoms sharing the same topology will have access

to the same generic events, a small adjustment to the energy barrier due to local

variations in position or long ranged elastic interactions need to be done, forming

then what are called the specific events.

These phenomenons affect every barrier differently so that they give rise to favoured

directions even for formally isotropic defects. To do so, kART should reconstruct

every generic event for each atom and relax it again, taking into account only

kinetically relevant events to avoid an excessive computational cost. In this sense,

only the lowest energy barrier events (up to a given threshold typically 99.9% or

99.99% of the total rate) are fully reconstructed and refined for each KMC step,

representing one to ten percent of all barriers in the catalogue (depending on the

system). This idea is showed in figure 2.8.

Figure 2.8: Refinement of generic events into specific events in kART [48].

In any case, the local reconstruction takes place in two steps:
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(a) The geometric transformation necessary to map the initial state onto the

current configuration and to the atomic displacements between initial state

and saddle point is determined by using the reference atomic positions of the

generic event.

(b) The system is relaxed into the final state by pushing it over the saddle point,

considering the one-to-one correspondence between topology and geometry

while mapping is carried out.

Figure 2.9 illustrate this concept.

Figure 2.9: Example of events reconstruction in kART [43].

3. Applying the kMC procedure. Having the information about all the possible

events, one can make a list of these events which serves to a kMC algorithm whose

rates are determined according to transition state theory:

ri = τ0e

(
−∆Ei
kBT

)
(2.6)

Where ri is the rate associated with event i, τ0 is the attempt frequency (∼ 1013s−1),

∆Ei is the barrier height (Esaddle − Einitialminimum) and kB is the product of the

Boltzmann constant and the temperature, respectively. Since τ0 varies only weakly

with the chosen pathway for the vast majority of systems, combining the previous
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equation to the rate of harmonic TST (see equation 2.2), it can be extracted the

Poisson distributed time step ∆t over which an event will take place:

∆t =
− lnµ∑
i

ri
(2.7)

Where µ is a random number between [0,1] which ensures a Poisson distribution.

Thus, the simulation clock is pushed forward by this ∆t and an event is selected

randomly according to the KMC procedure [74], i.e., considering a weight propor-

tional to its rate. Then the atoms are moved accordingly and, finally, the whole

system is relaxed into a minimum energy configuration. Hence, the next step can

be launched.

2.2.3.3 Crucial implementation details

Despite of the fact that we have already described the method, there are some relevant

aspects which are missing and they should be commented [47,48,75]:

• Handling low-energy barrier. Since we are using a KMC approach, dynamics

are dominated by the lowest energy barriers of the system. Therefore, in the event

of a energy landscape consisted of basins with numerous states connected by very

low energy barriers compared to those needed to leave these basins, the algorithm

would become trapped into computing non-diffusive events, as figure 2.10 shows.

This issue affects directly to the attainable simulated time, which will be lower due

to the higher total rate of this kind of barriers, and also increase the CPU cost

without yielding meaningful physics.

Figure 2.10: Example of kART trapping between two states with low energy barrier
between them [43].
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To address this problem the researchers who developed kART have created bac-

MRM (basin-autoconstructing Mean Rate Method) [48], which is based on the

widely known MRM [76]. We are going to describe both of them due to their es-

sential role in this work. In short, MRM separates the trajectory into transient

states and absorbing states and accelerates the simulation. Mathematically speak-

ing, firstly it determines the probability to exit the basin to state x, we calculate

the transition probability matrix T, whose components are:

Tji =
Ri→j∑
k

Ri→k
= τ 1i Ri→j (2.8)

Where Ri→j is the associated rate to go from basin state i to basin state j,
∑
k

Ri→k

is over all basin and exit states k and τ 1i is the mean residence time in state i each

time it is visited. Taking into account that the occupation probability vector of all

basin states after in-basin jump m, Θ(m), is given by repeated application of T to

the initial occupation probability, then the sum of the occupation probabilities over

all possible number of jumps is:

Θsum =
∞∑
m=0

TmΘ(0) (2.9)

That gives the average number each basin state is visited and also the mean resi-

dence time before leaving the basin can be calculated:

τi = τ 1i Θsum
i (2.10)

And these residence times are then used to accelerate the basin exit so that the

following KMC step is then determined using these accelerated rates:

〈Ri→j〉 =
τi∑
k

τk
Ri→j (2.11)

Hence, MRM can accelerate the simulation by averaging over all possible jumps

between transient states, yielding the correct probability to exit a basin to a certain

absorbing state.

On the other hand, the way bac-MRM works is adapting this state based method

to an event based one (note the difference in terminology between bac-MRM and
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MRM). In this sense, bac-MRM defines a basin event as an event which presents

smaller energy difference between the forward barrier bfor = Esaddle − Einitial and

the backward barrier bback = Esaddle − Efinal than a threshold defined by the user.

This is a key point in our work because by modifying this threshold we have been

able to avoid the mentioned flickers.

In addition, creates several basins which are formed by these events. Then, once an

event is selected that matches the description of a basin event, the event is executed

and then added to the current basin of events. Consequently, basins are identified

on-the-fly by the barrier heights separating the basin state.

Figure 2.11: Construction of a basin formed by state A (a) and states A and B (b) with
their possible events (Green: ordinary events, Blue: potential basin events, Red: basin

events) [43].

A concreted mode of operation can be seen in figure 2.11. Firstly, after generating

the list of possible events from the initial minimum (a), the ones with low barrier are

marked as potential basin events, storing their associated atomic displacement. If

such an event is picked for execution (event 1 in the figure), it is added to the current

network of basin events and removed from the tree of available events, executing

in following the normal procedure of kART. Once done this step, the system is in

state B so that kART event finding algorithm is started from this state, keeping all

events from previous basin states in the tree and, therefore, being able to be picked

(b). Here is when MRM come onto the scene, modifying the rates of leaving both

states according to the equation 2.11 and also adjusting the total rate.
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In this point the next step can lead to a new basin state, such as events 2, 9, 10

or 11, which would be added according to the procedure described above, or out

of the basin, e.g., events 3, 4, 5, 6, 7 and 8, which would imply a standard kART

move. However, if an event is found to lead to an already explored basin state,

such as event 1, it is rejected. In addition, this event is also removed from the tree,

and added to the basin, adjusting the rates as needed. It is common that kART

choices basin events until all basin events are added to the basin. Note that it can

be chosen all possible events inside the basin despite of unsharing the initial state.

Consequently, following this method basins are explored on-the-fly but as far as

necessary, and what we really benefit from it is that no state is intentionally visited

twice. In any case, thought all the events inside a basin are basin events and share

the mentioned properties, it should be stressed that there are several slight different

states inside the same basin. Hence, before the next KMC step, events originating

from all states from the current basin could be selected and the continuity of the

simulation can be lost. Despite of this drawback, bac-MRM yields the correct

distribution of exit states depending on the basin internal rates and the point of

entry into the basin without consuming CPU resources in practice.

• Optimizing kART for large scale systems. Although working with large sys-

tems can be seen as a problem for kART, this idea is wrong due to the nature of

activated mechanism. The diffusion phenomenons tend to occur in a local region

inside the lattice, so that they affect to regions composed of 10-100 atoms with in-

duced forces propagated up to a few nm. Hence, the issue can be simply addressed

by an algorithm which construct neighbour list and calculate the forces locally.

To do so, after defining a cut-off radios to consider a nearby atom as a first neighbour

(typically ∼2.8 Å for crystalline Si, as we have already mentioned in the topological

characterization in section 2.2.3.2) and also for second neighbour (∼4 Å), all the

atoms become labelled in order to know the region around each one. Then, when

an event is being launched, local forces are first computed on all atoms involved in

the event plus their first and second neighbours. In addition, in case surrounding

atoms around the initial one have a force which exceeds a certain threshold, their

first and second neighbours are added to the list. Hence, it is assured that forces

are computed only on the relevant atoms in the event. In any case, whereas the

event generation is local, it should be noted that a global minimization if performed

after each KMC move in order to take into account all elastic effects.
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• Box size and boundary conditions. Although this point can experiment changes

in the near future, kART allows only parallelepiped boxes with PBC (Periodic

Boundary Conditions) in all directions. It should be noted that he simulation box,

also known as simulation cell, is the three-dimensional region where all the particles

can displace.

This kind of periodic conditions implies that the cell is repeated infinitely in axis

X, Y and Z. Hence, our initial cell is surrounded by multiple image cells whose

particles are moved keeping solidarity respect to the initial one. However, there

is no need for all of them to move, but only our cell is simulated as well as those

particles which enter and leave from our region. In this sense, the affected particles

of our initial cell would have image particles which would follow the movements of

the original one. This idea can be checked in figure 2.12.

Figure 5. Periodic boundary conditions. As a particle moves out of the simulation box, an image particle moves
in to replace it. In calculating particle interactions within the cutoff range, both real and image neighbours are
included.

Figure 6. The Verlet list on its construction, later, and too late. The potential cutoff range (solid circle), and the
list range (dashed circle), are indicated. The list must be reconstructed before particles originally outside the list
range (black) have penetrated the potential cutoff sphere.

time to time the list is reconstructed: it is important to do this before any unlisted pairs
have crossed the safety zone and come within interaction range. It is possible to trigger the
list reconstruction automatically, if a record is kept of the distance travelled by each atom
since the last update. The choice of list cutoff distance rlist is a compromise: larger lists

11

Figure 2.12: Meaning of PBC in a 2D cell [77].
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Thus, following this method we are able to avoid losing particles in the boundaries,

keeping the number of particles constant and also removing the well-known bound-

ary effects in the nanoscale. Expressing this idea mathematically, if we consider a

cubic system with side L, every particle i and its image i’ will verify:

~ri′ = ~ri + ~nL (2.12)

~pi′ = ~pi (2.13)

Where ~n = (n1, n2, n3) is a vector of arbitrary whole numbers, getting an infinite

value of possible combinations of images with share the same moment as the original.

Thus, when we apply PBC the cells are embedded into a infinite volume and,

therefore, the behaviour of the material is reproduced accurately. It should be

mentioned that, obviously, when one have to determine the forces of the system it

is needed to consider the dependencies between all of them:

U(~r1, ~r2, ~r3, ..., ~rN) =
∑
i<j

v(~rij) +
∑
~n

∑
i<j

v(|~ri′ − ~rj|) (2.14)

Where the first term represents the used potential and the second one indicates the

dependency regarding to the image particles. In any case, to make this problem

feasible, the short range interactions are restricted to the surrounding particles,

defining a cut-off radio which can also cover images particles [36].

2.3 Molecular Dynamics

As we have work integrating a MD simulation program into kART, we are going to

mention certain aspects of MD, focusing later on defining the interatomic potential we

have used and also giving an insight into their role in this paper.

2.3.1 Brief description

According to forcefields models from an atomic point of view, a system can be de-

scribed as a collection of atoms which are influenced by the interaction forces. The vast

majority of these interactions are determined by a potential energy U, which acts as a
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pair potential. The analytical expression of U is determined by the used potential which

is Tersoff in our case (see section 2.3.2). This potential calculates the potential energy

between pairs of atoms in accordance with two functions, one attractive and one repulsive

, which are limited softly with a cut-off function fC . This function is showed in figure

2.13 and its expression for a pair of atoms i y j with positions ri y rj is the following:

fC(rij) =


1, rij < Rij −Dij

1
2
− 1

2
sen

(
π
2

(rij−Rij)

Dij

)
, Rij −Dij ≤ rij < Rij +Dij

0, rij ≥ Rij +Dij

(2.15)

Where the parameters R y D are selected to include the first neighbour nucleus for a

certain structure.

-4

-2

0

2

4

6

8

10

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

En
er

gí
a 

(e
V)

Radio (Å)

Figure 2.13: Representation of Tersoff potential for R=2.95 and D=0.15.

Taking into account that U depends on the positions ~ri of each particles, which are

totally N, the potential energy can be expressed as:

U = U(~r1, ~r2, ~r3, ..., ~rN) (2.16)
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Thus, the forces over every N particles can be obtain deriving U in all the axis:

Fij=
∂U

∂rij
(~r1, ~r2, ~r3, ..., ~rN) para i = 1, 2, 3, ..., N j = x, y, z (2.17)

Hence, it can be determined the trajectories followed by the particles over time by in-

tegrating the Newton’s equations of move. To do so, starting with an initial configuration

os positions and momentums:

mi
d~ri
dt

= ~pi (2.18)

mi
d~pi
dt

= ~Fi (2.19)

Where mi y ~pi are the mass and the linear momentum of the ith particle, respectively.

In this sense, the MD method determine the trajectories in the phase space (positions

and momentums) inside a system whose particles follow the classical mechanic laws.

This calculus cannot be implemented analytically, but instead the move equations can

be discretized and solved by a computer iteratively, using an integration algorithm, as

figure 2.14 shows. Consequently, it should be highlighted that there is an inherent error

due to the discretization process, whose value depends on the memory resources and the

integration algorithm. The information about the physical magnitudes of the system can

be inferred by doing time-weighted averages over the simulation period [36].

Figure 2.14: Simplified calculating method in MD simulations [77].
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2.3.2 Interatomic potentials

As we have already explained, MD needs a numerical method to determine the forces

between the atoms and, therefore, solve the move equations. Although we have mentioned

some of them, such as DFT or TB, interatomic potentials are used from an atomistic

point of view due to the size of the cell and the dynamic context. Hence, these kinds of

potentials do not spend time calculating the fundamental electronic state, instead they

reproduce the interaction between the atoms through empirical equations. In fact, they

are a combination of empirical functions which depend on atom positions and parametric

settings, giving a full description of the energies of system and the forces applied over

each particle [36].

All empiric potentials follow the classical laws of mechanics so that the kinetic and

potential energies can be expressed as [38]:

VT =
N∑
i

V1(ri) +
N∑
i,j>i

V2(ri,j) +
N∑

i,j>i,k>j>i

V3(ri,j,k) + ... (2.20)

Being mi and vi the mass and velocity of atom i, respectively, V1(ri) the effect of an

external field on the system, V2(ri,j) the pair potential that only depends on the distance

among the atoms i and j, and V3(ri,j,k) the triplets of interacting particles. It should

be noted that the second term, V2(ri,j), is the one with the highest contribution to the

total potential and third and higher order terms can be ignored for most applications.

It should be noted that once the total energy has been evaluated (ET = KT + VT ), it

is possible to calculate the stability of one system structure over one other, determine

energy changes as a function of system deformation, etc. However, the accuracy of these

properties is related to the empirical potential used.

Focusing now on semiconductor materials simulations, there are three widespread

interatomic potentials: Stillinger-Weber potential, Tersoff potential and Environment-

dependent interatomic potential. The first two ones were aimed to Si although some

current versions support other compounds, represent the pioneering potentials for Si,

whereas the third one has a wide range of materials. Here we are going to discuss about

their differences and their possible applications, and also explain why we have mainly

chosen Tersoff in our work.
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2.3.2.1 Stillinger-Weber potential

It was proposed in 1985 down to the increasing interest in studies of computer sim-

ulations. Some previous pair potentials, such as the Lennard-Jones potential, were un-

able to stabilize the structure of diamond of Si under normal conditions and also to

reproduce its molten phases, so Frank H. Stillinger and Thomas A. Weber decided to

develop their own potential, widely known as SW (Stillinger-Weber Potential) [78]. Fun-

damentally is a three-body potential which considers the angular dependencies of atoms

(φ3 ∝
(
cos θijk + 1

3

)2
). This potential reproduces the behaviour of liquid and crystalline

phases of semiconductor materials accurately, having been also applied to study extended

defects.

2.3.2.2 Tersoff potential

A year later J. Tersoff published their approach [79], which is known as Tersoff 1. He

realized that the interatomic potentials which had been come out to date did not describe

the properties of non-tetrahedral structures of Si. Thus, their fundamental idea was that

the force of an atom bond depends mainly on its position and its neighbours. Following

this principle, the more coordination number it has, the less force the bond will be. At

the same time, he also included several body effects, being able to be modelled as a Morse

potential.

Parameter Value for SI

A (eV) 1.8308 ·103

B (eV) 4.7118 ·102

λ1 (Å-1) 2.4799
λ2 (Å-1) 1.7322

α 0.0
β 1.0999 ·10−6

n 7.8734 ·10−1

c 1.0039 ·105

d 1. 6218 ·101

h -5.9826 ·10−1

λ3 (Å-1) 1.7322
R (Å) 2.85
D (Å) 0.15

Table 2.3: Tersoff 3 parameters [80].
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Nevertheless, Tersoff 1 potential cannot stabilize the diamond network of Si through

MD, so that it gave rise to other versions. To do so, J. Tersoff also developed Tersoff

2 and Tersoff 3 [80] by using different parametrizations from the first one, whose values

can be seen in table 2.3. In this sense, Tersoff 3 is the most accurate and extended

interatomic potential to reproduce Si. The only problem it presents is that it requires

using equivalences because it gets a melting temperature higher than the experimental

value. In any case this is not a serious drawback since it is possible to make a temperature

rescaling between Tersoff temperatures, TT3, and real temperatures, Treal, both in K, using

the expression [38]:

TT3 = 6.95× 10−4 × T−2real + 2.66× 102 × Treal + 3.79× 102 (2.21)

2.3.2.3 Environment-dependent interatomic potential

Some years after the previous potentials were published, in 1997, the EDIP (Envi-

ronment dependent interatomic potential) were proposed [81]. It was based on using

the ab-initio innovations to arrive at a functional form that describes the dependence of

chemical bonding on the local coordination number by using two-body and three-body

terms which depend on the local atomic environment. Thus, bond order, hybridization,

metallization, and angular stiffness are all described in qualitative agreement with theory,

keeping the form as simple as possible and reproducing the essential physics with little

more complexity than existing potentials which share the same aim.

2.3.2.4 Comparative

Over the last two decades, new functional forms have been proposed in an attempt to

improve the description of Si. There has been different studies published which contrast

the existing empirical potentials for Si [82], having found that, although SW and EDIP

potentials are good at describing the liquid phase epitaxial regrowth in Si, Tersoff poten-

tial is the one which provides better description of the solid phase epitaxial regrowth and

both point defects and structures different from perfect diamond, and several phenomena

related to ion irradiation in Si [38]. Hence, since we were aimed to work with extended

defects, Tersoff 3 has been the chosen potential. However, Chapter 4 implements also SW

potential in order to check the simulation technique, comparing its results with Tersoff

potential ones.
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2.3.3 Implementation with kART

One of the flexible features of kART is that can be compiled with the LAMMPS

(Large-Scale Atomic/Molecular Massively Parallel Simulator) [83] library, giving it ac-

cesses to a wide range of efficiently programmed forcefields. In addition, kART also

includes a modified version of the Fortran interface to the library as the original one has

some limitations.

In short, LAMMPS is the most extended software for MD parallel simulations nowa-

days. It is an open source program under GNU GPL GNU General Public License

developed in the 1990s decade due to a CRADA (Cooperative Research And Develop-

ment Agreement) between Sandia and LLNL (Lawrence Livermore National Laboratory)

laboratories, which belong to the DOE (U.S. Department of Energy). At this point we

need to highlight that their wide range of application, it can be implemented in solid

state materials, semiconductors, and even in biological materials such as biomolecules or

polymers. Hence, it is a widespread software used in a large number of publications.

Nevertheless, we should emphasize that the role of LAMMPS in this work is reduced

to calculated the energy of the system with the given interatomic potential. In this way,

kART does not support Tersoff by itself, but what we have done is introduced it thanks

to LAMMPS.

2.4 Used tools

This section will present the applications we have used and also certain programs

written in C/C++ developed by ourself, which have enabled us to analyse the data

results by carrying out automatic calculations and extract straightforward conclusions

from the files originated from a kART simulation.

2.4.1 Visualization tools

Among all the different possibilities available to represent networks at an atomic

level, we have mainly used RasMol in order to transform the atomic positions given from

a simulation into 3D structures so that we are going to describe its main features and

how we have made use of it in the following lines.
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RasMol was created by Roger Sayle in 1992 and is an open source program with GNU

GPL since version 2.7.3 was launched onto the market. Furthermore, the scope of RasMol

is not only limited to make representations of molecules for informational purposes, but

also a tool used by thousands of researchers around the world to write its papers with

high quality resolution [84].

Their operation mode is quite simple: the software can generate a 3D network from

a given input file where the atomic positions are indicated, following a predefined format

such as the well-known PDB (Protein Data Bank) or CIF (Crystallographic Information

Framework). Furthermore, the represented atomic network can be customized according

to the user preferences. It can be chosen the size and colour of atoms, the addition

of bonds and their colour, the zoom level, etc. (see the manual for more information).

Figure 2.15 shows a sample of what can be done with this tool.

Figure 2.15: Sample of representation with RasMol: extended configuration of
self-interstitial over XZ axis in Si (Red: displaced atoms, Blue: empty spaces, Green:

bulk atoms).

However, the most relevant feature of RasMol is the network rotation by dragging

with the mouse. This option is quite interesting when we need to see defects in detail. In

addition to what is already mentioned, the possibility of scripting has also played key role

in this work. An script has enabled us to generate consecutive pictures of what RasMol

has in its screen the times we need. We have benefit from it a large number of times:
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• Representation of all steps from a given simulation in one go. We have frequently

work with simulations of ∼ 1000 steps.

• Representation of all orientations planes from each step at once. As it can bee seen

in the appendix A. We have usually worked with 11 planes: [0 0 -1], [0 1 -1], [0 1

0], [0 1 1], [-1 0 -1], [-1 0 0], [-1 0 1], [-1 1 -1], [1 1 -1], [-1 1 -1] and [-1 -1 -1].

• Making short films using the pictures given by RasMol as a frames in a video editor

(∼ 30 fps).

2.4.2 Processing tools

kART generates a great amount of data which should be analysed if we want to

extract some interesting conclusion from them. Thus, we have developed several programs

written in C/C++ which process the main output files of kART: allconf (a heavy file

which contains all the atomic positions at every KMC step), Energies.dat (file which

contains the total energy value from each step among other data) and Diffusion.dat (file

which contains the total MSD (Mean Square Displacement) from each step among other

data). For more information, see section 3.3.

Taking this files as inputs in our programs, we have calculated certain parameters and

characterized each step. Below is an enumeration of the more representative ones:

• Energy tree generator. It consists of analysing the energy of each KMC state,

visited or not, taking into account all the happened or possible transitions so that

it can be created a flowchart which have all the states sorted by energy and linked

according to these transitions.

• Film generator. It discretizes all the atomic positions from each step, letting

RasMol to give one picture per step and making a film then.

• Linux script generator. It is a high flexible program capable of making Linux

scripting for several purposes: launching certain simulation in one go, merging of

several images into one thanks to ImageMagick, movement of thousands of files at

once, etc.

• Characterization of each kART step. This is done by matching the input

formation enthalpy with an internal database and also link each step with the
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suitable information provided by the simulation program in different files. It can

be applied to I2, I3, I4 and I5 cells at several pressure values. For more explanation,

see section 3.4.

The appendix C includes the code of some of them. It should be noted we have not

attached all the codes due to their length.

2.4.3 Additional software

2.4.3.1 Communication tools

We have to do remote access in order to communicate with the clusters, either Beta

or Gamma. In order to make easy this task, we have used two programs: X-Win32 y

SSH Secure in its versions Shell Client y File Transfer Client. Whereas X-Win32 and

Shell Client let the user execute commands in a remote machine, File Transfer Client is

aimed to file transference due to its simplicity, as figure 2.16 shows.

Figure 2.16: Screenshot of File Transfer Client.
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2.4.3.2 Graphic tools

Our simulation results have made us do certain flowcharts in order to interpret them

rightly. GVedit is a Graphviz tool [85] for creating, viewing, editing and processing DOT

files. It allows users to set attributes of graphs with dialogue boxes and save them for

future use. It should be noted that DOT is a declarative language in which you express

nodes and their relations in a graph. You can label the nodes and their edges (links

between nodes) and you have an array of styling and shaping tools at hand. Figure 2.17

shows an instance of what can be done with this software.

Figure 2.17: Sample of flowchart with GVedit.
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Chapter 3

Simulation procedure

It is important to do everything with passion,
it embellishes life enormously.

∼ Lev Landau ∼

T
the aim of this chapter is to detail the methodology we have used to de-

termine the formation enthalpy of each configuration and the energy barriers

of the associated transitions for each cluster size we have analysed in order

to ensure the reproducibility of our results.

Firstly, the origin of the initial atomic coordinates of each structure is going to be

described, indicating the physical conditions of the cells. Afterwards we are going to give

an outlook of the standard simulation conditions we have used, explaining in depth the

parameters we have mainly modified and their implications. Then it is necessary to point

the output files we have worked with and what we have done with this information to

obtain the mentioned energy values. In this sense, due to the nature of our results we

have determined the energy barriers assuming certain considerations which have to be

cleared.

It should be noted that complement content to this chapter is available in the appen-

dices A, B.1, B.2, B.3 and C. They are code examples which can be reused if one has the

appropriate software and adapt them to their hardware resources.
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3.1 Initial configurations collection

The initial atomic coordinates we have used for each configuration of all the clusters

sizes under analysis (I2≤n≤6, being n the excess of interstitials) are originated from a

recent work of Santos et al. [86]. Their simulation methodology, in relation with our

study, was the following:

• They have run CMD simulations based on Tersoff 3 potential for exploring the con-

figurational landscape of interstitials clusters whose size are up to 5 atoms through

LAMMPS code. The temperature was set to 1200 K over 25 ns with a simulation

time step of 0.5 fs, fixing PBC in the three spatial directions. The size of the cells

depended on the cluster size so that the pressure introduced by the excess inter-

stitials is negligible. For n = 2, 3 it has been used a 6a Å cubic cell, containing

1728 + n atoms, whereas for n = 4, 5, 6 the cubic cell had a lateral size of 8a Å,

holding 4096 +n atoms. Note that a is the lattice parameter of crystalline Si, 5.432

Å, and both cells were oriented in X = (1 0 0), Y = (0 1 0) y Z = (0 0 1).

• Once running the annealing for each cluster size, a large variety of defect configu-

rations (over 100) were extracted by discretizing in energy and, therefore, spatial

arrangement of atoms. In this sense, they found not only several possible struc-

tures for chainlike, compact and 1 {111} configurations, but also others atomic

distributions less frequent.

• To enable us to work at 0 K, all the previous configurations were quenched and

subjected to conjugate gradient energy minimization. This minimization consist of

relaxing the cell through an algorithm which search the more stable configuration

iteratively. The stop criteria can be several causes, such as energy tolerance. Hence,

the minimum energy configurations were obtained.

Afterwards, we selected the minimum energy configuration for each cluster size, chain-

like, compact or {111} one, and, beginning from these chosen configurations, we have

launched our kART simulations with the considerations given in the next section. It

should be noted that these minimum energy clusters can be seen in appendix A, which

also shows more energetic ones. The only configuration we have extracted from other

author is the symmetrical in {111} plane for I3, where the Carvalho [87] et al. proposal

has been used instead the mentioned one.
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3.2 Relevant simulations parameters

The explanation of all the parameters which can be modified by the user in kART is

available in the official manual [75]. Almost every simulation we have run sets common

standard parameters, whose more representative ones are presented below:

• Maximum number of kMC steps (NBRE KMC STEPS): 1000. It is long

enough to be able to see transitions and ensure the simulation time is not too long.

• Temperature (TEMPERATURE): 500 K. Although the energy values we have

obtained in this work are at 0 K ,this is a parameter which has a great important

in the kMC algorithm, as we have already described. Increasing the temperature

implies that it is likely to end up walking through high energy configurations with

no physical interest.

• Calculation of the system energy (ENERGY CALC ): LAM. It is necessary

to be able to implement Tersoff 3 potential through LAMMPS code.

• Cut-off radius for local displacements (RADIUS INITIAL DEFORMA

TION ): 2.5 Å. Since we have chosen to carry out a local random deformation in

generating an event, an arbitrary atom and its neighbours are selected and moved

in a random direction, with the rest of the system allowed to react. To do so,

the previous value set the possible neighbouring area to perform the local moves,

being enough to our work although it barely exceeds the first neighbour distance of

crystalline Si (2.35 Å). It is worth noting that one can get a more diversified set of

barriers from a certain event by increasing this parameter.

• Maximum number of relaxation steps inside the basin (MAX PERP MO

VES BASIN ): 2. Simulating the system to this number of possible steps in the

hyperplane perpendicular to the direction of deformation assures head-on collisions

do not take place and that the total energy remains under control. Additionally,

the probability of successful events is maximized for this value.

• Threshold below which the system is reputed to have left the harmonic

basin (EIGENVALUE THRESHOLD): -1. This value let the system balance

to maximise the number of successful events while making sure that the system does

not jump basins.
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• Threshold at which we consider that the system is converged at the

saddle point (EXIT FORCE THRESHOLD): 0.05 eV/Å. We keep it in its

default value due to the fact that the convergence has always been right.

For more information about where the previous parameters are applied within the

kART simulations, see section 2.2.3. Furthermore, kART let the user set more than 120

parameters. Thus, the rest of the parameters were kept in their default values on a first

approach. However, after doing a large number of tests without interesting results, we

have concluded that the following variables are the ones which can lead us to transitions

in the energy landscape given by Tersoff 3 when their values are modified:

• Maximum height of direct barrier and inverse barrier for an event to be

considered inside a basin (MIN SIG BARRIER): from 0.3 to 2.1 eV. This

parameter plays a key role in our simulations, giving us the possibility to reach

more energetic configurations if we increase it. In other words, the higher value this

parameter is set, the more events will be added to the basin and therefore, these

events will be executed only once. Hence, we have swept this parameter to higher

values (by increasing it 0.3 eV each test) in case we do not see an interest transition

during a simulation. It should be noted that both direct and inverse barriers must

be under the threshold to be considered inside the basin and the increment of this

parameter means that the computational cost upscale critically.

• Overall scale for the increment moves in activation (INCREMENT SI

ZE): 0.3 Å. Its defect value has been incremented in 0.2 Å so as to enable the sim-

ulation to push the system outside the harmonic basin. In addition, this parameter

also contributes to the convergence phase because it is used again as a length step

when the system is leaded to the saddle point.

• Minimum number of event searches when a new topology is identified

(SEARCH FREQUENCY ): 50. We have also increased its value so as to

give more chances to the system to determine the associated saddle point for each

topology. However, it also implies consuming more hardware resources.

In addition to what have already been mentioned, the appendix B.1 presents a real

simulation script we have used in order to carry out a simulation under the previously de-

scribed conditions. It contains a brief description of all the possible parameters accepted

by kART.

Faculty of Sciences, University of Valladolid



Chapter 3. Simulation procedure 67

3.3 Considered output files

The atomic coordinates for each kMC step has been extracted from the file allconf,

represented in figure 3.1. It presents a periodic structure for each step, giving firstly the

number of atoms, the kMC step and the cell size, and then all the atomic positions. They

are given in XYZ format, being compatible with many visualization programs.

Figure 3.1: Snapshot of allconf output file of kART (Number of atoms: 1731, kMC
step: 0, Cell size: 32.280 Å).

On the other hand, the energies and the temporal aspects for each kMC step has been

extracted from Energies.dat. This file, which is exemplified in figure 3.2 lets you see the

number of kMC steps, CPU times, simulated times, initial and final energy values of the

minima, activated barrier executed and even topological information. Hence, it contains

the basic information about the system evolution.

Figure 3.2: Snapshot of Energies.dat output file of kART.

Finally, we have got the MSD for each kMC step from Diffusion.dat, which provides

not only the total MSD but also the MSD with the initial configuration as a reference,

as it can be seen in figure 3.3.
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Figure 3.3: Snapshot of Diffusion.dat output file of kART.

Furthermore, we have also worked with other files in order to solve certain issues or

expand our knowledge about certain simulation aspects. A brief description of some of

them is presented below:

• KMC log.txt It provides a global summary of all simulation details, including pa-

rameters, code version, the date of the compilation and a number of parameters

used in the simulation as well as the basic simulation time as a function of events.

• sortieproc.xx. They are a collection of files, one for each core running the simulation,

giving explicit details about each step of the simulation. The master is always

labelled 0 (sortieproc.0) and all other cores are slaves which are labelled from 0 to

N − 1, where N is the number of cores being used.

• selec ev.dat. It provides information on the event chosen by the code at each kMC

step.

• Gen ev.dat and Spe ev.dat. They give information on the creation of generics and

specific events, respectively

• Topologies and topos.list . They are a exhaustive list of all the topology keys

observed during the simulation.

• event list conf x.dat. They are numerous files inside a folder called EVLIST DIR.

Each one is related to a certain configuration, containing all the associated topolo-

gies and possible events from it. This has a great importance due to the fact that

one can access not only the event which has been selected in a kMC step, but also

the other events which have been not chosen. Hence, one can map all the possi-

ble events from a certain configuration, predicting what are the most likely ones

beforehand.
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3.4 Data processing

Taking into account that our aim was to characterize the energy evolution of the sys-

tem in terms of formation enthalpy and energy barriers, firstly we have built an internal

database which links univocally each structural configuration for each cluster size with

its formation enthalpy. To do so, we have run simulations setting MIN SIG BARRIER

to 0.3 in order to see all the interested low energy minima. Figure 3.4 shows an example

of this task beginning from a compact I3 configuration. Afterwards, by looking at the for-

mation enthalpy of the minima which appear in these simulations, we have labelled them

numerically, according to their energy value from lower to upper values. This approach

is illustrated in appendix A, where the most likely structures for each configuration for

each cluster size are represented.
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Figure 3.4: Example of energy minima identification in formation enthalpy evolution at
500 K and 0 GPa beginning from a compact I3 configuration.

It should be noted that a single configuration can have several structures, each one

with a different energy and spatial arrangement of atoms. The difference between two

structures which share the same configuration, such as chainlike, tend to be in the position

of certain atoms. In any case, no matter how its frequency is, we have considered all

energy minima which have appeared through the mentioned simulations. In this sense,
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in order to discretize in energy two states whose energy values are close, we have used a

threshold of 0.001 eV to consider a structure as a new one. Overall, we have identified

for each cluster size at 0 GPa:

• 24 structures for I2: 14 compact, 9 chainlike and 1 {111} configurations.

• 39 structures for I3: 20 compact, 18 chainlike and 1 {111} configurations.

• 19 structures for I4: 4 compact, 5 short chainlike, 9 long chainlike and 1 {111}
configurations.

• 53 structures for I5: 16 compact, 26 short chainlike, 10 long chainlike and 1 {111}
configurations.

• 21 structures for I6: 7 compact, 6 chainlike and 8 {111} configurations.

Hence, we have considered over 130 different chainlike, compact and {111} energy

minima for 0 GPa simulations. Additionally, we have identified other configurations

which are less frequent at the same pressure and we have also applied the same process

at -3 GPa and +3 GPa, resulting in more than 500 elements in our database. Here

we have to emphasize that when the cluster size increases (I4≤n≤6), some intermediate

structures between chainlike, compact and {111} configurations have appeared.

Once our internal list of possible formation enthalpies and labels for each configuration

ia built, we have run many simulations modifying the MIN SIG BARRIER parameter.

In this sense, we have developed a C code program, which can be seen in appendix C,

which let us process the cited output files automatically by comparing with our database.

The way it works is simple: every kMC step is analysed by extracting the corresponding

information from the files mentioned in the previous section. In this process, the energy

comparison between a value of out internal list and the new simulation result is done

rounding both to a meV. When the energies matching takes place, it is assigned the

suitable label to the new energy.

As a result, one can make the figure 3.5 almost instantly. It should be noted that

because of the variation of the minimum basin barrier new configurations which does

not match with our database also appear, labelling them as “Other” to not overload our

collection. In any case, whereas the number of unmatched visited configurations tend

to be small if we compare it with the identified ones, we have always drawn the energy

evolution graph based on visual identification of these new found minima.
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Giving an insight into how we have done the graph, we have coloured the same kind

of structures, e.g., compact structures, with the same colour. In addition, the energy

evolution line cover initial and final energy minima and their barriers, which have their

own symbol to emphasize them among the minima. Hence, continuity basin problems

are detected easily due to the fact that a final energy minimum does not present the

same energy as the following initial minimum. A vertical line indicates this issue in the

corresponding step.
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Figure 3.5: Example of configurational identification in formation enthalpy evolution at
500 K and 0 GPa with MIN SIG BARRIER at 0.6 eV beginning from a compact I3

configuration.

In this way, the program we have mentioned above also prints an output file for each

kMC step which is compatible with RasMol, making the visual identification an easy

task. It is worth noting that this program only represents a cubic region around the

displaced atoms and the empty sites which have been identified by focusing on the zone

of the cell in which the defects are, as one can check in the appendix A. To do so, we

select a cut-off distance of 7 Å for I2≤n≤4 defects and 12 Å for I5 and I6 defects due to

their longer size.
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3.5 Determination of formation enthalpies and en-

ergy barriers

The calculation of the formation enthalpy HF is simple. Once the potential energy

of a perfect cell which contains a certain number of atoms is determined, it is rescaled

including the number of inserted interstitials. Its difference with the potential energy of

each kMC step from other simulation which has defects gives the aimed energy. Thus,

one can indicate this idea as the following expression:

HF = EP,defects cell −
N + n

N
EP,ref (3.1)

Being N the number of atoms of the reference cell and n the number of inserted

interstitials. It is worth noting that, following this procedure, both perfect cell and cell

with defects are averaged to the same number of atoms N + n. It should be highlighted

that the states of minimum energy provided by kART match with other values obtained

by CMD techniques.

Regarding the way we have determined the energy barriers in our simulations, our

approach needs to be explained. Since we have worked with an interatomic potential

whose potential energy surface is rough, it is possible to have some intermediate minima

between two different configurations, as it has already been shown. Hence, we have de-

termined every barrier between two known configurations considering the most energetic

barrier which has been overcome. In this sense, we have added an extra constriction

based on the idea that both energy minima which are implied in the transition must be

the lowest energy structure for their respective configuration, i.e., the lowest chainlike or

compact or {111} configuration.

In other words, if we are calculating the transition from a compact to a chainlike

configuration, we would consider all the barriers between the lowest energy minima we

have characterized for both compact and chainlike configurations, selecting the higher

one. This method can be seen in figure 3.5, where the chosen barrier is marked with a

discontinuous circle.
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Chapter 4

Configurations and diffusion
mechanisms of Si self-interstitial

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not “Eureka!” but rather “hmm... that’s funny...”.

∼ Isaac Asimov ∼

T
his chapter presents a brief checking of kART through self-interstitial sim-

ulations by using different interatomic potentials, validating the method with

the results obtained by other authors under similar conditions. Although this

topic is distanced from the rest of this dissertation, it has enabled us to gain experience

on this technique.

Native point defects in Si, both vacancies and self-interstitials, have been an important

field of theoretical and experimental research for several decades. An attempt to outline

the basic knowledge about Si self-interstitial is made before going to the main part. In this

sense, the spatial configurations of this defect are also presented. It should be emphasized

that it is the building block of small clusters.

kART is directly compatible with the SW potential and therefore, our first task was

to verify the technique with this potential. Once the results we are going to summarize

here had been obtained, we concluded that the program worked correctly. Afterwards,

we also explored the energy landscape through the Tersoff potential, using it with the

given considerations (see section 2.3.3). This issue was the most relevant part for the

next part of the thesis. We experienced for the first time the kART behaviour when the

Tersoff potential is used (there are no studies about both in the literature).
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4.1 Introduction

The study of the Si self-interstitial properties is a quite active field of research due to its

particular relevance. It has been shown that this kind of defect has been related to several

well-known topics: as the origin of rodlike defects observed in Czochralski single-crystal

growth, as an interacting particle with dopant atoms in the already mentioned transient-

enhanced diffusion and as a key factor in the understanding of the amorphous phase

formation. Although many authors have struggled to reveal the interstitial contribution

to Si self-diffusion, this phenomenon is far from being fully understood. In this sense,

theoretical studies have been carried out to determine its configurations and energies.

There are first principles, TB and CMD calculations which come to different conclusions

about its properties regarding to the lowest formation energy configuration and to the

microscopic description of the interstitial-mediated self-diffusion mechanism [88].

Figure 4.1: XY, XZ, and YZ projections of the different Si self-interstitial configurations
(Gray scale represents potential energies, where darker tones correspond to higher

values). [88].
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Figure 4.1 shows the typical self-interstitial configurations. The so-called tetrahedral

interstitial (T) only consists in 1 DA (Displaced Atom) which occupies a tetrahedral

interstitial site, without any ES (Empty Site) surrounding, while the dumbbell interstitial

(D) is formed by 2 DAs which are oriented along the <110> direction, sharing a common

lattice site, and one ES. Despite of the fact that these two configurations are the most

studied ones, it is been demonstrated that the extended interstitial (E), which consists of

4 DAs and 3 ESs that lie on a <110> plane plays also a relevant role. This configuration

is highly delocalized, appearing during recrystallization from a planar crystal-amorphous

interface in MD simulations. In addition, certain authors also claim the existence of a

fourth configuration known as dumbbell extended (DE), which consists of 3 DAs and 2

ESs, less symmetrical and stable than the previous configurations.

For MD simulations using the Tersoff 3 potential, T is the minimum energy configu-

ration while implementing SW makes D lower in energy, in accordance also with TB and

first principles simulations. Nevertheless, it should be noted the high variability respect

to the formation energy value for each configuration in the literature. The same issue

takes place with the self-interstitial diffusion mechanism. The most accepted theory con-

sist in moving the T interstitial between two neighbouring tetrahedral sites, being the

D configuration the saddle point in the transition, for the methods which consider T as

the lowest energy configuration. Regarding the other ones which have determined D as

the most stable configuration, the mechanism is analogue but acting D as a reference

and T as a saddle point. In any case, many transitions have been seen through diverse

techniques which imply other configurations and mechanisms proposed by their authors,

highlighting the transition between D and E configurations.

4.2 Stillinger-Weber potential

This section is dedicated to sum up all the results obtained by using the SW potential

to determine the energetic aspects of the Si self interstitial. Since this chapter is quite

different from the ones in which we analyse small interstitial clusters, we are going to

detail the setting of our simulations before showing the formation enthalpies obtained for

each self interstitial configuration and the determined energy barriers. Moreover, a brief

comparison with other values found in the literature is presented.
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4.2.1 Simulation methodology

Starting from a 513 atoms cubic cell of 21.7238 Å side length with a lattice parameter

of a = 5.432 Å and oriented in X = (1 0 0), Y = (0 1 0) y Z = (0 0 1), which contains

a self-interstitial in a T configuration, we have run a kART simulation by using the SW

potential (ENERGY CALC = SWP). The temperature has been set to 500 K during 1000

kMC steps. The parameters have been set by default except the SEARCH FREQUENCY

= 50. Note that it means that INCREMENT SIZE and MIN SIG BARRIER parameters

are set to 0.1 Å and 0.1 eV, respectively.

Regarding how we have characterized each configuration, the approach here is dif-

ferent from what we have already mentioned for small clusters (see section 3.4 for more

information). Every kMC step has been processed determining its DAs and ESs, and

then, classifying them in T, D, DE or E thanks to their difference in the number of DAs.

Taking this idea into account, figure 4.2 shows the energy evolution of our system in terms

of formation enthalpies and their corresponding energy barriers for the first 20 kMC steps

of the simulation. As it can be seen, T configuration is so unstable that it disappears in

the first step and never comes back, evolving mainly to E and DE configurations, and

sometimes to D configuration.
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Figure 4.2: First 20 steps of the energy evolution of our SW based simulation beginning
from a T configuration and labelling all the encountered configurations.
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4.2.2 Formation enthalpies

Computing the formation enthalpy of each self-interstitial configuration over the 1000

steps, one can make the table 4.1. Since we have used SW to calculate the energies, E is

the lowest energy configuration, followed by D and DE, whose values are so close. The

energy of T configuration, however, is higher than the previous ones. It should be noted

how accurate are the average values.

Type of configuration T D DE E

Number of times 1 58 535 407
Percentage 0.10% 5.80% 53.50% 40.70%

Formation enthalpy average (eV) 4.955 4.433 4.429 3.679
Standard deviation (eV) 0 2.691E-04 2.326E-04 5.142E-05

Table 4.1: Formation enthalpies averaged for each self-interstitial configurations
predicted by the SW potential.

4.2.3 Energy barriers

We are going to do a similar approach with the obtained energy barriers, characterizing

each value and discretizing every possible transition, as table 4.2 shows. The energy

barrier between T and E configuration is extremely low, justifying what happened in the

initial step.

Transition
Number of

times
Energy barrier
average (eV)

Standard
deviation (eV)

T → E 1 0.038 0
D → E 31 0.179 0.005

D → DE 25 0.177 0.003
DE → E 252 0.066 0.072
DE → D 9 0.185 0.007
E → D 47 0.937 0.007

E → DE 237 0.864 0.078
DE ↔ DE 273 0.055 0.075

E ↔ E 122 0.934 0.035

Table 4.2: Energy barriers averaged for each transition by using the SW potential.
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In fact, analysing in detail all the E → DE, DE → E and DE ↔ DE transitions, we

can see that there are multiple energy barriers for each one. This idea is showed in figure

4.3, where it is represented all the chosen barriers for each transition over the 1000 steps

in terms of its frequency. Hence, for E → DE transition there are three selected barriers,

0.773, 0.931 and 0.945 eV, for DE → E there are two possible barriers, 0.021 and 0.181

eV and for DE ↔ DE transitions there are also three chosen barriers, 0.001, 0.0021 and

0.181 eV.
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Figure 4.3: Relative frequency of energy barriers for E → DE, DE → E and DE ↔ DE
transitions using the SW potential.

Considering the energy barriers which have appeared more often during the simu-

lation, e.g., the ones with more relative frequency, and the formation enthalpy of each

configuration referenced to the E configuration energy, we have drawn the transition dia-

gram showed in figure 4.4. It worth noting that this diagram summarizes all our results.

We can extract from it the most relevant saddle points our simulation has passed and

therefore, the possible diffusion mechanisms of the self-interstitial. In addition, we have

included the transition associated to the T configuration although it has only happened

in the first step.
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Figure 4.4: Diffusion mechanisms for the self-interstitial using the SW potential
(Continuous lines: events passing by the lowest saddle points, Dot lines: events passing

by the highest saddle points).

4.2.4 Comparison with other authors

We can find in the literature a large list of authors who have worked with the SW

potential to determine the formation enthalpy of each self-interstitial configuration, but

the variability of their results is quite notorious [88]. Here we are going to compare

the achieved results with other references which have used ART or kART with the SW

potential to carry out similar simulations. In this sense, it should be emphasised the

contributions of P. Ganster et al. [89] and M. Trochet et al. [73].

The first one used ART to determine the self-interstitial diffusion mechanism whereas

the second one used kART instead. As it can be seen in table 4.3, our values are coincident

with those of Ganster et al. in terms of formation enthalpies, disagreeing with the M.

Trochet et al. contribution, whose D and E energies calculations are the same but inverted

with our results. As a result, when drawing the diffusion path, this author considered

as a reference the D instead of the E configuration, contrary to what we have found,

and he also found a low energy barrier between two E configurations. The diffusion path

diagram represented in figure 4.5 illustrates this idea, showing also the equivalence of

our work with the diffusion mechanism predicted by Ganster et al., except for the lower

energy barrier we have determined between E and DE configurations.
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Reference
Formation enthalpy (eV)

T D DE E

P. Ganster et al. (ART) [89] - 4.44 - 3.68
M. Trochet et al. (kART) [73] - 3.685 - 4.435

Our work 4.955 4.432 4.429 3.679

Table 4.3: Formation enthalpies for several Si self-interstitial configurations as found in
the literature compared with our work using the SW potential.
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Figure 4.5: Diffusion mechanisms for the self-interstitial of this work compared with P.
Ganster et al. [89] (a) and M. Trochet et al. [73] (b) results.
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4.3 Tersoff potential

The structure of this section is similar to what has been already mentioned with the

SW potential, but considering certain relevant aspects which appears when using the

Tersoff 3 potential instead. Similarly, we are going to present the obtained results and

contrast them with values from other authors after show how we have set the simulations.

4.3.1 Simulation methodology

The initial cell we have used is equivalent that described in section 4.2.1. However,

here we have actually worked with several cells, each one containing self-interstitials not

only with T configuration but also with D and E configurations. Additionally, we have not

run a single 1000 steps kART simulation, but instead more than 20 simulations have been

launched. To do so, we have used the Tersoff potential (ENERGY CALC = LAM) and

50 number of searches per topology (SEARCH FREQUENCY = 50) in all simulations,

but we have modified MIN SIG BARRI ER and INCREMENT SIZE to diverse values

in each one, among other parameters. The temperature has also been changed from 500

K to 1000 K for a particular simulation.
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Figure 4.6: First 30 steps of the energy evolution of the Tersoff based simulation at 500
K beginning from a T configuration, labelling the visited minima.
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On the other hand, the characterization of the self-interstitial configurations has not

been changed. We have classified every kMC step according to its number of DAs ans

ESs. However, the Tersoff potential based simulations do not have a unique energy

minimum per self-interstitial configuration as it happened with the SW potential. In

fact, each configuration presents different energy minima, some more symmetrical than

others. This idea can be seen in figure 4.6, which represents the first 30 kMC steps of a

simulation in which it has been set the same parameter values as what we have previously

explained with the SW potential (only modifying the number of searches), starting again

from the T configuration (labelled as “Min1”).

4.3.2 Tersoff singularities

The scheme showed in figure 4.6 remains unaltered over the entire simulation, i.e.,

the system has not been capable of passing through D, DE or E configurations with the

same simulation conditions as the SW ones, it only evolves over T configurations with

slight symmetrical differences. Hence, it is obvious that we should focus on modifying

certain parameters in order to see interesting transitions. In any case, firstly we are going

to analyse in detail what happened. Due to the fact that kART let the user direct access

to the possible events for each kMC step, we can figure out why the transitions to other

configurations did not take place, and even draw a flowchart of energy minima whose

transitions are interconnected.

4.3.2.1 Analysis of possible barriers

Computing all the possible events from the lowest energy minimum from figure 4.6

(“Min1”) we can make a graphic which summarizes all the options the kMC algorithm

has to run over the next step, as it is represented in figure 4.7a. However, it should be

noted that some events share the initial and final energy and their energy barrier. In fact,

more than 40 events are available from the initial configuration, so it means that certain

barriers present more weight, in terms of frequency, than others. This idea is showed in

figure 4.7b. Here it is worth remembering that the kMC calculations consider not only

the energy value of the barrier to select the next step but also its frequency, although in

this case the energy separation between the lowest energy barrier and the next one is too

high to be in competition.
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configuration taking it as a reference (a) and frequency of the barriers for these events

(b).

Keeping this analysis in mind, now it is easy to interpret the behaviour showed in

figure 4.6. Over the vast majority of the kMC steps the lowest energy barrier (circled in

the previous figure), which leads the system to “Min2”, is chosen despite the fact that it

has lower frequency (0.33) than the higher energy one (0.59), which leads the system to

“Min3”. As such, this barrier is selected only a few times during the simulation whereas

the 0.64 eV energy barrier, which would carry the system to an upper energy minimum

(“Min4” following the current nomenclature), is not chosen at any time. Furthermore, we

have also analysed the possible barriers from the other visited energy minima (“Min2”

and “Min3”), but the thing gets more complicated. The number of possible different

events increase much and their energy barriers do likewise, as it can be seen in figure 4.8.

In any case, we continue selecting the lower energy ones.

Hence, one can instantly think of modifying the MIN SIG BARRIER parameter to

higher values in order to solve this issue, being able to pass over higher energy barriers and

see transitions because it would add more events to the basin and these events would be

executed only once. Another solution could be to modify the parameters involved in the

calculation of events, such as INCREMENT SIZE or BASIN FACTOR, widening then

the map of possible transitions which take place. Additionally, starting form a different

Si self-interstitial configuration, such as D or E, might change the situation.
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Figure 4.8: Grouping of same energy possible events from the second (a) and the third
(b) lowest energy T configuration taking them as a reference.

4.3.2.2 Simulations explanation

Following the previous reasoning, in a first step we have launched simulations setting

MIN SIG BARRIER to 0.3, 0.5, 0.7 and 0.9 eV and therefore, higher energy minima of

the T configuration have been visited, as figure 4.9 shows for the 0.7 eV attempt. In

addition, although we have visited for the first time a energy minimum with 2 DAs and

1 ES, actually it is not exactly a D configuration. In this sense, it also seems to have

several energy minima for a D configuration. Consequently, by modifying this parameter

we are capable of visiting new energy minima higher in energy, but any of them is one of

the known configurations.

Other approach is to set INCREMENT SIZE to higher values to enable the system

to be pushed outside the harmonic basin with larger atom displacements so that the map

of events is increased. Figure 4.10a illustrates this concept. In any case, whereas the

available events from the initial T configuration is increased, we continue selecting the

low energy ones which we have already visited, even when we combine this parameter

with the previous one.
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Figure 4.9: Steps 660 through 690 of the energy evolution of Tersoff based simulation
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It should be stressed that we are not facing a flicker problem because we are able

to reach higher energy states interconnected without low energy barriers by modifying

these parameters. The return barriers, however, are quite low, as figure 4.10b represents.

Hence, the unique remaining solution for seeing a transition beginning from a T config-

uration is increasing the temperature so that is what we have carried out. Nevertheless,

we have to consider the drawbacks of doing this task because the possible energy minima

for the same configuration are increased, making difficult the labelling of each one. As a

result, this is the only point in this memory in which this parameter is changed from 500

to 1000 K.

Thus, we have run a simulation at 1000 K with MIN SIG BARRIER = 0.3 eV and

INCREMENT SIZE = 0.3 Å, identifying D and E configurations after starting from a T

configuration, as it can be seen in figure 4.11. We visit E configuration in two steps and D

in three steps, but actually we do not pass over DE configurations; the steps characterized

with 3 DAs + 2 ESs are E configuration slightly displaced.
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Figure 4.11: Steps 160 through 190 of the energy evolution of Tersoff based simulation
with MIN SIG BARRIER to 0.3 eV and INCREMENT SIZE to 0.3 Å at 1000 K
beginning from a T configuration and labelling all the encountered configurations.
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Though the previous work has been necessary to go away from energy minima which

have T configurations, starting directly from E or D configurations we can end up visiting

a T configuration without increasing the temperature. In this sense, when we have

begun from a D configuration keeping all the simulation parameters by default except

for SEARCH FREQUENCY = 50, we have fallen in the first steps to T configurations

through an energy barrier of 0.18 eV, i.e., this configurations seems to be unstable.

However, if we start from an E configuration it requires more effort: MIN SIG BARRIER

must be set to 0.9 eV to fall into T configuration. This phenomenon is showed in figure

4.12.
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Figure 4.12: First 30 steps of the energy evolution of Tersoff based simulation with
MIN SIG BARRIER to 0.9 eV at 500 K beginning from a E configuration and labelling

all the encountered configurations.

4.3.2.3 Flowchart of energy minima

Once the previous analysis is done, we have also tried to extract more information

about the resources kART give to us. In this sense, a C program which considers each

energy minimum (either visited or not) over the simulation, has been developed. It is

based on taking into account all the observed transitions of each kMC step by reading

the Energies.dat output file, but also storing the other events which are not selected from
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the event list conf x.dat (x is the kMC step) output files in EVLIST DIR folder. Hence,

we have created a database with all these events, i.e., a list of elements which have three

energy values: initial energy minimum, energy barrier and final energy minimum. When

an event is not in the database, then it is added, being possible to process the output

files from several simulations which have led to different energy minima. That occurs, for

example, when we go through higher energy states by modifying MIN SIG BARRIER

parameter.

Furthermore, not only have we characterized each event, but also we are able to draw

all of them at the same time indicating their connections in a flowchart. Thus, we can

have direct access to all the observed transitions and even the ones which have not taken

place, seeing the energy pathway to follow in order to get a certain transition between two

different energy minima. On the negative side, due to the fact that the list of generated

events by kART for each step is so large and some of them share the initial and final

energy but with different energy barrier values, one cannot make a draw based on lots of

simulations output files.

One example of this affirmation is presented in figure 4.13. It only shows the visited

and not visited energy minima for the simulations we have mentioned above at 500 K: 4

simulations starting from the T configuration (keeping constant INCREMENT SIZE to

0.3 Å by modifying MIN SIG BARRIER from 0.3 to 0.9 eV), one simulation taking E

configuration as the initial energy minimum setting default parameters, and beginning

from D configuration with default values again. Additionally, we have not represented

all the energy barriers which connect the same energy minima, only the lowest ones

are considered. By looking more carefully to it, we can determine how difficult is the

transition from a T configuration to a E configuration at 500 K. The energy path to

follow in order to achieve this transition covers a lot of different energy minima whose

energy values are high and have lower return energy barriers to come back to states

visited previously instead of continuing this way. But what is really relevant is that they

are not connected at all, so that this explains why we have not been able to see the T to

E transition at this temperature.

On the other hand, one can apply the same procedure to the case in which the

transition from T to E configuration happened, i.e, at 1000 K with INCREMENT SIZE

and MIN SIG BARRIER to 0.3 Å and 0.3 eV, respectively, obtaining the diagram showed

in figure 4.14. We can see that, though difficult, the transition is likely to happen,

justifying why we have witnessed it at 1000 K
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Figure 4.13: Flowchart of energy minima ranked by energy and connected with their
respective minimum energy barriers at 500 K (T: cyan circle, D: green box, DE: yellow
triangle, E: red pentagon, Other configurations with more than 4 DAs: purple hexagon).
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Figure 4.14: Flowchart of energy minima ranked by energy and connected with their
respective minimum energy barriers at 1000 K (T: cyan circle, D: green box, DE: yellow
triangle, E: red pentagon, Other configurations with more than 4 DAs: purple hexagon).
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4.3.3 Formation enthalpies

We have determined the formation enthalpy of each configuration taking the lowest

energy minimum which presents each of these structures. To do so, since we have launched

simulations starting from T, D and E configurations and setting parameters by default

except for the number of searches, i.e., keeping the same conditions than the SW potential

case, we can sum up the obtained energy values as table 4.4 shows. For the case of DE,

however, it has been selected the formation enthalpy of a displaced E which presents 3

DAs and 2 ESs. It should be noted that the formation enthalpy of T configuration is

lower than the E one, contrary to what SW has determined.

Type of configuration T D DE E

Number of times 443 1 418 573
Formation enthalpy average (eV) 3.478 4.356 4.344 3.845

Standard deviation (eV) 4.661E-05 0 3.399E-05 5.768E-05

Table 4.4: Formation enthalpies averaged for each Si self-interstitial configurations
predicted by the Tersoff potential.

4.3.4 Energy barriers

Regarding the determination of the diffusion mechanism for the Si self-interstitial,

here we do not have a great amount of transitions to consider as it was the case for

SW potential based simulations. In fact, we have basically taken into account the few

transitions which happened at 1000 K. Noting this clarification, the predicted energy

barriers between the different configurations, referenced to the T configuration formation

enthalpy, are showed in the figure 4.15.

Although this diagram is not as rich as the SW one statistically speaking, one can also

extract important ideas. For instance, the direct transition between T and E configuration

has not been seen so a unique diffusion mechanism through D and DE configurations is

likely to happen. In addition, it is demonstrated that the energy barrier is as high as

the ones obtained by modifying MIN SIG BARRIER parameter, being the problem not

a question of this kind.
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Figure 4.15: Diffusion mechanism for the Si self-interstitial using the Tersoff potential.

4.3.5 Comparison with other authors

As we have already mentioned when comparing with the SW based simulations results,

one can find many works dedicated to study the formation enthalpy of Si self-interstitial

configurations by using the Tersoff potential. Similarly, the achieved results are charac-

terized for being quite different between themselves. However, there is no work in the

literature which have study this issue by using Tersoff in a kART scheme. Thus, we are

going to compare our formation enthalpies values with the achieved results of Luis A.

Marqués et al. [88], who have calculated them with MD simulations based on the Tersoff

potential, and with Iván Santos et al. [90], who have used NEBM.

One can see the formation enthalpy we have determined for T agrees with the results

of both authors in the table 4.5. For the case of the D and DE configurations, MD simu-

lations seem to overestimate it according to our work, although it should be remembered

that our DE configuration was not exactly what it should be because it was a distorted

E configuration. Lastly, the predicted formation enthalpy for E configuration is also not

distanced from the reference values, maybe closer to the NEBM results.
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Reference
Formation enthalpy (eV)
T D DE E

Luis A. Marqués et al. (MD with Tersoff) [88] 3.45 4.7 5.08 3.94
Iván Santos et al. (NEBM) [90] 3.46 4.39 - 3.83

Our work 3.48 4.36 (4.34) 3.85

Table 4.5: Formation enthalpies for several Si self-interstitial configurations as found in
the literature compared with our work using the Tersoff potential.

To compare the diffusion path, figure 4.16 represents the energy barriers obtained by

NEBM from T to D configuration and to go away from E configuration. In addition, it

is also showed the formation enthalpies of the MD approach, but as the author has not

determined the energy barriers (he only estimated them) we have indicated them with

the same values as the enthalpies. Contrasting our energy barriers with the ones obtained

by NEBM, it is clear that we have found lower energy paths, being the energy barriers in

the same tendency. It should be noted that kART does not need to presuppose a path

unlike NEBM.
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Figure 4.16: Diffusion mechanisms for the Si self-interstitial of this work compared with
Luis A. Marqués et al. [88] and Iván Santos et al. [90] results.
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4.4 Conclusions

In this chapter we have studied the Si self-interstitial configurations by using two

interatomic potentials: the SW and the Tersoff 3. The formation enthalpy of each con-

figuration and the energy barriers of the possible transitions between them have been

determined in both cases.

SW based simulation have verified that E is the lowest energy configuration with

3.679 eV, in accordance with the results obtained by other authors with this potential.

Additionally, the D and DE configurations seem to be lower than the T configuration in

energy so they are more implicated than T in the diffusion mechanisms. In this sense, we

have found five diffusion paths which involve energy barriers higher than 0.7 eV in order

to go away from the E configuration. We have also seen cases in which there are two

possible barriers for the same transition, as it is the case for the DE to DE transition and

DE to E transition. In any case, all the transitions observed during the simulations have

been direct, i.e., there has not been different energy minima for the same configuration

involved. Other authors have also studied this idea with ART and kART simulations,

being our results similar to their ones.

On the other hand, using Tersoff has lead us to different results. Firstly the lowest

formation enthalpy achieved, 3.478 eV, has been for the T configuration, being the E

configuration 0.367 eV higher in energy. However, we have had to launch several sim-

ulations in order to see transitions due to the fact that the energy landscape given by

Tersoff is rougher than the predicted by SW. In this sense, we have encountered differ-

ent energy minima for the same configuration, which means that the landscape presents

small energy wells to be visited if one wants to see different transitions. Comparing the

obtained energy barriers with the ones achieved by NEBM, kART gives lower values for

all the studied transitions.
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Energy properties of small
interstitials clusters

You can understand perfectly,
if you give your mind to it.

∼ William Thomson (Lord Kelvin) ∼

O
nce we have checked our simulation technique, we are going to character-

ize small clusters of interstitials. This chapter aims to calculate the formation

enthalpies of each configuration determining also the energy barriers associ-

ated with the the transitions between them. In addition, their topologies will be also

indicated.

To do so, many simulations have been launched at 0 K and 0 GPa for each cluster

size, following the approach explained in chapter 3. Since the method we have carried

out is quite similar for all sizes, all sections share a common structure. Firstly, we

outline the computational cost the simulations have involved, taking into account all

the attempts we have launched in order to see the interested transitions. Lately we

detail the simulation conditions for which the transitions have taken place, presenting

the energy barrier diagram between the visited configurations (chainlike configuration,

compact configuration or {111} configuration, mainly).

It should be noted that the bigger the cluster size is, the more efforts are necessary

to see transitions. The stability of certain configurations makes going away from them

a difficult task. In addition, the atom rearrangement required to change the topology is

more complex with higher energy barrier, being an infrequent event of kART.
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5.1 Di-interstitial

This part is focused on analysing the energetic aspects of chainlike and compact

configurations for I2. After giving an insight on how we have got the transitions, we

are going to analyse the barriers of certain states implied. Eventually the energy barrier

diagram is shown.

5.1.1 Summary of simulations

We have run 8 simulations starting from a compact configuration and 9 simulations

starting from a chainlike configuration, consuming almost 900 h of CPU time as it can

be seen in table 5.1. However, we have not always seen transitions between compact and

chainlike configurations, only the 35.29 % of the simulations have presented them.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (ns)

17 854.57 35.29 % 546.68

Table 5.1: Summary of simulations which have been run for di-interstitial.

The setting of the minimum barrier for the basin and the overall scale for the in-

crement moves in activation has not been a problem. One can see transitions between

compact and chainlike configurations by setting MIN SIG BARRIER to 0.3 eV and IN-

CREMENT SIZE to 0.3 Å at 500 K. However, after setting this values, in the 0.3 % of

kMC steps atoms were not grouped in a unique defect. That means that our system has

not evolved to a known configuration but instead minima have appeared whose DAs are

isolated from the others.

Moreover, we have also made several attempts at 1000 K, but the 55 % of steps

consist of new configurations more disordered than those at 500 K and the number of

non grouped steps increase to 25 %. In this sense, the data we can extract from them

are not relevant and they are not included here.

5.1.2 Analysis of states and possible barriers

Considering the times each energy minimum has appeared during our simulations and

its implication in transitions, we have drawn the graph which is represented in figure 5.1.
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As it can be seen, Co2 is the most frequent minimum for compact configurations while

Ch1 and Ch4 are the ones for chainlike configurations. In any case, what it should be

emphasized here are the states implied in transitions due to the fact that they enable us

to change from one configuration to another. In this sense, Co8 is the energy minimum

which has been identified when a compact to chainlike transition takes place. On the

other hand, Ch4, Ch7 and Ch9 are the ones visited when a chainlike to compact transition

occurs. Both Co8 and Ch4 present an important weight so one can wonder what are the

possible events starting from these minima.
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Figure 5.1: Formation enthalpies and relative frequency of energy minima for each I2
configurations and their role in transitions.

Since kART let us access to information of the non-executed events, such as their

coordinates and energy values, we can map the possible barriers for the previous minima

indicating their final configuration, as it can bee seen in figure 5.2. We have only analysed

the final configurations of low energy barriers associated events because they are the ones

which can be selected more frequently. Thus, this analysis tells us why these minima

are the ones involved in transitions. For all of them the energy barrier related to the

transition is either the lowest energy barrier available (the case of Co8 and Ch7) or at

least is close to the lowest one (the case of Ch4 and Ch9). Then, the kMC algorithm

gives more weight to these events and they can be selected.
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It should be taken into account that the map of barriers for the rest of energy minima

presented in figure 5.1 with rectangles lead the system to minima with the same config-

uration. Furthermore, the map of barriers analysed here might change from one kMC

step to another, even if the initial minimum is the same. Hence, the barrier maps showed

in figure 3 are not always the case for these minima and sometimes transitions are not

possible.
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Figure 5.2: Frequency of the energy barriers for the possible events from Ch8 (a), Co4
(b), Co7 (c) and Co9 (d) I2 energy minima and final states associated.
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5.1.3 Formation enthalpies and energy barriers

We have determined that compact configuration is less energetic than chainlike con-

figuration, speaking always in terms of the lowest energy minimum of each one. This

idea is showed in figure 5.3. Moreover, considering all the transitions which have oc-

curred during our simulations, we have seen 23 transitions from compact to chainlike

configurations and 27 transitions from chainlike to compact configurations. All of them

are represented as rectangles in the already mentioned figure. The lowest energy barrier

(6.803 eV), however, is linked to the formation enthalpy of each configuration.
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Figure 5.3: Transition path between compact and chainlike I2 configurations indicating
the formation enthalpies, topologies in [-1 0 0] plane (DAs in red, bulk atoms in green)

and all energy barriers found.

Consequently, the most stable configuration we have determined is compact, but it

presents low energy difference with the chainlike formation enthalpy (22 meV). The energy

barrier to go from chainlike to compact configuration and vice versa is relatively small,

lower than 0.4 eV. It would imply that transitions between both structures are likely to

happen without needing high temperature values or long periods of time. In any case,

it should be noted that many energy barriers whose values are different have been found

for the same transition. Hence, more than one energy path can be chosen in order to go

from one configuration to the other.
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The lowest energy barrier is smaller than the one calculated by Santos et al. [90] based

on NEBM. Here we have determined a barrier of 0.398 eV from compact to chainlike

configuration, referred to the compact one, while he calculated an energy barrier of 2.2

eV. Hence, NEBM seems to overestimate the energy barrier. In any case, the notorious

difference between both values might be due to the nature of the techniques, as we have

already explained in section 2.2.2.2.

It should be remembered that the topology of these energy minima as well as other

frequent ones is represented in all space directions in the appendix A. Additionally, the

figure 5.4 shows only the DAs of the lowest energy configurations. Compact defects

presents 4 DAs and 2 ESs whereas chainlike defects have 6 DAs and 4 ESs. Since they

are defects whose extension is not so long, the diffusion mechanism is likely by rearranging

slightly the atoms. Hence, it is logical that the energy barrier was not high.

(a) (b)

Figure 5.4: DAs of chainlike (a) and compact (b) I2 configurations in [-1 0 0] plane.

5.1.4 Transition mechanism

Developing the previous idea in depth, the figure 5.5 shows the atoms evolution when

a transition from the chainlike to the compact configuration takes place. To do so, we

have labelled each atom with an identifier, letting us see which of them move during the

transition. It should be taken into account that each picture refers to a different energy

minimum, without representing a saddle point. In addition, the first one represents the

lowest energy minimum for a chainlike configuration while the last one represents the

lowest energy minimum for a compact configuration.
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The first step consists of a perfect chainlike configuration formed by 6 DAs. Lately,

atoms 1 and 6 modify its position making atom 7 move from its bulk coordinates. Going

a step forward we can see that atoms 5 and 7 come to a perfect cell position while the

rest remains almost unaltered. The next two steps are quite similar to the compact

configuration: atom 4 goes to the left and atom 5 goes to the right, whose position is

occupied by atom 6. In addition, atoms 1 and 7 end up also in perfect cell coordinates.

The compact structure is almost formed at this point. Finally, the last three steps show

the movements of atoms 2, 3, 4 ,and 5, the ones which form the symmetrical compact

defect.

Figure 5.5: Chainlike to compact I2 configuration evolution in [-1 0 0] plane over eight
kMC steps.

5.2 Tri-interstitial

We are going to continue our study with the analysis of compact, chainlike and {111}
configurations for I3. Following the same structure as before, an overview of the simu-

lations we have run is presented and the formation enthalpies and energy barriers are

indicated.
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5.2.1 Summary of simulations

Here we have run 6 simulations starting from a compact configuration, 8 simulations

beginning from a chainlike defect and 6 simulations starting from a {111} configuration.

Computing all of them the CPU time is close to 1000 h, but we have only seen transitions

in 50.00 % of all attempts, as table 5.2 indicates.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (ms)

20 1009.40 50.00 % 348.22

Table 5.2: Summary of simulations which have been run for tri-interstitial.

In this sense, setting MIN SIG BARRIER to 0.3 eV is not enough to see transitions

between compact and chainlike configurations. In case the system starts from the first

one, the minimum barrier of the basin should be set to 0.6 eV. If the system starts from

the second one, however, the barrier needs to be set to 1.5 eV. The {111} configuration

does not present this issue because one can evolve to other known configuration with a

0.1 eV barrier. In any case, after setting this values there are no kMC steps in which the

atoms are not grouped in a unique defect, as it happened in the previous section.

5.2.2 Formation enthalpies and energy barriers

According to our results, which are represented in figure 5.6, we can point out that

the formation enthalpy of compact configuration is 0.45 eV higher that of the chainlike

one. Hence, it does not follow the tendency of I2, where the chainlike configuration had

lower energy. In addition, there are fewer transitions in this case. The system has evolved

from a compact to a chainlike configuration 5 times and only 1 in the opposite direction.

The transition from the {111} to the compact configuration has happened once, but the

opposite direction presents 4 samples.

The meaning of the symbols in the figure is the same as before, but here we have

added a discontinuous line which indicates that we have not seen the transition in this

direction. For instance, our system has gone from a {111} configuration to a compact

one, but not vice versa. We have estimated the energy barriers for those cases.

Hence, chainlike is the most stable configuration we have determined here and the

barrier to fall into it from a compact configuration is high (0.84 eV). It means that this
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transition would require high temperatures or long times to take place. In any case, the

statistics here are not as numerous as what we did in I2 analysis and they also present

variability. Again, several energy paths can be chosen in order to go from chainlike to

compact configuration and vice versa. The configuration symmetrical in {111} plane,

however, seems to be very unstable. It has negligible energy barriers and it has not

appeared again by the evolution of our simulations.
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Figure 5.6: Transition path between compact, chainlike and {111} I3 configurations
indicating the formation enthalpies, topologies in [-1 0 0] plane for the first two and in
[-1 1 -1] for the third (DAs in red, bulk atoms in green) and all energy barriers found.

Comparing these energy barriers with the work of Santos et al. [90] with NEBM, the

barrier between compact and chainlike configuration is 3 eV below. Again, NEBM seems

to overestimate this energy barrier.

It should be noted that the topology of these energy minima as well as other frequent

ones are represented in the appendix A. Figure 5.7 represents the DAs of each configu-

ration in order to see how the atoms have to move. Compact defects present 8 DAs and

5 ESs and chainlike and {111} configurations have 10 DAs and 7 ESs. The extension of

the chainlike defects along the network is large. As this configuration is more elongated

than the I2 case, it is logical that the energy barrier increases. This is going to happen

every time we increase the defect size. The compact defect, however, grows in a circular

way, having an atom left to complete the fourfold structure. We can also observe the

high symmetry of {111} configuration in that plane.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: DAs of chainlike, compact and {111} I3 configurations in [-1 0 0] plane (a, b,
c) and [-1 -1 -1] plane (d, e, f), respectively.

5.2.3 Transition mechanism

The transitions between compact and chainlike I3 configurations are not as straight

as it happened with the I2 case. Here more than 50 kMC steps are needed to see these

topologies change. Hence, we have only represented the most relevant ones in the figure

5.8. Note that labels from each plane refer to the same atoms and two orientations are

represented at the same kMC step.

If we observe the evolution in [-1 0 0] plane, firstly atoms 1, 2, 5 and 7 lost their

compact position, displacing then atoms 8, 9 and 10, which were previously in perfect

cell coordinates. In the following steps a trapezoid is formed by atoms 6, 8, 9 and 10. The

last step involves a long exchange between atoms 9 and 10, although it seems to occur

only in this direction because they keep close in the [0 1 0] plane. In addition, atoms 3

and 5 open slightly to chainlike positions and atoms 2 and 12 fill their sites. The rest of

displaced atoms move to the nearest perfect cell position.
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Figure 5.8: Chainlike to compact I2 configuration evolution in [-1 0 0] (up) and [0 1 0]
(down) planes over four selected kMC steps.

5.3 Tetrainterstitial

This section is aimed to study I4 compact, chainlike and {111} configurations. Firstly

we are going to sum up the simulations we have run and then the formation enthalpies

and energy barriers will be determined. Additionally, we will analyse in detail a pair of

transitions.

5.3.1 Summary of simulations

The computational cost has increased at this point, as it can be seen in table 5.3. The

facts that the network size is bigger and the transitions are harder to achieve have con-

tributed to this issue. We have run 5 simulations starting from a compact configuration, 8

simulations beginning from a short chainlike defect, 4 simulations taking a long chainlike

configuration as initial step and 8 simulations starting from a {111} configuration. The

CPU time is almost 3000 h, three times larger than the cluster sizes we have studied until

now. In addition, transitions have been seen more frequently, 1 out of 2 attempts.
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Number of simulations Total CPU time (h) Success rate (%) Total simulated time (ms)

25 2859.24 52.00% 554426.70

Table 5.3: Summary of simulations which have been run for tetrainterstitial.

According to this work, if one wants to see a transition from the compact to the short

chainlike configuration starting from the first one, even setting MIN SIG BARRIER to

2.1 eV is not enough. However, as kART let the user load a topological database from a

previous simulation, it is likely to see it by setting this parameter to 1.5 eV and loading

the catalogue of a simulation which has started from a long chainlike configuration. In

addition, the transition from the long chainlike to the compact configuration can be

achieved setting the mentioned parameter to 0.9 eV, and the same is needed to see

transitions between long and short chainlike configurations. As it happened with the I3,

the {111} configuration does not present this issue because one can evolve to other known

configuration with a 0.3 eV energy barrier. Moreover, there are no kMC steps in which

the atoms are not grouped in a unique defect

5.3.2 Formation enthalpies and energy barriers

Contrary to what we have exposed in I3 results, here the compact configuration is 1.1

eV lower than the short chainlike configuration and 1.6 eV lower than the long chainlike

one. This agrees with the high stability of the fourfold structure, which has been called

in the literature as Arai tetrainterstitial [16]. In addition, {111} falls again into chainlike

or compact configurations with low energy barriers. Regarding to the transitions, we

have considered 23 samples: 3 transitions from short chainlike to compact configuration,

13 transitions between long and short chainlike configurations, 1 from compact to long

chainlike configuration, 22 between {111} and short chainlike configuration and 1 from

{111} to compact configuration. This can be checked in figure 5.9, taking into account

what we have already explained for this kind of graphs.

It should be noted that the barrier between chainlike and compact configurations

is high (2.28 eV). This means that this transition will be difficult to see, needing high

temperatures or long times. In any case, Santos et al. [90] have also calculated the

barrier between compact and chainlike configuration with NEBM, being 2.85 eV higher

with respect to ours.
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Figure 5.10: DAs of short and long chainlike, compact and {111} I3 configurations in [-1

0 0] plane (a, b, c, d) and [-1 -1 -1] plane (e, f, g, h), respectively.
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The topology of these energy minima in several orientations is represented in the

appendix A. Figure 5.10 shows the DAs of each configuration in order to see the arrange-

ment of atoms when a transition takes place. Compact defects presents 14 DAs and 10

ESs, short and long chainlike configurations have 12 DAs and 8 ESs while {111} defects

are formed of 11 DAs and 7 ESs. Logically the extension of the long chainlike defects

along the network continues growing with the cluster size. The short chainlike, however,

only implies a DA in the lateral structure comparing it with the I3 version. Additionally,

as the fourfold is completed for the compact defect, evolving to other configuration is

complex.

5.3.3 Transition mechanism

We are going to analyse two situations: a transition from the short chainlike to the

compact configuration and a transition from the short chainlike to the long chainlike

configuration. The first one involves more than 50 steps while the second one takes place

in 20 steps. Hence, we will only represent the most relevant stages of the process. It is

worth noting that these transitions occur in the same plane, unlike I3 case.

As it can be seen in figure 5.11, the transition between short chainlike and compact

configurations is quite complex. The initial steps consist of the approach of atom 12 to

the chain structure, rearranging the bottom atoms, 8, 9, 10 and 11, and the central ones,

5 and 6. Lately, when we are in the middle of the transition, atom 7 displaces to upper

positions, modifying the location of atoms 3 and 4. At this point, the compact structure

can be foreseen. Finally, the atoms which are on the corner of the square (atoms 1, 2,

3, 4, 9, 10, 11 and 12) move slightly to the compact positions. In addition, atom 7 is

displaced to a middle position, as it occurs to atoms 5, 8 and 16. Atom 6, however, goes

to the central position of the compact configuration.

Now we are going to detail the transition between short and long chainlike configu-

rations. Figure 5.12 illustrates this idea. As it has happened in the previous transition,

the first stages consist of the approach of atom 12 to the chain structure, rearranging

the upper atoms, 1, 2, 3 and 4, and the central ones, 5 and 6. In fact, atom 12 ends up

filling the position of atom 4 in the step 17, making atom 4 go to upper sites and atom

13 leave its perfect lattice position. Thus, atom 4 and 13 form the top part of the long

chainlike configuration at the end. The rest of the atoms remains almost unaltered if one

compares them with the initial short chainlike positions.
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Figure 5.11: Short chainlike to compact I4 configuration evolution in [0 0 -1] plane over
eight selected kMC steps.

Figure 5.12: Short chainlike to long chainlike I4 configuration evolution in [0 0 -1] plane
over eight selected kMC steps.
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5.4 Pentainterstitial

To continue with this chapter, we are going to analyse compact, short and long chain-

like and {111} configurations for I5. Following the same lines as before, an overview of the

simulations is presented and the formation enthalpies and energy barriers are indicated.

In addition, two transitions will be described in detail.

5.4.1 Summary of simulations

The computational cost has been lower than in the previous section thanks to the

increment in success rate, as it can be seen in table 5.4. Transitions, though hard to

achieve, have been seen more frequently (almost half of the attempts have been success-

ful). In any case, the CPU time is also large, being close to 1700 h due to the network

size and the high energy values we have worked with. We have run 2 simulations starting

from a compact configuration, 3 simulations beginning from a short chainlike defect, 7

simulations taking a long chainlike configuration as initial step and 5 simulations starting

from a {111} configuration.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (s)

17 1657.31 47.06% 17.46

Table 5.4: Summary of simulations which have been run for pentainterstitial.

Taking into account all our data, one can see transition from the compact to the short

chainlike configuration starting from the first one setting MIN SIG BARRIER to 0.9 eV.

Therefore, this transition seems to be easier than the I4 case. However, here we have not

seen the transition from the long chainlike to the compact configuration even setting this

parameter to 1.8 eV. Additionally, transition between long and short chainlike has been

seen when the minimum barrier of the basin is set to 1.5 eV, 0.6 eV higher than in the

previous section. The same applies to {111} configuration, which has needed to set this

parameter to 0.6 eV to see transitions.

5.4.2 Formation enthalpies and energy barriers

Figure 5.6 shows the transition path we have determined for this cluster size. It should

be highlighted that compact configuration is again the one with the lowest formation

Faculty of Sciences, University of Valladolid



Chapter 5. Energy properties of small interstitials clusters 111

enthalpy. The high stability of the fourfold structure justifies it (the extra atom respect

to the I4 compact configuration is away from the fourfold). However, here the difference

between chainlike and compact energies (0.648 eV) is lower than what we calculated in

the previous section. In addition, short chainlike configuration presents a 0.609 eV higher

energy than the long version, again contrary to I4 results. The {111} configuration also

differs from what we pointed in I4 case. It evolves to the compact configuration, as it

happened in the I2, and its barrier is significant, 0.627 eV. It is worth noting than the

previous transitions paths for this configuration implied very low energy barriers, being

a more unstable energy minimum.

Regarding to the transitions, we have considered 10 samples: 3 transitions from short

chainlike to compact configuration, 3 transitions from long and to short chainlike configu-

rations and 4 from {111} to compact configuration. Hence, we have only seen transitions

in one direction. The energy barrier to go away from the compact configuration is 1.811

eV, a high value. One would need very high temperatures or long periods of time to

reproduce it. In any case, the statistics are poor and they also present variability. Once

again, several energy paths can be chosen to go from one configuration to the other.
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configurations indicating the formation enthalpies, topologies in [-1 0 0] plane for the

first three and in [-1 1 -1] for the fourth (DAs in red, bulk atoms in green) and all
energy barriers found.
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The completed topology of these energy minima as well as other frequent ones are

represented in the appendix A. Furthermore, figure 5.14 represents the DAs of each

configuration in order to see how the atoms have to rearrange during transition. Compact

and {111} defects present 15 DAs and 10 ESs, short chainlike configurations have 13

DAs and 8 ESs and long chainlike defects present 16 DAs and 11 ESs. The extension

of the chainlike defects adds an atom respect to the I4 case. The difference between all

configurations is more significant, being logical that the energy barriers had also increased.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5.14: DAs of short and long chainlike, compact and {111} I3 configurations in [-1

0 0] plane (a, b, c, d) and [-1 -1 -1] plane (e, f, g, h), respectively.

5.4.3 Transition mechanism

We are going to analyse two different situations: a transition from the short chainlike

to the compact configuration and a transition from the long chainlike to the short chainlike

configuration. The first one involves more than 70 steps while the second one takes place

in almost 150 steps. Therefore, only the most relevant stages of the diffusion will be

represented. It should be noted that these transitions occur in the same plane, unlike I3

case.
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As it can be seen in figure 5.15, the transition between short chainlike and compact

configurations is not simple. The first 20 steps consist of slight displacements of all

atoms without any significant movement. When 29 steps have passed, however, a more

symmetrical short chain is formed. It implies displacing the atoms 10 and 13 to upper

positions and atom 7 to a perfect lattice one. In any case, this configuration is higher in

energy than the initial structure. After that, atom 13 is displaced down, making atom

7 move from its previous position in step 42. The following stages are related to the

formation of the compact structure. Atoms 1, 2, 3, 4, 11 and 12 get slightly displaced to

form the bottom part of the fourfold structure, atom 5 goes up and form the upper part

with atom 9, and atom 7 ends up in the central position of the compact configuration.

Regarding the extra atom of the fourfold, atom 8 goes away to an upper position and

atom 10 goes to a perfect lattice one.

Figure 5.15: Short chainlike to compact I5 configuration evolution in [-1 0 0] plane over
eight selected kMC steps.

Once the transition to a compact configuration is analysed, now we are going to detail

the evolution from a long to a short chainlike configuration. As it can be extracted from

figure 5.16, the atoms which form the bottom part of the chain, i.e., atoms 1, 2, 3, 4, 5,

and 6, remain unaltered during all the process. The upper part, however, experiments

several changes. Firstly atoms 13, 14 and 15 go to the nearest perfect lattice position and
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atom 17 leaves the chain conformation. However, when more than 80 steps have elapsed,

atom 7 comes back, atom 13 displaces to upper sites and atom 6 goes to the left. After

120 steps several changes take place: atom 13 returns to a perfect lattice position and

atom 16 moves first to the right and lately goes down, filling atom 12 its position. Thus,

the short chainlike configuration is formed.

Figure 5.16: Short chainlike to long chainlike I5 configuration evolution in [-1 0 0] plane
over eight selected kMC steps.

5.5 Hexainterstitial

To end with this chapter, here we are going to present some preliminary results we

have obtained for cluster I6. It should be noted that the statistics are not as good as the

previous ones.

5.5.1 Summary of simulations

We have run 2 simulations starting from a compact configuration, 5 simulations be-

ginning from a chainlike defect and 5 simulations starting from a {111} configuration.
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Computing all of them the CPU time is close to 2800 h, but we have only seen transitions

in 16.67 % of all attempts, as table 5.5 indicates.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (s)

12 2767.53 16.67% 12.272

Table 5.5: Summary of simulations which have been run for hexainterstitial.

In this sense, setting MIN SIG BARRIER to 2.4 eV is not enough to see transitions

between compact and chainlike configurations. The {111} configuration can evolve to the

chainlike configuration with a 1.2 eV limit of this parameter. In any case, after setting

these values there are no kMC steps in which the atoms are not grouped in a unique

defect, as it happened in the previous sections.

5.5.2 Formation enthalpies and energy barriers

According to our results, we can point out that the formation enthalpy of compact

configuration is 10.396 eV, a lower value than those presented by the chainlike (11.08 eV)

configuration and the {111} configuration (11.689 eV). Here the system has evolved from

a {111} to a chainlike configuration twice, being the only transition we have seen. In

any case, the energy diagram is represented in figure 5.17. The transition from a {111}
defect to a chainlike one involves a saddle point of 2.5 eV, a very high value. Hence, the

{111} configuration seems to be more stable than the previous sizes under analysis.

The topology of these energy minima as well as other frequent ones are represented in

the appendix A. Figure 5.18 represents the DAs of each configuration in order to see how

the atoms have to displace. Compact defects present 16 DAs and 10 ESs and chainlike

configurations have 18 DAs and 12 ESs and {111} configurations present 22 DAs and

16 ESs. The extension of the chainlike defects along the network is appreciable if we

compare it with the I5 case. The compact defect continues adding the extra atoms near

the fourfold structure. We can also observe the high symmetry of {111} configuration in

that plane.
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Figure 5.17: Transition path between chainlike and {111} I6 configurations indicating
the formation enthalpies, topologies in [-1 0 0] plane for the first and in [-1 1 -1] for the

second (DAs in red, bulk atoms in green) and all energy barriers found.

(a) (b) (c)

(d) (e) (f)

Figure 5.18: DAs of chainlike, compact and {111} I6 configurations in [-1 0 0] plane (a,
b, c) and [-1 -1 -1] plane (d, e, f), respectively.
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5.6 Conclusions

We have studied the Si self-interstitial clusters configurations from I2 to I6 by using

Tersoff 3 interatomic potential in a kART scheme. The formation enthalpy of each

configuration and the energy barriers of the possible transitions between them have been

determined.

The most stable configuration for I2, I4, I5 and I6 is the compact one. For the I3,

however, the chainlike configuration presents the lowest formation enthalpy. We have

dealt with high energy barriers to go away from the lowest energy states, reaching almost

2 eV for the biggest cluster size. In any case, the amount of barriers which have been

analysed is not quite large, existing different energy paths to go from one configuration to

another. We have also studied the transition mechanism between the main configurations.

The evolution is more complex as the cluster size increases, being logical that the energy

barriers increase too.
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Chapter 6

Growth and evolution of small
interstitial clusters

Knowing is not enough; we must apply.
Willing is not enough; we must do.
∼ Johann Wolfgang von Goethe ∼

A
fter analysing each small interstitial cluster size individually,

we are going to detail certain aspects about how the formation enthalpies and

energy barriers vary with the size and how they are influenced by changes in

pressure. These studies will enable us to analyse the growth mechanisms of small inter-

stitial clusters and their evolution.

The chapter is structured as follows. Firstly we are going to focus on the energetic

aspects of each configuration when the cluster size increases, giving an insight about

which of them are more likely to appear when interstitials aggregate. Lately the effect

that pressure has on energy properties is going to be described, indicating the energetic

variations for tri-interstitial and tetrainterstitial.

It should be noted that all the simulations we have launched for each size present the

same number of interstitials, i.e., we have seen transitions between configurations which

share the number of defects. However, real experiments may involve transitions between

different cluster sizes due to the fact that atoms inside a material can reach the defect.

Hence, its size can be increased or decreased, being necessary to study the capture and

emission of interstitials.
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120 Formation enthalpies

6.1 Formation enthalpies

Firstly, figure 6.1 shows the formation enthalpy per interstitial for each configuration of

small interstitials clusters. They refer to the formation enthalpy divided by the number

of interstitials for each size, a straightforward method to let us interpret the growth

mechanism. For those cases in which two possible structures can exist for the chainlike

configuration (short and long), we have displayed the ones with the lowest energy values.

Hence, the energy of short chainlike configuration is shown for I4 and the energy of long

chainlike configuration is represented for I5.
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Figure 6.1: Energy per interstitial for each configuration of small interstitials clusters.

The most stable configuration is the compact one, except for I3 case when the chainlike

is lower in energy. The {111} configuration presents higher energy values for all sizes

until the number of interstitial reaches 6. When the cluster increases, the formation

enthalpy must decrease because it is the main reason of its aggregation. Although the

{111} and chainlike configuration agree with the previous idea, it should be emphasized

that the compact I4 configuration has less energy per interstitial than compact I5 and I6

configurations. Therefore, it may act as an stopper in the growth mechanism of this kind

of defects. In other words, the transition between compact I4 and I5 is not energetically

favourable.
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In fact, some simulations done by L.A. Marqués et al. [10] have shown this idea, as

can be seen in figure 6.2. He carried out CMD simulations inserting many interstitials

in a cell and letting them evolve to form extended defects. The results pointed out that

compact I4 is difficult to aggregate into others, being a very high stable configuration at

low temperatures.

Figure 6.2: Annealing at 850 K of a cell which contains different types of big defects
({111} RLDs in blue and (110) chains in red) and compact I4 and his agglomerates (in

yellow) in 170 ns.
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Other authors in the literature have also studied the formation enthalpies of chainlike

and compact configurations through several methods. Figure 6.3 shows the comparison

with their results. S. Lee et al. [22,23] carried out TBMD and DFT simulations while N.

Cowern et al. [15] applied an Ostwald Ripening analysis focusing on the lowest energy

configuration without indicating which one is. This last analysis is known as the magic

sizes, a common term very extended in the field of simulation models for semiconductor

defects.

Comparing our results with those obtained by S. Lee et al, similarities can be found

in the chainlike formation enthalpies. In addition, compact energies do not differ so much

for big sizes, though the smaller ones (2 and 3 interstitials) present a large variation. It

is difficult to determine why this difference appears. kART uses Tersoff 3 interatomic

potential through LAMMPS to calculate de energy of the system. The energies depend

on the potential and, therefore, it may change if other potential is used to describe the

atomic network. The energies obtained by N. Cowern et al. should be understood as an

average of all configurations, being close to the lowest energy configurations for each size

(compact in general).
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Figure 6.3: Comparison of energy per interstitial for each configuration of small
interstitials clusters with other authors [15,22,23]
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6.2 Energy barriers

Table 6.1 summarizes all the energy barriers we have determined in this work. Those

transitions which have taken place in one direction but not in the opposite one are indi-

cated in italic. In addition, we have not distinguished between long and short chainlike

configurations for I4 and I5 cluster sizes, taking the lowest formation enthalpy configura-

tion of both as a reference in these cases.

Cluster Transition Minimum Average Standard
size value (eV) value (eV) deviation (eV)

I2
Chainlike −→ Compact 0.397 0.454 0.114
Compact −→ Chainlike 0.376 0.467 0.092

I3

Chainlike −→ Compact 1.29 1.29 0
Compact −→ Chainlike 0.894 0.999 0.117

Chainlike −→ 111 1.563 - -
111 −→ Chainlike 0.014 0.132 0.119
Compact −→ 111 1.112 - -
111 −→ Compact 0.003 0.003 0

I4

Chainlike −→ Compact 1.14 1.289 0.122
Compact −→ Chainlike 2.259 2.265 0.008

Chainlike −→ 111 0.907 0.938 0.087
111 −→ Chainlike 0.053 0.289 0.216
Compact −→ 111 2.312 - -
111 −→ Compact 0.354 0.354 0

I5

Chainlike −→ Compact 1.53 1.669 0.123
Compact −→ Chainlike 1.811 - -

Compact −→ 111 1.868 - -
111 −→ Compact 0.627 0.697 0.081

I6
Chainlike −→ 111 3.131 - -
111 −→ Chainlike 2.522 2.572 0.071

Table 6.1: Statistical analysis of all energy barriers for each cluster size.

Focusing now on the minimum energy barriers we have found during this work, figure

6.4 represents how they evolve with the cluster size in transitions between compact and

chainlike configurations. We can see that, except for the I2 case where the transition

in both directions is likely, high energy barriers are needed to go from the lowest ener-

getic configuration to the highest one for each size. Additionally, falling from the higher

configurations also involves high energy barriers. As it happened with the analysis of
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formation enthalpies, we can observe that the compact I4 presents the most energetic

barrier to going away from it (2.281 eV). This implies that the transition from compact

to chainlike I4 would take place every 4 ms in an annealing at 800 oC, a very high value

comparing with the returning time (23 ns). Hence, this configurations may slow down

the cluster growth not only because of its low energy but also for its high energy barrier

to go away from it.
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Figure 6.4: Evolution of energy barriers in transitions between compact and chainlike
configuration for each cluster size.

It should be noted that for those cases in which two possible structures can exist for

the chainlike configuration (short and long), we have displayed the ones which are the

lowest energy values. If one thinks in terms of estimated time, these barriers can be

translated into time by a simple conversion:

Test =
1

f0
e

EB
kBT (6.1)

Being Test the estimated time, f0 the vibration frequency of the network (1013 Hz), EB

the energy value, kB the Boltzmann constant and T the temperature in Kelvin. Hence,

the previous energy values are converted as table 6.2 indicates at 1200 K. We can see that,

although times for I2 and I3 energy barriers are accessible, the barriers to go away from

the compact would involve several ms. This would be infeasible with an CMD approach.
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Cluster size
Estimated time (ns)

Compact −→ Chainlike Chainlike −→ Compact

I2 4.65E-03 3.79E-03
I3 3.37E-01 2.62E+01
I4 3.80E+05 9.14E-02
I5 4.04E+03 1.50E-02

Table 6.2: Estimated time needed at 1200 K to see the transitions of figure 6.4.

Regarding the transitions between {111} and compact and chainlike configurations,

figure 6.5 displays how they evolve when the cluster size gets bigger. The values to going

away from {111} are low, but they increase with the number of interstitials. This agrees

with the idea showed with the formation enthalpies: {111} becomes more stable when

the cluster size increases. The return barriers, however, are very high for all cases, being

even more energetic when the fourfold structure of the compact configuration is formed.
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Figure 6.5: Evolution of energy barriers in transitions between {111} compact and
chainlike configuration for each cluster size.

Table 6.3 represents the previous energy barriers converted to time. Again, the bar-

riers to go from compact to {111} configuration would require a long time.
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Cluster Estimated time (ns)
size {111} −→ Compact Compact −→ {111} {111} −→ Chain. Chain. −→ {111}
I3 1.13E-04 4.68E+00 2.43E-04 8.68E+02
I4 3.07E-03 5.13E+05 1.67E-04 1.80E+01
I5 4.30E-02 4.76E+03 - -

Table 6.3: Estimated time needed at 1200 K to see the transitions of figure 6.5.

6.3 Emission and capture of interstitials

Until now we have only taken into account that a cluster of a certain size can change

its configuration, but not the possibility of changing its size. Indeed, a cluster can do it

by emitting or capturing interstitials. It should be remembered that after ion implan-

tation occurs, an excess of interstitials exit which interact between themselves. Then

they aggregate and create clusters, coexisting clusters with different sizes and configura-

tions. In addition, this is a complex scheme where free interstitials can interact with the

clusters. Thus, a cluster of a certain size and configuration can evolve in three different

ways: reducing their size by emitting an interstitial, increasing their size by capturing an

interstitial or changing to another configuration. The activation energy which controls

each one of these processes lets us determine their frequency. In other words, it tells us

the mean time needed for a process to take place.

The emission of an interstitial from a cluster requires a binding energy in order to

separate the interstitial from the cluster and a migration energy to let the interstitial

diffuse and go away from the cluster. Then, the binding energy of a cluster of n size,

Ebind,In , is the difference between the formation enthalpy of the cluster of lower size,

Hf,In−1 , plus the formation enthalpy of a self-interstitial, Hf,I , respect to the formation

enthalpy of the cluster, Hf,In , as equation 6.2 indicates.

Ebind,In = (Hf,In−1 +Hf,I)−Hf,In (6.2)

Knowing the formation enthalpy of each configuration and considering the formation

enthalpy of a self-interstitial as 3.478 eV (from CMD simulations using Tersoff 3 inter-

atomic potential [88]), the binding energy can be determined. The activation energy to

emit an interstitial is, therefore, the addition of the binding energy and the migration

energy of an interstitial (3.9 eV [91]). To estimate the associated time to the interstitial
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capture for a certain cluster size and configuration, we suppose clusters are in equilib-

rium with free interstitials. Hence, other clusters with other sizes or configurations cannot

technically exist. The concentration of free interstitials (C ) is calculated from the binding

energy of the cluster (Ebind):

C = Co exp

(
−Ebind
kT

)
(6.3)

Being Co the Si density (5 · 1022 atoms/cm3), k the Boltzmann constant and T the

temperature in Kelvin. Consequently, the most stable clusters whose binding energies are

the highest ones will be surrounded by few interstitials and the interacting probability

will be low. Knowing the concentration of interstitials, the mean distance between them

(d) can be determined and one can calculate the mean time associated to the interstitial

capture using the Einstein equation:

τ =
d2

6D
=

d2

6D0 exp(−Em/kT )
=

d2

6D0

exp(Em/kT ) (6.4)

Where the diffusivity D has been expressed by a prefactor D0 (5 cm2/s) and the

migration energy Em (0.9 eV), both parameters extracted from Ref. [91]. This calculation

implies that the clusters are distributed uniformly. It also considers that the distance

between an interstitial and a cluster matches the mean distance of interstitials. Although

we are doing a simplication of the real scenario, the obtained values can provide an

overview about the order of magnitude of the associated time to the processes.

Lastly, the transition between the different configurations are determined by the en-

ergy barriers we have already showed.

Figure 6.6 shows the mean time associated to the interstitial emission, the transforma-

tion in a different configuration and the capture of an interstitial for compact, chainlike

and {111} I3≤n≤5 clusters. The temperature has been set to 800 K and we have only

included those times lower than 1000 s. The first events to take place are the cluster

transformation from {111} configuration to other ones. The compact I3 and chainlike

I4 evolve to other configurations is µs timescale. It should be emphasized that a long

time is needed in order to transform the compact I4, agreeing with what we have already

indicated about this cluster type.
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Figure 6.6: Mean time for transformation, emission and capture of an interstitial for
chainlike, compact and {111} configurations

As it has been showed, the needed times for a cluster in order to grow by capturing an

interstitial are high due to the low concentration of interstitials which are surrounding the

cluster. This concentration has been calculated from the binding energy of the cluster,

considering there are no clusters with other sizes and configurations. The concentration

of interstitials can be high after the ion implantation process or at the beginning of the

thermal annealing. To illustrate this situation, we have calculated the time associated

considering all the clusters are surrounded by a concentration of 5 ·1020 cm−3 interstitials,

without taking into account the binding energy of the clusters. These conditions lead to

a capturing time of 1 ns (grey rectangles in figure 6.6). As a result, this event will occur

very frequently. Moreover, the timescale of the capture of an interstitial by {111} I5
configuration is similar to the transformation to the compact, being likely to form {111}
clusters of larger sizes.
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6.4 Pressure effect

This section is devoted to the study of what happens in formation enthalpies and

energy barriers values of I3 and I4 when the pressure is modified, comparing the results

with what we have already described for 0 GPa. It should be noted that I4 results are

preliminary.

6.4.1 Summary of simulations

Here we have run the same type of simulations as before but working with cells scaled

for different pressures. We have used scaling factors in order to obtain atom coordinates

at negative and positive pressure. To so do, instead of using a lattice parameter of 5.432

Å as we did for 0 GPa, we have used 5.492 and 5.380 Å to simulate -3 and 3 GPa,

respectively. The computational cost for this section is summarized in tables 6.4 and 6.5.

We have not used the {111} configurations as an initial minimum for this analysis. We

have mainly focused on the pressure effect on chainlike and compact configurations.

For I3 size we have run 10 simulations starting from a compact configuration (3 at -3

GPa and 7 at 3 GPa) and 9 simulations beginning from a chainlike configuration (5 at

-3 GPa and 2 at 3 GPa). Computing all of them the CPU time reaches almost 1300 h,

but we have only seen transitions in 29.41 % of all attempts. In this sense, the transition

from compact to chainlike configuration requires a MIN SIG BARRIER equals to 0.9 eV

to occur at -3 GPa while it only needs 0.6 eV value at 3 GPa.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (ms)

17 1282.13 29.41 % 134.23

Table 6.4: Summary of simulations which have been run for tri-interstitial at -3 and 3
GPa.

For I4 size we have run 2 simulations starting from a compact configuration (1 at -3

GPa and 1 at 3 GPa), 16 simulations beginning from a short chainlike configuration (6 at

-3 GPa and 10 at 3 GPa) and 2 simulations beginning from a long chainlike configuration

(1 at -3 GPa and 1 at 3 GPa). Computing all of them the CPU time is more than 1400 h.

However, the success rate is quite low, 15.79 % of all attempts, due to the problems at 3

GPa to see the transition from short chainlike to compact configuration. Moreover, if one
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wants to see a transition from short chainlike to compact configuration starting from the

first one at -3 GPa, setting MIN SIG BARRIER to 2.1 eV is the key. Transitions between

long and short chainlike are also possible by setting this limit to 1.5 eV. The transitions

at 3 GPa, however, seems to be difficult to achieve because we have not observed them

even setting the basin limit to 2.1 eV and restarting several simulations.

Number of simulations Total CPU time (h) Success rate (%) Total simulated time (ms)

20 1435.02 15.79 % 34412.01

Table 6.5: Summary of simulations which have been run for tetrainterstitial at -3 and 3
GPa.

In any case, it should be noted that unknown configurations have appeared during

this study. This is the main reason why the transitions between compact and chainlike

configurations have been difficult. The system has got trapped in intermediate configu-

rations in numerous attempts. Hence, the statistics of this section are even lower than

what we have already shown in the previous chapter.

6.4.2 Formation enthalpies and energy barriers

The energetics properties of compact and chainlike configurations for I3 and I4 are

analysed at -3 and 3 GPa, following the same analysis as we did for 0 GPa. We can know

in advance that the formation enthalpies are going to decrease for negative pressures

whereas they are going to increase for positive ones due to the variation in interatomic

distances.

Firstly, we have determined that compact configuration is more energetic than chain-

like configuration for tri-interstitial size at both pressures, as can be seen in figure 6.7.

Regarding the energy barriers from compact to chainlike configuration, we have seen few

transitions: two at -3 GPa and three at 3 GPa. In this sense, they present a visible dif-

ference because the barrier is higher when the pressure is negative. This idea is displayed

in the figure 6.8, where it can be seen that the energy barrier decreases with the pressure.

However, it should be emphasized that the statistics are poor and we have linked the

lowest energy barriers reported in this graph.
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Secondly, we have determined that the compact configuration for I4 is the most stable

one at -3 and 3 GPa. Figure 6.9 (a) shows the energy barrier diagram for -3 GPa and

(b) represents the comparison with the barriers at 0 GPa. As we have already mentioned

in this section, we have not got transitions at 3 GPa. In any case, we can see that the

tendency of I3 is repeated because the barrier is higher when the pressure is negative.

However, again it should be emphasized that the statistics are poor.
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Other relevant point to be analysed is the evolution of the energy difference between

the chainlike and the compact configurations with the cluster size for the pressures we

have studied. Figure 6.10 illustrates this concept. For those cases where long and short

chainlike configurations are possible it has been showed the difference with each one.

Although I3 and I4 long chainlike present almost the same difference, I4 short chainlike is

modified by the pressure. Then, the difference seems to be higher for negative pressures,

meaning that the transition would be harder to achieve.
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6.5 Conclusions

We have analysed how the formation enthalpies and energy barriers of small interstitial

cluster configurations change with the size and how they are influenced by changes in

pressure.

Our results indicate that compact tetra-interstitial is very stable due to its low forma-

tion enthalpy and high energy barriers to go away from it. In fact, long times would be

needed to dissolve this configuration in an annealing at 800 K, playing a key role on the

growing mechanisms of small clusters. {111} configuration, however, seems to be a quite

energetic cluster, evolving quickly into other configurations because of their low energy

barriers. In any case, significant barriers have been seen to abandon high energy configu-

ration. This would increase their mean lifetime and delay their structural transformation

in other configurations. Regarding the pressure analysis, we can conclude that the higher

the pressure is, the lower the barriers would be, according to our small amount of data.
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Chapter 7

Conclusions and future research lines

If I have seen further, it is by
standing on the shoulders of giants.

∼ Isaac Newton ∼

T
he motivation of this work has been to increase the knowledge of small

interstitials clusters in crystalline Si, due to the key role they play on the for-

mation of extended defects. To do so, we have identified several geometrical

configurations of the clusters and analysed their energetics and dynamics, determining

their formation enthalpies and the energy barriers of the associated transitions. The

reported energy barriers can be used as input parameters for the development of more

accurate damage generation and accumulation models for the process simulators of semi-

conductor industry. The analysis of their energetic landscape and their configurational

transitions allows us to elucidate new growing mechanism for small clusters interstitial

clusters.

The results of this master dissertation have been presented to the national science

competition Certamen Universitario Arqúımedes 2016, sponsored by the Spanish Ministry

of Education.
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7.1 Conclusions

We have determined the energy barriers which control the transition of compact,

chainlike and {111} configurations in clusters from 2 to 6 interstitials in crystalline Si.

Our data show that the compact tetrainterstitial is very stable and high energy barriers

are required to evolve from it. The formation of compact tetrainterstitial clusters could

slow down defect evolution and may act as an energy well for other configurations. This

explains why this small defect is still observed when large extended defects are already

formed. Symmetrical clusters in {111} planes, however, are more energetic and they

quickly evolve to other configurations. Although these defects are considered as the

precursors of {111} dislocation loops, our study indicates that at least for sizes up to 6

interstitials this configuration is not stable. Bigger clusters on {111} planes may be more

energetically favourable.

Significant barriers have been observed even for the structural transformation of high

energy configurations, which increases their mean lifetime. A lattice in equilibrium con-

ditions which contains interstitial clusters will be in the minimum energy state. The

clusters population will be formed by those sizes and configurations which present the

lowest formation enthalpies, with high energy barriers for their structural transformation.

Hence, the evolution of defects would be limited by those very stable configurations.

Traditional defect evolution models reproduce this situation but they do not take into

account that several topological configurations of clusters are possible. Our simulations

indicate that even those high energy configurations have non-negligible energy barriers

to evolve to lower energy ones. It implies that the system can stay some time in non-

equilibrium scenarios. This opens new paths for the growing of small interstitial clusters,

since these unstable configurations may grow by capturing diffusing interstitials.
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7.2 Future research lines

This work can be continued following one of the next points:

• Study bigger cluster sizes. This work has focused on cluster whose sizes range

from 2 to 6 interstitials. The analysis of bigger ones could reveal that other config-

urations are favoured.

• Make more statistics. The number of energy barriers we have presented has not

been so long for certain situations. Widening this data can provide more accurate

results.

• Increase statistics. The number of energy barriers we have obtained is small for

certain situations. Widening these data can provide more accurate results.

• Implement other interatomic potential. The results can be checked by using

other interatomic potentials apart from Tersoff 3, such as SW or EDIP.

• Study different materials. The methodology we have developed can be easily

used to study defects in other semiconductors, like Ge, or binary materials such as

SiGe or III-V.
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Appendix A

Library of defects configurations

T
his appendix presents the views in all directions for the most visited con-

figurations during our simulations for each cluster size (I2≤n≤6, being n the

excess of interstitials) at 0 GPa. As it has been already mentioned, we have

built a database which contains all the known configurations for each defect, character-

izing the atoms geometry by discretizing in formation enthalpy values (see chapter 3 for

more information about the procedure).

All the attached pictures have a common structure. From left to right, the first four

snapshots show X axis projections ([0 0 -1], [0 1 -1], [0 1 0], [0 1 1]), the next three

snapshots show Y axis projections ([-1 0 -1], [-1 0 0], [-1 0 1]) and the final four show

projections along <111> axis ([-1 1 -1], [1 1 -1], [-1 1 -1], [-1 -1 -1]). The text box

positioned on the bottom right corner points out the exact simulation step in which the

snapshots have been taken and other parameters such as the temperature (TEMP.), the

number of displaced atoms (DA) and the number of empty spaces (ES), the formation

enthalpy (EF) and if we considered the defects as a group (GROUPED).

It should be taken into account that we are going focus on compact, chainlike and

{111} configurations for each cluster size due to their interest in this work, avoiding other

types of defects which we have also found. In addition, the notation we have used is the

following: CoX for the compact configurations and ChX for the chainlike ones, where X

means their position when we sort all the same type of configurations by their energy

values (from low values to high values). Hence, Co1 and Ch1 will be the lowest energy

minima for the compact and the chainlike configurations, respectively.
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Firstly we are going to detail I2 clusters. According to our data, we have identified

14 compact and 9 chainlike energy minima. The most frequent states for the compact

configuration are Co1 (11.80%), Co2 (42.43%), Co3 (11.18%), Co4 (16.22%) and Co8

(11.44%). Similarly, we have determined Ch1 (36.73%), Ch3 (18.37%) and Ch4 (32.14%)

are the most visited energy minima for the chainlike configuration.

Secondly, I3 clusters are going to be described. We have found 20 compact, 18 chain-

like and 1 {111} cluster energy minima. Looking between them separately, Co1 (8.90%),

Co2 (22.93%) and Co9 (18.97%) are the most likely energy states for the compact con-

figuration and Ch5 (12.52%) and Ch10 (14.30%) for the chainlike configuration. In any

case, we also show Ch1 (1.61%) due to their almost perfect symmetry. It should be noted

the percentages are relative to each type of clustering.

Thirdly, we are going to detail I4 clusters. It should be kept in mind that, in this

case and for I5 cluster size, we have two possible configurations for the chainlike cluster,

one more elongated than the other. The way we are going to call them are SChX (short

chainlike) and LChX (long chainlike). According to our data, we have identified 4 com-

pact, 5 short chainlike, 9 long chainlike and 1 {111} energy minima. The most frequent

energy minima for the compact configuration are Co1 (25.63%) and Co2 (74.37%). Like-

wise, we have determined SCh1 (58.65%) and SCh2 (34.42%) are the most visited energy

minima for the short chainlike configuration and LCh1 (31.74%), LCh3 (34.13%) and

LCh5 (16.39%) are the most visited energy minima for the long chainlike configuration.

Fourthly, following the previous naming we are going to describe I5 clusters. We have

observed 16 compact and 10 short chainlike, 26 long chainlike energy minima and 1 {111}.
Between this large number of variations, the relative frequency of the most frequent ones

is the following: Co1 (43.29%), Co3 (17.41%) and Co7 (25.89%); SCh1 (16.45%), SCh6

(10.36%), and SCh12 (10.86%); LCh1 (24.93%) and LCh2 (36.08%).

And fifthly, I6 clusters are going to be described. We have labelled 7 compact, 6

chainlike and 8 {111} energy minima. Co1 (47.84%) and Co2 (31.83%) are the most

likely energy minima for the compact configuration, Ch1 (34.08%) and Ch3 (32.96%)

for the chainlike configuration, and {111} 1 (33.54%) and {111} 2 (28.8%) for the {111}
configuration.
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A.1 I2

A.1.1 Compact configurations
Co1

Figure A.1: First minimum energy configuration for compact I2
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I 2 Co2

Figure A.2: Second minimum energy configuration for compact I2
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Co3

Figure A.3: Third minimum energy configuration for compact I2
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I 2 Co4

Figure A.4: Fourth minimum energy configuration for compact I2
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Co8

Figure A.5: Eighth minimum energy configuration for compact I2
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I 2 A.1.2 Chainlike configurations
Ch1

Figure A.6: First minimum energy configuration for chainlike I2
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Ch3

Figure A.7: Third minimum energy configuration for chainlike I2
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I 2 Ch4

Figure A.8: Fourth minimum energy configuration for chainlike I2
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A.2 I3

A.2.1 Compact configurations
Co1

Figure A.9: First minimum energy configuration for compact I3
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I 3 Co2

Figure A.10: Second minimum energy configuration for compact I3
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Co9

Figure A.11: Ninth minimum energy configuration for compact I3

D
iego

C
alvo

R
u
iz



15
2

I 3 A.2.2 Chainlike configurations
Ch1

Figure A.12: First minimum energy configuration for chainlike I3
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Ch5

Figure A.13: Fifth minimum energy configuration for chainlike I3
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I 3 Ch10

Figure A.14: Tenth minimum energy configuration for chainlike I3
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A.2.3 {111} configurations
{111}

Figure A.15: {111} configuration for I3
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I 4 A.3 I4

A.3.1 Compact configurations
Co1

Figure A.16: First minimum energy configuration for compact I4
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Co2

Figure A.17: Second minimum energy configuration for compact I4
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I 4 A.3.2 Chainlike configurations
SCh1

Figure A.18: First minimum energy configuration for short chainlike I4
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SCh2

Figure A.19: Second minimum energy configuration for short chainlike I4
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I 4 LCh1

Figure A.20: First minimum energy configuration for long chainlike I4
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LCh3

Figure A.21: Third minimum energy configuration for long chainlike I4
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I 4 LCh5

Figure A.22: Fifth minimum energy configuration for long chainlike I4
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A.3.3 {111} configurations
{111}

Figure A.23: {111} configuration for I4
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I 5 A.4 I5

A.4.1 Compact configurations
Co1

Figure A.24: First minimum energy configuration for compact I5
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Co3

Figure A.25: Third minimum energy configuration for compact I5
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I 5 Co5

Figure A.26: Seventh minimum energy configuration for compact I5
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A.4.2 Chainlike configurations
SCh1

Figure A.27: First minimum energy configuration for short chainlike I5
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I 5 SCh6

Figure A.28: Sixth minimum energy configuration for short chainlike I5
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SCh12

Figure A.29: Twelfth minimum energy configuration for short chainlike I5
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I 5 LCh1

Figure A.30: First minimum energy configuration for long chainlike I5
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LCh2

Figure A.31: Second minimum energy configuration for long chainlike I5
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I 5 A.4.3 {111} configurations
{111}

Figure A.32: {111} configuration for I5
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A.5 I6

A.5.1 Compact configurations
Co1

Figure A.33: First minimum energy configuration for compact I6
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I 6 Co2

Figure A.34: Second minimum energy configuration for compact I6
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A.5.2 Chainlike configurations
Ch1

Figure A.35: First minimum energy configuration for chainlike I6
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I 6 Ch3

Figure A.36: Third minimum energy configuration for chainlike I6
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A.5.3 {111} configurations
{111} 1

Figure A.37: First {111} configuration for I6
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I 6 {111} 2

Figure A.38: Second {111} configuration for I6

F
ac

u
lt

y
of

S
ci

en
ce

s,
U

n
iv

er
si

ty
of

V
al

la
d
ol

id



Appendix B

Examples of input files

B.1 Input file in kART

Listing B.1: Sample of input file in kART with default parameter values including
detailed explanations (KMC-long.sh).

1 #!/bin/csh
2 # IMPORTANT CONSIDERATIONS:
3 # - By convention variables must be defined in uppercase, if one is in
4 # lowercase you will have errors at the moment executing the script.
5 # - To execute and test this script, put your executable at the end of
6 # this file, and type in the simulation dir:
7 # mpirun -np 2 KMC.sh (using ls -l be sure that KMS.sh has right
8 # permitions to execute: -rwxr-xr-x).
9 # - If you are in a cluster, use the stardar procedure to summit jobs.

10

11

12 #-------------------------- kART PARAMETERS -------------------------#
13

14 ##################### Random number generator ########################
15 #setenv RANDOM_SEED -1103 # Random seed used to generate

random numbers (use only when debugging).
16

17 ########################### Simulation Details #######################
18 setenv NBRE_KMC_STEPS 1000 # The max number of KMC steps

to be executed.
19 setenv TOTAL_TIME 1.0000E1000 # The maximum simulation time

in seconds .
20 setenv ELAPSED_TIME 0.0 # The elapsed time before

first KMC step (will be added to the sim. time).
21 setenv STEP_KMC_MEASURE 1 # Number of steps before each

KMC measurement (i.e. writing to the .dat files).
22 setenv TEMPERATURE 500.0 # The simulated temperature in

kelvin.
23
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180 Input file in kART

24 ######################## System size and types #######################
25 setenv NUMBER_ATOMS 4101 # The total number of atoms.
26 setenv NSPECIES 1 # The number of different atom

types.
27 setenv ATOMIC_TYPE_FILE ’Atomic_types’ # Input file contaning list of

atomic types.
28 setenv SIMULATION_BOX 43.456 # The size of the simulation

box (x, y and z).
29 # In case our box has different axes sizes:
30 #setenv X_BOX # The size of the simulation

box in the x dimension.
31 #setenv Y_BOX # The size of the simulation

box in the y dimension.
32 #setenv Z_BOX # The size of the simulation

box in the z dimension.
33

34 ################# Force field / Verlet neighbor list #################
35 setenv ENERGY_CALC LAM # Choose between EDP (

Environment-Dependent Interatomic Potential) or SWP (Stillinger-Weber
Potential with original parameters) or SWA (Stillinger-Weber

Potential with modified parameters for amorphous silicon by Vink et.
al) or LAM (LAMMPS).

36 setenv FORCE_CALC TTL # Choose TTL for total force
calculation and PAR for partial force.

37 setenv ENERGY_TYPE LAM # Chose the potential to
calculate the forces when ENERGY_CALC = LAM.

38 setenv INPUT_LAMMPS_FILE ’in.lammps’ # LAMMPS input file when using
ENERGY_TYPE = LAM to calculate the forces.

39 setenv ENERGY_UNITS_CONVERSION kcal2ev # Converts the energy units
provided by the force code into a desired value for ART - affects
only the parameters in ART and kART.

40 setenv UPDATE_VER_NEIB TTL # Choose TTL for total force
calculation and PAR for partial force.

41 setenv NEIB_CALC ALL # Choose ALL or VER (Verlet
Algorithm).

42 setenv UPDATE_TOPO TTL # Choose TTL or PAR.
43 setenv PAR_DISP_THRESH2 0.00001 # Maximum displacement squared

which triggers an update of the neighbor list when using VER lists.
44

45 ##################### Main Output options/files ######################
46 setenv STATISTICS .true. # Write statistics about force

and event calculation.
47 setenv OUTPUT_CONFIG_EVENTS .true. # Create file with list of all

the topologies and events after each KMC step.
48 setenv SAVE_FULL_EVENTS .false. # Save full events during

catalog and after - one file per node (events.node_number).
49 setenv INI_FILE_NAME ’511.conf’ # The file name containing the

intial configuration.
50 setenv KLOGFILE ’KMC_log.txt’ # The file name containing a

list of the parameters used.
51 setenv DISPL_FILE ’Diffusion.dat’ # The file name used to store

the squared displacement.
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52 setenv CONFFILE ’allconf’ # Name of the file to store
all the configurations visited.

53 setenv EV_FILE ’selec_ev.dat’ # File name for statistics
about the selected events.

54 setenv GENERIC_EV_STAT ’Gen_ev.dat’ # File name for statistics
about the GEN events.

55 setenv SPECIFIC_EV_STAT ’Spec_ev.dat’ # File name for statistics
about the SPEC events.

56 setenv ENERGY_STAT ’Energies.dat’ # File name for statistics
about the Energy.

57 setenv LOWEST_BARRIER ’MinBarr.dat’ # File name for statistics
about the minimum barrier in the tree.

58 setenv BASIN_GRAPH ’basin_graph.gv’ # File name for storing
statistics about basins.

59

60 ######################### Restart options ############################
61 setenv RESTART_KMC .false. # If true, restart from

previous run.
62 setenv RESTART_FILE "this_conf" # The file name used to

continue a simulation from where it was last stopped.
63 setenv RESTART_IMPORT .false. # Start NEW simulation with

current KMC event catalogue (events.uft and topos.list).
64 setenv NEW_CATALOGUE .false. # Continue a simulation but

will rebuild event catalogue from scratch.
65 setenv RESTART_MERGE .false. # Read multiple EVENT_DIR

event files and combine them into a single catalogue.
66 setenv SIMINFO ’siminfo.list’ # List of directories to read

for the RESTART_MERGE option.
67

68 ######################### Basin parameters ###########################
69 setenv OSCILL_TREAT BMRM # Choose between BMRM, TABU or

NON.
70 setenv MIN_SIG_BARRIER 0.3 # Maximum height of barrier

and inv. barrier for an event to be considered inside a basin.
71 setenv BASIN_LOCAL .false. # If true, local basins are

used.
72 setenv BASIN_RADIUS 10.0 # If using local basin, what

is the radius of a local move.
73 setenv FLICKER_DIR ’FLICKERS’ # The name of the directory

where the TABU event files are stored.
74 setenv EVENTS_MEMORY 100 # Number of event to keep in

memory for TABU.
75 setenv BASIN_MEMORY 10 # Number of basins to keep in

memory for TABU.
76

77 ######################### Topology Params ############################
78 setenv TOPO_RADIUS 6.0 # Radius for topology cluster.
79 setenv MAX_TOPO_CUTOFF 2.7 # Length-cutoff used by

default to link two atoms.
80 setenv MIN_TOPO_CUTOFF 2.2 # Minimal length cutoff used

when looking at secondary topologies.
81 setenv CRYST_TOPOID 973883 # Topo id of the crystalline-

like topologies.
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82 setenv CRYST_TOPO_RADIUS 4.0 # Radius for crystal-like
topologies.

83 setenv TOPO_IGNORE_FILE ’Topo_ignore’ # Topo ids to ignore (read at
start of sim).

84 setenv TOPOLOGY_FILE ’Topologies’ # Info about topologies (not
used for restarts).

85 setenv TOPO_STAT_FILE ’topos.list’ # Statistics about topologies
found.

86 setenv EVENT_IGNORE_FILE ’Event_ignore’ # File storing event ids to
ignore (read at start of sim).

87

88 ##################### Generic events parameters ######################
89 setenv SEARCH_FREQUENCY 50 # Minimum number of attempts

to find a GENERIC event per new topology encountered.
90 setenv THRES_INCREASE_FREQ 25 # Number of failed attempts

encountered because increasing the EIGEN_THRESH.
91 setenv TYPE_EVENT_UPDATE SPEC # Choose between SPEC (

specific) or GENE (generic).
92 setenv USE_LOG_SEARCH .true. # Search frequency is

multiplied by logarithmic increasing function.
93

94 ########################### Stop file ################################
95 setenv STOP_FILE "stop_now" # Name of the file that if

present in the simulation dir at the end of a KMC step will cause the
program to stop.

96 setenv STOP_AFTER_BASIN .true. # Program will wait to exit a
basin before stopping the sim when a stopfile is present.

97

98 ##################### Debug event search parameters ##################
99 setenv OUTPUT_NEB_GEN_EVENT .false. # Creates 3 files per generic

event in format used by the lammps implementation of NEB use to check
if initial-saddle-final configurations are well defined.

100 setenv CHECK_INI_SAD_CONNECTIVITY .false. # When GENERIC saddle is found
, pushes the system towards the initial minimum and minimizes. If
minimized config. not the same as the initial one, the saddle is
rejected.

101

102 ##################### Event analysis parameters ######################
103 setenv BARRIER_CRITERIUM 5.0 # Maximum barrier (eV) to

consider an event otherwise considered useless.
104 setenv BARRIER_CHECK 0.2 # Minimum change in barrier

needed to launch a scalar product during analysis.
105 setenv DISPLACEMENT_THRESHOLD 0.15 # Minimum distance (A) for

considering an atom displaced.
106 setenv INV_BARRIER_CRITERIUM 0.1 # Minimum inverse barrier to

consider and analyse an event (eV).
107 setenv DEL_E_EVENT 0.1 # Minimum energy difference

between the final states of an event to decide in they are different
(eV).

108 setenv PARALLEL_CHECK 0.95 # Criterium for stating if two
vectors are parallel from their scalar product.

109 setenv DISP_CHECK 0.15 # Criterium for comparing the
displacement between two events.
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110 setenv DELR_THRESH 1.0 # Criterium used to check if
displacement associated with an event is large enough (used if
barrier and inv. barrier smaller than min_sig_barr).

111

112 ###################### Specific event parameters #####################
113 setenv MAX_HISTO 20 # The number of histogram bins

.
114 setenv REFINE_PUSH 0.1 # The ratio of the saddle-

final distance pushed before minimizing a SPEC event.
115 setenv OUTPUT_SPECIFIC .false. # If true, will create a

SPEC_EVENT_DIR and output two txt files for each SPEC event found.
116 setenv MAX_SPEC_EV_NBRE 40 # The min number of spec

events per atom in memory (if more, array is doubled, tripled, etc.).
117 setenv REFINE_ATTEMPTS 2 # The number of attempts to

refine a generic event.
118 setenv MIN_REFINE_BARRIER 0.1 # Minimum barrier to be

refined, all barriers lower are cloned.
119 setenv BARRIER_CHANGE_MIN 0.1 # Minimum barrier needed to

use BARRIER_CHANGE_THRESH in eV.
120

121 ########################## Mapping parameters ########################
122 setenv MAX_CoM_DEVIATION 0.08 # Maximum change in the

displacement of CoM when mapping.
123 setenv MAPPING_E_CUT 5.0E-1 # Maximum difference in change

in energy.
124 setenv MAPPING_DELR 1.0 # Maximum change in

displacement when mapping.
125

126 ################### Steepest Descent minimization ####################
127 setenv MAX_ITER_SD 2000 # Maximum number of iterations

during SD minimization.
128 setenv FTHRESHOLD_SD 1.0d-1 # Force Threshold when it is

running SD algorithm.
129 setenv STEPSIZE 1.0d-4 # Step size of SD algorithm.
130

131 ######################## FIRE minimization ###########################
132 setenv DTMAX_FIRE 0.15 # Maximum step size the

minimizer is permitted to use in FIRE (Fast Inertial Relaxation
Engine). Consider the stability of the system when setting in time
units.

133 setenv MAX_ITER_FIRE 1500 # Maximum number of iterations
during FIRE minimization.

134 setenv NORM_CRITERIUM 0.0005 # Convergence criterium [eV/A
].

135 setenv FMAX_CRITERIUM 0.0005 # Force tolerance after each
stage.

136

137 ############# FIRE perpendicular hyperplane minimization #############
138 setenv MAX_ITER_FIRE_PERP 15 # Maximum number of iterations

during FIRE perpendicular hyperplane minimization.
139 setenv FOR_LEAVING_BASIN_USE_FIRE .false. # When relaxing perp for

leaving harmonic basin if .true. choose FIRE algorithm else SD.
140
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141 ######################## Event catalogue file ########################
142 setenv UFT_EVENTFILENAME ’events.uft’ # The name of the uft event

file.
143 setenv USE_TXT_EVENTFILE .false. # IF true, will create a

directory containing event files.
144 setenv CONVERT_TO_UFT .false. # IF true, the program will

read the txt event files and create a new uft file.
145 setenv CONVERT_TO_TXT .false. # IF true, the program will

read the uft file and copy the catalogue to txt files (use for
vizualization).

146 setenv EVENTS_DIR ’EVENTS_DIR’ # The name of the directory
where the event txt files are stored.

147 setenv EVLIST_DIR ’EVLIST_DIR’ # The name of the directory
where the event list per KMC step files are stored.

148 setenv MINSAD_DIR ’MINSAD_DIR’ # The name of the directory
where the local minima and saddle point txt files are stored.

149

150

151 #-------------------------- ART PARAMETERS --------------------------#
152

153 ############### Direction inversion in iterative subspace ############
154 setenv USE_DIIS .false. # Use DIIS for the final

convergence to saddle.
155 setenv DIIS_FORCE_THRESHOLD 0.2 # Force threshold for

convergence.
156 setenv DIIS_MEMORY 6 # Number of vectors kepts in

memory for algorithm.
157 setenv DIIS_MAXITER 150 # Maximum number of

iteractions for the DIIS scheme.
158 setenv DIIS_CHECK_EIGENVECTOR .true. # Check that the final state

is indeed a saddle.
159 setenv DIIS_STEP_SIZE 0.005 # Step size for the position.
160

161 ############################ ART options ##############################
162 setenv SADDLE_PUSH_PARAM 0.1 # The fraction of the initial-

saddle distance used to push saddle config. away from initial minimum
.

163 setenv TYPE_OF_EVENTS local # Initial move for events -
global or local.

164 setenv RADIUS_INITIAL_DEFORMATION 2.5 # Cutoff for local-move (in
angstroms).

165 setenv EIGENVALUE_THRESHOLD -1.0 # Eigenvalue threshold for
leaving basin.

166 setenv EXIT_FORCE_THRESHOLD 0.05 # Threshold for convergence at
saddle point.

167 setenv FINE_EXIT_FORCE_THRESHOLD 0.05 # finner Threshold for
convergence at saddle point.

168 setenv MAX_PERP_MOVES_BASIN 2 # Maximum number of
perpendicular steps leaving basin.

169 setenv MIN_NUMBER_KSTEPS 2 # Min. number of ksteps before
calling lanczos.

170 setenv INCREMENT_SIZE 0.3 # Overall scale for the
increment moves in activation.
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171 setenv BASIN_FACTOR 2 # Factor multiplying the
reference length Increment Size when pushing for leaving the harmonic
basin.

172 setenv INITIAL_STEP_SIZE 0.01 # Size of initial displacement
in Angstroms.

173 setenv MAX_PERP_MOVES_ACTIV 6 # Maximum number of
perpendicular steps during activation.

174 setenv FORCE_THRESHOLD_PERP_REL 0.1 # Threshold for perpendicular
relaxation.

175 setenv MAX_ITER_BASIN 15 # Maximum number of iteraction
for leaving the basin (kter).

176 setenv MAX_ITER_ACTIVATION 50 # Maximum number of iteraction
during activation (iter).

177 setenv NUMBER_LANCZOS_VECTORS 15 # Number of vectors included
in lanczos procedure.

178 setenv LANCZOS_STEP 0.001 # Size of the step for the
numerical derivative.

179 setenv CHECK_LANCZOS_STAB .true. # Check lanczos stability over
200 steps, each iteration uses previous lanczos vector.

180

181 ############################# ART Print out ##########################
182 setenv PRINT_DETAILS .true. # Prints the details of

activation and minimization.
183 setenv KPRINT 5 # Prints details of leaving

the basin.
184 setenv IPRINT 10 # Prints details of the

convergence to saddle.
185 setenv MPRINT 100 # Prints details of the

minimization process.
186 setenv LPRINT 1
187

188 ############################# Input ##################################
189 setenv FILECOUNTER filecounter # File tracking the file (

event) number - facultative.
190 setenv REFCONFIG refconfig.dat # initial configuration file.
191

192

193 ##################### ---> Run the simulation <--- ###################
194 unlimit stacksize
195

196 # BE CAREFUL, THIS IS A SERIAL VERSION OF THE CODE:
197 #../../SRC/KMCART_gnu2_briaree_v1458 # On briaree.
198 #../../SRC/KMCART_mac_gfortran_v1458 # On mac.
199 #../../SRC/KMCART_ubuntu_gfortran_v1458 # On linux.
200 #../../SRC/KMCART_briareelammps_v1458 # On briaree (linux).
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B.2 Initial atomic positions in kART

Listing B.2: Sample of the file containing the initial atom configuration (513.conf).

1 # IMPORTANT CONSIDERATIONS:
2 # - kART is sensitive to spaces.
3 # - It is not necessary to expand/compress the cell.
4

5 run_id: 1 # Simulation ID.
6 total_energy: -2220.9252 # Total energy of our system (kART
7 # calculates it without taking
8 # into account this value).
9 P 21.7238 21.7238 21.7238 # The size of the simulation box

10 # in the x, y and z dimension.
11 1 -10.184849 -10.190365 -10.172633
12 1 -10.167592 -7.502172 -7.443832
13 1 -7.463367 -10.193221 -7.454985
14 1 -7.476008 -7.466695 -10.173070
15 1 -8.818031 -8.840989 -8.817096
16 1 -8.825151 -6.121489 -6.090086
17 1 -6.110574 -8.830760 -6.097852
18 1 -6.119136 -6.109441 -8.813921
19 1 -4.756899 -10.182005 -10.173372
20 1 -4.759200 -7.468214 -7.457517
21 1 -2.044258 -10.185446 -7.457572
22 1 -2.041460 -7.466959 -10.172047
23 1 -3.399936 -8.824905 -8.814856
24 1 -3.399607 -6.111382 -6.100751
25 1 -0.687580 -8.830600 -6.097223
26 1 -0.680349 -6.111123 -8.815012
27 1 -10.212839 -4.748354 -10.168611
28 1 -10.212686 -2.042667 -7.463225
29 1 -7.482266 -4.754216 -7.457028
30 1 -7.482550 -2.036844 -10.174863
31 1 -8.844634 -3.395549 -8.815871
32 1 -8.839781 -0.686213 -6.106348
33 1 -6.118939 -3.397563 -6.101819
34 1 -6.119077 -0.682004 -8.817974
35 1 -4.760585 -4.751873 -10.172339
36 1 -4.760294 -2.039915 -7.460077
37 1 -2.040526 -4.753914 -7.458606
38 1 -2.040178 -2.038382 -10.173693
39 1 -3.399312 -3.396060 -8.816231
40 1 -3.399397 -0.683384 -6.103698
41 1 -0.680368 -3.397439 -6.101417
42 1 -0.680111 -0.680914 -8.817356
43 1 -10.163664 -10.213179 -4.723789
44 1 -10.163904 -7.487998 -1.998836
45 1 -7.459982 -10.193947 -2.017928
46

47 # ... (Continues until finishing the total number of atoms) ...
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B.3 Input file in LAMMPS

Listing B.3: Sample of input file in LAAMPS compatible with kART including detailed
explanations (in.lammps).

1 # IMPORTANT CONSIDERATIONS:
2 # - Pure Si crystal structure need to initialize lammps in kART.
3 # - Need only to create the box not creating atoms.
4

5 #-------------------- Customize LAMMPS parametes: -------------------#
6 log log_kART.lammps # If you want to see output of lammps (Be
7 # careful: huge file).
8

9 units metal # Establish de working units. For style metal,
10 # these are the units:
11 # - mass = grams/mole
12 # - distance = Angstroms
13 # - time = picoseconds
14 # - energy = eV
15 # - velocity = Angstroms/picosecond
16 # - force = eV/Angstrom
17 # - torque = eV
18 # - temperature = Kelvin
19 # - pressure = bars
20 # - dynamic viscosity = Poise
21 # - charge = multiple of electron charge
22 # - dipole = charge*Angstroms
23 # - electric field = volts/Angstrom
24 # - density = gram/cmˆdim
25 atom_style atomic # Atom style (angle or atomic or dipole or
26 # bond or charge or electron or molecule...).
27

28 atom_modify map array # Modify certain attributes of atoms defined
29 # and stored within LAMMPS, in addition to
30 # what is specified by the atom_style command.
31 # The map keyword points how atom ID lookup
32 # is done for molecular atom styles. When the
33 # array value is used, each processor stores a
34 # lookup table of length N, where N is the
35 # largest atom ID in the system.
36

37 #------------- Methods to initialize coord in lammps ---------------#
38 # 1) Using a input file:
39 read_data cSi_4100atoms_0K_minimized.datafile # Indicates file name.
40

41 # 2) Creating a box and putting atoms ramdomly in it by using
42 # lammps commands:
43 #region box block 0 21.712 0 23.036 0 23.036 # ID, xlo xhi ylo yhi
44 # zlo zhi (box size).
45 #create_box 1 Box # Number of atom types,
46 # region-iD.
47 #create_atoms 1 random 4100 124675 Box # Type1, Number of atoms,
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48 # seed, region-iD.
49

50 #--------------------- Other LAMMPS parametes: ----------------------#
51

52 mass 1 28.085 # Set the mass for all atoms of
53 # one or more atom types. In our
54 # case, set the Si mass.
55

56 pair_style tersoff # The tersoff style computes a
57 # 3-body Tersoff potential for the
58 # energy E of a system of atoms.
59

60 pair_coeff * * Si.tersoff3 Si # Specify the pairwise force field
61 # coefficients for one or more
62 # pairs of atom types. The number
63 # and meaning of the coefficients
64 # depends on the pair style.
65

66 #------------------- Speeding up the simulation: --------------------#
67 # Those lines increase the speed of calculating forces by a factor of
68 # almost 2:
69 neighbor 0.0 bin
70 neigh_modify delay 0 every 1 check no one 50 page 550
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Analysis programs (C/C++)

Listing C.1: kART processing program for 0GPa samples (kART crystal analysis.cpp).

1 /**------------------------------------------------------------------
2 | Program name : kART_analysis.cpp |
3 ---------------------------------------------------------------------
4 | Purpose: characterize each step of a kART simulation by matching |
5 | the input formation enthalpy with an internal database |
6 | and also link each step with the suitable information |
7 | provided by the simulation program in different files. |
8 | It can be applied to I2/I3/I4/I5/I6 cells at 0GPa. |
9 ---------------------------------------------------------------------

10 | Input files: allconf (heavy file which contains all the atom |
11 | coordinates from each step), Energies.dat (file |
12 | which contains the total energy value from each |
13 | step among other data), Diffusion.dat (file which |
14 | contains the total mean square displacement (msd) |
15 | from each step among other data) and perfectcell |
16 | (file which contains the reference network without |
17 | defects). |
18 | Output files: kART_data.txt (file which contains all the |
19 | information we need from each step, from left to |
20 | right: KMC step, simulated time, CPU time, |
21 | number of groups, number of displaced atoms, number |
22 | of empty spaces, net number, previous total energy |
23 | value (eV), current total energy value (eV), energy |
24 | barrier (eV), formation enthalpy (eV), identified |
25 | configuration label and msd (A)) and min* files |
26 | (one file per KMC step which contains a fragment of |
27 | the cell in each step with the Rasmol format, |
28 | assigning the crystal atoms and the displaced atoms |
29 | different labels). |
30 ---------------------------------------------------------------------
31 | Created: 18-11-2015 |
32 | Last reviewed: 3-5-2016 |
33 -------------------------------------------------------------------**/

189



190

34

35 #include <math.h> // Mathematical library.
36 #include <stdio.h> // Input/Output operations.
37 #include <string.h> // Memory manipulation.
38 #include <stdlib.h> // For using exit.
39 #include <assert.h> // For using assert.
40

41 // --------------------------------------------
42 // *********** Initial parameters *************
43 // --------------------------------------------
44 // Firstly, we define the network which we are working with
45 // (uncomment the pertinent one).
46 //#define I2 2
47 //#define I3 3
48 //#define I4 4
49 #define I5 5
50 //#define I6 6
51

52 // Depending on the first choice, the number of atoms changes. Noted
53 // it is showed the cell sizes which we are working with.
54 // I2
55 #ifdef I2
56 #define NATOMS 1730
57 #define NRETIC 1728
58 #define NDEFECT 3458
59 #endif
60 // I3
61 #ifdef I3
62 #define NATOMS 1731
63 #define NRETIC 1728
64 #define NDEFECT 3459
65 #endif
66 // I4
67 #ifdef I4
68 #define NATOMS 4100
69 #define NRETIC 4096
70 #define NDEFECT 8196
71 #endif
72 // I5
73 #ifdef I5
74 #define NATOMS 4101
75 #define NRETIC 4096
76 #define NDEFECT 8197
77 #endif
78 // I6
79 #ifdef I6
80 #define NATOMS 4102
81 #define NRETIC 4096
82 #define NDEFECT 8198
83 #endif
84

85 // We establish the number of cells we are going to divide the
86 // network.
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87 #define NCELLSX 18
88 #define NCELLSY 18
89 #define NCELLSZ 18
90

91 // We indicate the number of steps of our simulation + 1 (to include
92 // the initial minimization).
93 #define NSTEPS 1001 // (+1)
94

95 // Depending on the first choice, the reference formation enthalpy
96 // changes. Note it is showed the formation enthalpy values of the
97 // cells which we are working with.
98 #ifdef I2
99 #define REFENERGY -8009.425151 // Scaled for I2

100 #endif
101 #ifdef I3
102 #define REFENERGY -8014.054877 // Scaled for I3
103 #endif
104 #ifdef I4
105 #define REFENERGY -18981.8749 // Scaled for I4
106 #endif
107 #ifdef I5
108 #define REFENERGY -18986.5046 // Scaled for I5
109 #endif
110 #ifdef I6
111 #define REFENERGY -18991.1344 // Scaled for I6
112 #endif
113

114

115 // --------------------------------------------
116 // ************ Common variables **************
117 // --------------------------------------------
118 #define MAXNEIGH 40 // Maximum number of neighbours by each
119 // atom.
120 #define PERBOUNDX 1 // Periodic boundary conditions in X axis
121 // (they are assumed in Y and Z).
122 #define FACTOR 1.0 // Factor to adapt our simulation box to
123 // a given density.
124 #define NETDIST 0.25 // Distance to associate an atom with an
125 // empty space in normalized units.
126 #define GROUPNUMBER 100 // Maximum number of groups.
127 #define DISTVEC 1.025 // First neighbour distance in network
128 // units (a/2).
129

130 // Cubes in which we are going to divide our network. They are
131 // chosen as the minimum value to cover the biggest simulation box.
132 #define DIMCUBEX 222
133 #define DIMCUBEY 222
134 #define DIMCUBEZ 222
135

136 // Beginning of the network in X, Y and Z axis in normalized units.
137 #define INIREDX 0.25
138 #define INIREDY 0.25
139 #define INIREDZ 0.25
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140

141

142 // --------------------------------------------
143 // ************ Global variables **************
144 // --------------------------------------------
145

146 // Distances for Si.
147 double semired = 2.715475; // a/2 distance in A.
148 double a4 = 1.3577375; // a/4 (layer separation
149 // in 100 direction).
150 // Auxiliar variables.
151 int i, j, k, l, m, ic, jc, kc;
152 int atom, natoms, numgrupo, nretic, ndesplazados, nion;
153 int ax_2, ay_2, az_2, ax, ay, az;
154 int atomi, atomj, atomki, ndefectos, defectos[NDEFECT], ax1, ax2, ay1,

ay2, az1, az2;
155 // Variables to store the neighbours of each atoms, groups and defects.
156 int vecinos[NDEFECT][MAXNEIGH], ord[NDEFECT], defecto[NATOMS], grupo[

NDEFECT];
157 int ndesplgrupo[GROUPNUMBER], nretgrupo[GROUPNUMBER];
158 int redocupada[NRETIC], reticuloat[NATOMS];
159 // Parameters to divide the network in cubes.
160 int ford[NRETIC], numvecdesc[NATOMS], cuboxi, cuboyi, cubozi;
161 int despx, despy, despz, ord2[NATOMS], vecinos2[NATOMS][MAXNEIGH], ford2

[NATOMS];
162 // Variable which keeps the track.
163 int kARTstep;
164 // Dumb variable.
165 int intdjunk;
166 // Network parameters.
167 double sidex, sidey, sidez, prodrij_rik, mNETDIST, NETDIST2;
168 double sidex2, sidey2, sidez2, msidex2, msidey2, msidez2;
169 double longcubex, longcubey, longcubez, distx, disty, distz;
170 double junk, distvec, mdistvec, distvec2, factor[NCELLSX*4];
171 int intsidex, intsidey, intsidez, intsidex_ax_2, intsidey_ay_2,

intsidez_az_2, count;
172 // Atom coordinates.
173 double xat[NATOMS], yat[NATOMS], zat[NATOMS];
174 // Product coordinates.
175 double xat_prod[NATOMS], yat_prod[NATOMS], zat_prod[NATOMS];
176 // Differential coordinates.
177 double xat_def[NATOMS], yat_def[NATOMS], zat_def[NATOMS];
178 // Imagen coordinates.
179 int ix[NATOMS], iy[NATOMS], iz[NATOMS];
180 // Defects coordinates and normalized distances.
181 double xdef[NDEFECT], ydef[NDEFECT], zdef[NDEFECT], distnormx, distnormy

, distnormz;
182 // Auxiliar variables for atom coordinates.
183 double xij, yij, zij, xik, yik, zik, rij, rik, rij_rik, fcrij, fa, fr,

r2;
184 double x, y, z, x1[NATOMS], xred1[NRETIC], yred1[NRETIC], zred1[NRETIC],

xred2[NRETIC], yred2[NRETIC], zred2[NRETIC];
185 // Mean coordinates of each defect.
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186 double xcm[GROUPNUMBER], ycm[GROUPNUMBER], zcm[GROUPNUMBER];
187 // Variables to calculate the distance between atoms.
188 double dist, xdif, ydif, zdif;
189 // Parameter which store the formation enthalpy of each kART step.
190 double eFormation;
191 // Maximum and minimum values of the defects and crystal coordinates.
192 double xmin, xmax, ymin, ymax, zmin, zmax, deltax, deltay, deltaz;
193 double xmin_def, xmax_def, ymin_def, ymax_def, zmin_def, zmax_def;
194 // Dumb variable.
195 double djunk;
196 // Label for clasifiying the configuration.
197 int atomIDvector[NATOMS], label, found;
198 // Parameters of each kART step.
199 double cpuTime[NSTEPS], simTime[NSTEPS], oldenergy[NSTEPS], newenergy[

NSTEPS], barrier[NSTEPS], msd[NSTEPS];
200 // Input files names.
201 char posiniav[80], def[80], Si_word[20], line[200];
202 // Input files.
203 FILE *posiniaverag, *perfectcell, *inART;
204 // Output files.
205 FILE *outkART, *inenergies, *indiffusion, *error_file, *F_defectos;
206

207 // Declared functions.
208 void agrupa(int); // ID of the defect to group.
209 double round(double X, int k); // Round X with k decimals.
210

211

212 // --------------------------------------------
213 // *************** void main() ****************
214 // --------------------------------------------
215

216 // First of all, we are going to read the input files and
217 // create some dynamic data arrays.
218

219 // Beginning of the program.
220 void main()
221 //void main (int argc, char **argv) // For Unix systems
222 {
223 // We create cube[][] dynamically to avoid memory problems.
224 int*** cube = new int**[DIMCUBEX];
225 for (i=0; i<DIMCUBEX; i++)
226 {
227 cube[i] = new int*[DIMCUBEY];
228 for (j=0; j<DIMCUBEY; j++)
229 cube[i][j] = new int[DIMCUBEZ];
230 }
231

232 // We build our energy database for each working cell.
233 #ifdef I2
234 double OurDatabase[41]={6.106, 6.122, 6.146, 6.163, 6.216,

6.224, 6.246, 6.281, 6.282, 6.292, 6.32, 6.347, 6.373, 6.418,
6.46, 6.481, 6.602, 6.406, 6.604, 6.606, 6.627, 6.629,
6.688, 6.731, 6.757, 6.773, 6.793, 6.833, 6.894, 6.910,
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6.954, 6.427, 6.542, 6.595, 6.637, 6.693, 6.781, 6.784,
6.805, 6.852, 6.454};

235 #endif
236 #ifdef I3
237 double OurDatabase[55]={8.096, 8.250, 8.284, 8.316, 8.347,

8.492, 8.690, 8.691, 8.401, 8.555, 8.604, 8.682, 8.704,
8.731, 8.743, 8.787, 8.789, 8.805, 8.817, 8.829, 8.852,
8.892, 8.904, 8.924, 8.947, 8.987, 9.035, 7.951, 8.287,
8.318, 8.414, 8.464, 8.468, 8.512, 8.521, 8.546, 8.587,
8.597, 8.602, 8.647, 8.658, 8.697, 8.699, 8.742, 8.812,
8.511, 8.559, 8.524, 8.577, 8.684, 8.696, 8.737, 8.788,
8.867, 9.510};

238 #endif
239 #ifdef I4
240 double OurDatabase[38]={8.208, 9.214, 9.974, 10.694, 9.312,

9.541, 9.619, 9.799, 9.850, 9.784, 9.814, 9.897, 9.903,
9.955, 9.957, 10.002, 10.172, 10.24, 9.818, 9.864, 9.872,
9.943, 9.968, 9.998, 10.011, 10.041, 10.071, 10.082, 9.828,
9.849, 9.891, 9.894, 9.894, 9.914, 9.950, 9.960, 9.976,
11.158};

241 #endif
242 #ifdef I5
243 double OurDatabase[72]={10.396, 10.711, 10.712, 10.827, 10.912,

10.978, 11.011, 11.101, 11.211, 11.271, 11.301, 11.341,
11.342, 11.534, 11.578, 11.755, 11.167, 11.168, 11.219,
11.234, 11.278, 11.558, 11.595, 11.637, 11.642, 11.669,
11.846, 11.267, 11.441, 11.487, 11.536, 11.732, 11.845,
11.876, 11.876, 12.061, 11.080, 11.883, 11.899, 11.972,
12.106, 12.171, 12.185, 12.257, 12.263, 12.272, 11.689,
11.716, 11.736, 11.782, 11.787, 11.814, 11.831, 11.841,
11.848, 11.850, 11.856, 11.878, 11.914, 11.926, 11.933,
11.939, 11.953, 11.956, 11.975, 11.984, 11.999, 12.021,
12.037, 12.048, 12.063, 12.089};

244 #endif
245 #ifdef I6
246 double OurDatabase[21]={12.608, 12.907, 13.078, 13.079, 13.111,

13.166, 13.218, 12.913, 12.935, 13.014, 13.084, 13.305,
13.341, 12.822, 12.832, 12.833, 12.845, 13.006, 13.029,
13.109, 13.177};

247 #endif
248

249 // Initialize cell parameters (m means minus and 2 means square):
250 natoms = NATOMS;
251 nretic = NRETIC;
252 sidex = (xmax - xmin)/semired;
253 sidey = (ymax - ymin)/semired;
254 sidey = (zmax - zmin)/semired;
255 deltax = -xmin;
256 deltay = -ymin;
257 deltaz = -zmin;
258 sidex2 = sidex/2.0;
259 sidey2 = sidey/2.0;
260 sidez2 = sidez/2.0;
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261 msidex2 = -sidex2;
262 msidey2 = -sidey2;
263 msidez2 = -sidez2;
264 mNETDIST = -NETDIST;
265 NETDIST2 = NETDIST*NETDIST;
266 distvec = DISTVEC;
267 mdistvec = -distvec;
268 distvec2 = distvec*distvec;
269

270 // Cell dimensions according to our current network:
271 // I2
272 #ifdef I2
273 xmin = ymin = zmin = 0.0;
274 xmax = ymax = zmax = 32.592;
275 #endif
276 // I3
277 #ifdef I3
278 xmin = ymin = zmin = 0.0;
279 xmax = ymax = zmax = 32.592;
280 #endif
281 // I4
282 #ifdef I4
283 xmin = ymin = zmin = 0.0;
284 xmax = ymax = zmax = 43.456;
285 #endif
286 // I5
287 #ifdef I5
288 xmin = ymin = zmin = 0.0;
289 xmax = ymax = zmax = 43.456;
290 #endif
291 // I6
292 #ifdef I5
293 xmin = ymin = zmin = 0.0;
294 xmax = ymax = zmax = 43.456;
295 #endif
296

297 // Number of cubes in each direction.
298 intsidex = (int)(1.5*sidex/NETDIST);
299 intsidey = (int)(1.5*sidey/NETDIST);
300 intsidez = (int)(1.5*sidez/NETDIST);
301

302 longcubex = sidex/intsidex;
303 longcubey = sidey/intsidey;
304 longcubez = sidez/intsidez;
305

306 ax = (int) (1+NETDIST/longcubex);
307 ay = (int) (1+NETDIST/longcubey);
308 az = (int) (1+NETDIST/longcubez);
309

310 distnormx = NETDIST - (ax-1.0)*longcubex;
311 distnormy = NETDIST - (ay-1.0)*longcubey;
312 distnormz = NETDIST - (az-1.0)*longcubez;
313
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314 ax_2 = ax+ax;
315 ay_2 = ay+ay;
316 az_2 = az+az;
317

318 intsidex_ax_2 = intsidex + ax_2;
319 intsidey_ay_2 = intsidey + ay_2;
320 intsidez_az_2 = intsidez + az_2;
321

322

323 if ((intsidex+ax+ax)>DIMCUBEX)
324 {
325 printf ("Error: The X dimension in cube is so small.");
326 exit(0);
327 }
328 if ((intsidey+ay+ay)>DIMCUBEY)
329 {
330 printf ("Error: The Y dimension in cube is so small.");
331 exit(0);
332 }
333 if ((intsidez+az+az)>DIMCUBEZ)
334 {
335 printf ("Error: The Z dimension in cube is so small.");
336 exit(0);
337 }
338

339 // We initialize position arrays.
340 for (i=0; i<NRETIC; i++)
341 xred1[i] = yred1[i] = zred1[i] = xred2[i] = yred2[i] = zred2[i]

=0.0;
342

343 for (i=0; i<NATOMS; i++)
344 {
345 xat[i] = yat[i] = zat[i] =0.0;
346 xat_prod[i] = yat_prod[i] = zat_prod[i] =0.0;
347 }
348

349 for (i=0; i<NDEFECT; i++)
350 xdef[i] = ydef[i] = zdef[i] = 0.0;
351

352

353 // We read Energies.dat file.
354 inenergies = fopen("Energies.dat", "r");
355

356 // We ignore the first 2 lines of the file.
357 fgets(line,200,inenergies);
358 fgets(line,200,inenergies);
359

360 for (i=0; i<NSTEPS; i++)
361 fscanf(inenergies, "%d %lf %lf %lf %lf %lf %lf %lf %d %d %d %d\n

", &intdjunk, &cpuTime[i], &oldenergy[i], &newenergy[i], &
barrier[i], &djunk, &djunk, &simTime[i], &intdjunk, &intdjunk
, &intdjunk, &intdjunk);

362
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363 fclose(inenergies);
364

365 // We read Diffusion.dat file.
366 indiffusion = fopen("Diffusion.dat", "r");
367

368 // We ignore the first 2 lines of the file.
369 fgets(line,200,indiffusion);
370 fgets(line,200,indiffusion);
371

372 for (i=0; i<NSTEPS; i++)
373 fscanf(indiffusion, "%lf %lf %d %lf\n", &djunk, &msd[i], &

intdjunk, &djunk);
374

375 fclose(indiffusion);
376

377 // We read our reference network.
378 perfectcell = fopen("perfectcell", "r");
379

380 // We ignore the first 9 lines of the file.
381 for(j=0;j<9;j++)
382 fgets(line,200,perfectcell);
383

384 for (i=0; i<nretic; i++)
385 {
386 fscanf(perfectcell, "%d %d %lf %lf %lf \n", &atom, &djunk, &x, &

y, &z );
387

388 // We situate each atom inside our cell (for unwrapped
389 // coordinates).
390 while(x < xmin)
391 x+=(xmax - xmin);
392 while(x > xmax)
393 x-=(xmax - xmin);
394 while(y < ymin)
395 y+=(ymax - ymin);
396 while(y > ymax)
397 y-=(ymax - ymin);
398 while(z < zmin)
399 z+=(zmax - zmin);
400 while(z > zmax)
401 z-=(zmax - zmin);
402

403 // We displace to make the cell begin at 0.
404 x += deltax;
405 y += deltay;
406 z += deltaz;
407

408 // We convert the coordinates to network units.
409 xred1[atom-1] = x/semired;
410 yred1[atom-1] = y/semired;
411 zred1[atom-1] = z/semired;
412

413 // Correction network.
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414 xred2[atom-1] = xred1[atom-1];
415 yred2[atom-1] = yred1[atom-1];
416 zred2[atom-1] = zred1[atom-1];
417 }
418

419 fclose(perfectcell);
420

421 // We analyse each KMC step with the next loop:
422 for (kARTstep=0; kARTstep <= NSTEPS ; kARTstep++)
423 {
424 // We print some information because the processing time
425 // can be long.
426 printf("Processing file %d\n", nion);
427

428 // We open allconf input file and min* output file.
429 sprintf(posiniav, "allconf");
430 sprintf(def, "min%d", nion);
431

432 // If we are dealing with the first KMC step, we open the
433 // file allconf. Note we are going to keep this file open
434 // when the loop is executing because we are going to read
435 // one atoms configuration per step.
436 if(kARTstep==0)
437 posiniaverag = fopen(posiniav, "r");
438

439 // We assure there is no errors.
440 if (posiniaverag == NULL)
441 {
442 error_file = fopen("error.txt","a");
443 fprintf(error_file,"Error to open %s \n", posiniav);
444 fclose(error_file);
445 }
446 else
447 {
448 // We open our output files.
449 F_defectos = fopen(def,"w");
450 outkART= fopen("kART_data.txt", "a");
451 }
452

453 // We read allconf file taking into account its format.
454 fscanf(posiniaverag, "%d\n", &natoms);
455 fgets(line,200,posiniaverag);
456 for (i=0; i<natoms; i++)
457 {
458 fscanf(posiniaverag, "%s %lf %lf %lf\n", &Si_word, &x, &y, &

z);
459

460 // The same assignments as when we read our perfect
461 // cell.
462 while(x < xmin)
463 x+=(xmax - xmin);
464 while(x > xmax)
465 x-=(xmax - xmin);
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466 while(y < ymin)
467 y+=(ymax - ymin);
468 while(y > ymax)
469 y-=(ymax - ymin);
470 while(z < zmin)
471 z+=(zmax - zmin);
472 while(z > zmax)
473 z-=(zmax - zmin);
474

475 x += deltax;
476 y += deltay;
477 z += deltaz;
478

479 assert(atom<=NATOMS);
480

481 xat[i] = x/semired;
482 yat[i] = y/semired;
483 zat[i] = z/semired;
484 }
485

486 // In case the KMC step is the last one, we close the
487 // file. If not, we will read the next configuration in
488 // the next loop execution.
489 if(kARTstep==NSTEPS)
490 fclose(posiniaverag);
491

492

493 // We are going to assign the cubes to the perfect cell
494 // coordinates, but before we initialize ford and cube
495 // to -1.
496 for(i=0; i<nretic; i++)
497 ford[i] = -1;
498

499 for (ic=0; ic<=intsidex_ax_2; ic++)
500 for (jc=0; jc<=intsidey_ay_2; jc++)
501 for (kc=0; kc<=intsidez_az_2; kc++)
502 cube[ic][jc][kc] = -1;
503

504 for (i=0; i<nretic; i++)
505 {
506 ix[i] = ax + (int) (xred2[i]/longcubex);
507 iy[i] = ay + (int) (yred2[i]/longcubey);
508 iz[i] = az + (int) (zred2[i]/longcubez);
509

510 atom = cube[ix[i]][iy[i]][iz[i]];
511

512 despx = despy = despz = 0;
513

514 if (atom == -1)
515 {
516 cube[ix[i]][iy[i]][iz[i]] = i;
517

518 // If there are periodic boundary conditions.
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519 if (PERBOUNDX)
520 {
521 if (ix[i] >= intsidex)
522 despx = -intsidex;
523 else if (ix[i] < ax_2)
524 despx = intsidex;
525 }
526

527 if (iy[i] >= intsidey)
528 despy = -intsidey;
529 else if (iy[i] < ay_2)
530 despy=intsidey;
531

532 if (iz[i] >= intsidez)
533 despz = -intsidez;
534 else if (iz[i] < az_2)
535 despz = intsidez;
536

537 if (despx != 0)
538 {
539 cube[ix[i]+despx][iy[i]][iz[i]]=i;
540

541 if (despy != 0)
542 {
543 cube[ix[i]][iy[i]+despy][iz[i]]=i;
544 cube[ix[i]+despx][iy[i]+despy][iz[i]]=i;
545

546 if (despz != 0)
547 {
548 cube[ix[i]][iy[i]][iz[i]+despz]=i;
549 cube[ix[i]+despx][iy[i]][iz[i]+despz]=i;
550 cube[ix[i]][iy[i]+despy][iz[i]+despz]=i;
551 cube[ix[i]+despx][iy[i]+despy][iz[i]+despz]=

i;
552

553 }
554 }
555 else if (despz != 0)
556 {
557 cube[ix[i]][iy[i]][iz[i]+despz]=i;
558 cube[ix[i]+despx][iy[i]][iz[i]+despz]=i;
559 }
560 }
561 else
562

563

564 if (despy != 0)
565 {
566 cube[ix[i]][iy[i]+despy][iz[i]]=i;
567

568 if (despz != 0)
569 {
570 cube[ix[i]][iy[i]][iz[i]+despz]=i;
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571 cube[ix[i]][iy[i]+despy][iz[i]+despz]=i;
572 }
573 }
574 else if (despz != 0)
575 cube[ix[i]][iy[i]][iz[i]+despz]=i;
576

577 }
578 else
579 {
580 if (ford[atom] == -1)
581 ford[atom] = i;
582 else
583 {
584 while(ford[atom] != -1)
585 atom = ford[atom];
586 ford[atom] = i;
587 }
588 }
589 }
590

591 // We look for the closest perfect position.
592 for (i=0; i<NDEFECT; i++)
593 for (j=0; j<MAXNEIGH; j++)
594 vecinos[i][j] = -1;
595

596 for (i=0; i<nretic; i++)
597 redocupada[i] = -1;
598

599 for (i=0; i<natoms; i++)
600 reticuloat[i] = -1;
601

602 for (i=0; i<natoms; i++)
603 if( (xat[i]+yat[i]+zat[i]) != 0.0) // We avoid default

values.
604 {
605 cuboxi = ax + (int) (xat[i]/longcubex);
606 cuboyi = ay + (int) (yat[i]/longcubey);
607 cubozi = az + (int) (zat[i]/longcubez);
608

609 distx = xat[i]-(((int) (xat[i]/longcubex))*longcubex);
610 disty = yat[i]-(((int) (yat[i]/longcubey))*longcubey);
611 distz = zat[i]-(((int) (zat[i]/longcubez))*longcubez);
612

613 if (distx < distnormx)
614 ax1 = ax;
615 else
616 ax1 = ax-1;
617 if ((longcubex-distx) > distnormx)
618 ax2 = ax-1;
619 else
620 ax2 = ax;
621

622 if (disty < distnormy)
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623 ay1 = ay;
624 else
625 ay1 = ay-1;
626 if ((longcubey-disty) > distnormy)
627 ay2 = ay-1;
628 else
629 ay2 = ay;
630

631 if (distz < distnormz)
632 az1 = az;
633 else
634 az1 = az-1;
635 if ((longcubez-distz) > distnormz)
636 az2 = az-1;
637 else
638 az2 = az;
639

640 ax1 = cuboxi-ax1;
641 ax2 = cuboxi+ax2;
642 ay1 = cuboyi-ay1;
643 ay2 = cuboyi+ay2;
644 az1 = cubozi-az1;
645 az2 = cubozi+az2;
646

647 for (ic=ax1; ic<=ax2; ic++)
648 {
649 for (jc=ay1; jc<=ay2; jc++)
650 {
651 for (kc=az1; kc<=az2; kc++)
652 {
653 j = cube[ic][jc][kc];
654

655 while (j != -1)
656 {
657 if (redocupada[j] == -1)
658 {
659 if (PERBOUNDX == 1)
660 {
661 xij = xat[i] - xred2[j];
662 // Minimum image in X direction.
663 if (xij <= msidex2)
664 xij += sidex;
665 else if (xij > sidex2)
666 xij -= sidex;
667 }
668

669 if ((xij < NETDIST) && (xij >
mNETDIST))

670 {
671 yij = yat[i] - yred2[j];
672 // Minimum image in Y direction.
673 if (yij <= msidey2)
674 yij += sidey;
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675 else if (yij > sidey2)
676 yij -= sidey;
677

678 if ((yij < NETDIST) && (yij >
mNETDIST))

679 {
680 zij = zat[i] - zred2[j];
681 // Minimum image in X

direction.
682 if (zij <= msidez2)
683 zij += sidez;
684 else if (zij > sidez2)
685 zij -= sidez;
686

687 if ((zij < NETDIST) && (zij
> mNETDIST))

688 {
689 r2 = xij*xij + yij*yij +

zij*zij;
690

691 if (r2 <= NETDIST2)
692 {
693 // We save the

defects ID.
694 redocupada[j] = i;
695 reticuloat[i] = j;
696 }
697 }
698 }
699 }
700 }
701 j = ford[j]; // Recall.
702 }
703 }
704 }
705 }
706 }
707

708

709 // In the next lines we determine the neighbours of each atom.
710 for (i=0; i<natoms; i++)
711 ord2[i] = 0;
712

713 for (i=0; i<natoms; i++)
714 if( (xat[i]+yat[i]+zat[i]) != 0.0)
715 {
716 // Cube of i atom.
717 cuboxi = ax + (int) (xat[i]/longcubex);
718 cuboyi = ay + (int) (yat[i]/longcubey);
719 cubozi = az + (int) (zat[i]/longcubez);
720

721 distx = xat[i]-(((int) (xat[i]/longcubex))*longcubex);
722 disty = yat[i]-(((int) (yat[i]/longcubey))*longcubey);
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723 distz = zat[i]-(((int) (zat[i]/longcubez))*longcubez);
724

725 if (distx < distnormx)
726 ax1 = ax;
727 else
728 ax1 = ax-1;
729 if ((longcubex-distx) > distnormx)
730 ax2 = ax-1;
731 else
732 ax2 = ax;
733

734 if (disty < distnormy)
735 ay1 = ay;
736 else
737 ay1 = ay-1;
738 if ((longcubey-disty) > distnormy)
739 ay2 = ay-1;
740 else
741 ay2 = ay;
742

743 if (distz < distnormz)
744 az1 = az;
745 else
746 az1 = az-1;
747 if ((longcubez-distz) > distnormz)
748 az2 = az-1;
749 else
750 az2 = az;
751

752 ax1 = cuboxi-ax1;
753 ax2 = cuboxi+ax2;
754 ay1 = cuboyi-ay1;
755 ay2 = cuboyi+ay2;
756 az1 = cubozi-az1;
757 az2 = cubozi+az2;
758

759 for (ic=ax1; ic<=ax2; ic++)
760 {
761 for (jc=ay1; jc<=ay2; jc++)
762 {
763 for (kc=az1; kc<=az2; kc++)
764 {
765 j = cube[ic][jc][kc];
766

767 while (j != -1)
768 {
769 if (j > i)
770 {
771 if (PERBOUNDX == 1)
772 {
773 xij = xat[i] - xat[j];
774 if (xij <= msidex2)
775 xij += sidex;
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776 else if (xij > sidex2)
777 xij -= sidex;
778 }
779

780 if ((xij < distvec) && (xij >
mdistvec))

781 {
782 yij = yat[i] - yat[j];
783

784 if (yij <= msidey2)
785 yij += sidey;
786 else if (yij > sidey2)
787 yij -= sidey;
788

789 if ((yij < distvec) && (yij >
mdistvec))

790 {
791 zij = zat[i] - zat[j];
792

793 if (zij <= msidez2)
794 zij += sidez;
795 else if (zij > sidez2)
796 zij -= sidez;
797

798 if ((zij < distvec) && (zij
> mdistvec))

799 {
800 r2 = xij*xij + yij*yij +

zij*zij;
801

802 if (r2 <= distvec2)
803 {
804 vecinos2[i][ord2[i]]

= j;
805 vecinos2[j][ord2[j]]

= i;
806 ord2[i]++;
807 if (ord[i] ==

MAXNEIGH)
808 {
809 printf ("The

number of
neighbours of
%d is higher
than %d\n",

i, ord2[i]);
810 exit(0);
811 }
812 ord2[j]++;
813 if (ord[j] ==

MAXNEIGH)
814 {
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815 printf ("The
number of
neighbours of
%d is higher
than %d\n",
i, ord2[j]);

816 exit(0);
817 }
818 }
819 }
820 }
821 }
822 }
823 j = ford2[j];
824 }
825 }
826 }
827 }
828 }
829

830 // We calculate the number of neighbour displaced atoms.
831 for (i=0; i<natoms; i++)
832 {
833 numvecdesc[i] = 0;
834 for (j=0; j<ord2[i]; j++)
835 if (reticuloat[vecinos2[i][j]] == -1)
836 numvecdesc[i]++;
837 }
838

839 // Now we are going to assign the defects.
840 ndefectos = 0;
841 for (i=0; i<natoms; i++)
842 if( (xat[i]+yat[i]+zat[i]) != 0.0) // We avoid default

values.
843 if (reticuloat[i] == -1)
844 {
845 defectos[ndefectos] = i;
846 xdef[ndefectos] = xat[i];
847 ydef[ndefectos] = yat[i];
848 zdef[ndefectos] = zat[i];
849 ndefectos++;
850 }
851

852 ndesplazados = ndefectos;
853

854 for (i=0; i<nretic; i++)
855 if (redocupada[i] == -1)
856 {
857 defectos[ndefectos] = i;
858 xdef[ndefectos] = xred2[i];
859 ydef[ndefectos] = yred2[i];
860 zdef[ndefectos] = zred2[i];
861 ndefectos++;
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862 }
863

864 // Variables for the total amount of empty spaces and
865 // displaced atoms of each defect.
866 int **numDefVec = new int*[ndefectos];
867 for (i=0; i<ndefectos; i++)
868 {
869 numDefVec[i] = new int[2];
870 for (j=0; j<2; j++)
871 numDefVec[i][j]=0;
872 }
873

874 // Thus, we can obtain the neighbours of the defects
875 // and determine if they are empty spaces or displaced
876 // atoms.
877 for (i=0; i<ndefectos; i++)
878 ord[i] = 0;
879

880 for (i=0; i<ndefectos; i++)
881 {
882 for (j=i+1; j<ndefectos; j++)
883 {
884 xij = xdef[i] - xdef[j];
885

886 if (PERBOUNDX == 1)
887 {
888 if (xij <= msidex2)
889 xij += sidex;
890 else if (xij > sidex2)
891 xij -= sidex;
892 }
893

894 if ((xij < distvec) && (xij > mdistvec))
895 {
896 yij = ydef[i] - ydef[j];
897

898 if (yij <= msidey2)
899 yij += sidey;
900 else if (yij > sidey2)
901 yij -= sidey;
902

903 if ((yij < distvec) && (yij > mdistvec))
904 {
905 zij = zdef[i] - zdef[j];
906

907 if (zij <= msidez2)
908 zij += sidez;
909 else if (zij > sidez2)
910 zij -= sidez;
911

912 if ((zij < distvec) && (zij > mdistvec))
913 {
914 r2 = xij*xij + yij*yij + zij*zij;
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915

916 if (r2 <= distvec2)
917 {
918 vecinos[i][ord[i]] = j;
919 ord[i]++;
920 if (ord[i] == MAXNEIGH)
921 {
922 printf ("The number of neighbours of

%d is higher than %d\n", i, ord2
[i]);

923 exit(0);
924 }
925

926 vecinos[j][ord[j]] = i;
927 ord[j]++;
928 if (ord[j] == MAXNEIGH)
929 {
930 printf ("The number of neighbours of

%d is higher than %d\n", i, ord2
[j]);

931 exit(0);
932 }
933

934 // If i and j have displaced atoms.
935 if(j < ndesplazados)
936 {
937 numDefVec[i][1]++;
938 numDefVec[j][1]++;
939 }
940 // Else j is empty space for sure, and i
941 // can be empty space or displaced atoms

.
942 else
943 {
944 numDefVec[i][0]++;
945 if(i < ndesplazados) //i is DA.
946 numDefVec[j][1]++;
947 else //i is ES.
948 numDefVec[j][0]++;
949 }
950 }
951 }
952 }
953 }
954 }
955 }
956

957

958 // We group the defects.
959 for (i=0; i<NDEFECT; i++)
960 grupo[i] = -1;
961

962 for (i=0; i<GROUPNUMBER; i++)
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963 {
964 ndesplgrupo[i] = 0;
965 nretgrupo[i] = 0;
966 xcm[i] = 0.0;
967 ycm[i] = 0.0;
968 zcm[i] = 0.0;
969 }
970

971 for (i=0; i<ndefectos; i++)
972 {
973 if (grupo[i] == -1)
974 {
975 numgrupo++;
976 assert (numgrupo <GROUPNUMBER);
977 if (numgrupo >= GROUPNUMBER)
978 {
979 printf("The number of groups exceeds the maximum

value.");
980 exit(0);
981 }
982 agrupa(i);
983 }
984 }
985

986

987 // Finally, we characterize each defect group of
988 // the current the kART step.
989 for (i=0; i<numgrupo+1; i++)
990 {
991 // We obtain the formation enthalpy.
992 eFormation=newenergy[kARTstep]-REFENERGY;
993

994 // We initialize auxiliary variables.
995 found=0;
996 label=1;
997

998 // We determine the configuration associated
999 // with the current step by comparing its

1000 // energy value.
1001 for(l=0;l<sizeof(OurDatabase)/8;l++)
1002 {
1003 // If the energies matches, we save the
1004 // vector position.
1005 if(round(eFormation,3)==OurDatabase[l])
1006 {
1007 found=1;
1008 count=l;
1009 }
1010 }
1011

1012 // If there is no matching.
1013 if(found==0)
1014 label=0;
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1015

1016 // We only print the first group (late we
1017 // are going to see if there are more than
1018 // one group).
1019 if(i==0)
1020 {
1021 // We print the corresponding label according to our

database.
1022 // I2
1023 #ifdef I2
1024 if((ndesplgrupo[i] - nretgrupo[i])!=2)
1025 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf NO_GROUP %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1026 else if(label==0)
1027 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf OTHER %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1028 else if(count<17)
1029 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf P%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count+1, pow((newenergy[kARTstep
]-REFENERGY),2), msd[kARTstep]);

1030 else if(count<31)
1031 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf F%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-17+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1032 else if(count<40)
1033 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf C%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
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eFormation, count-31+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1034 else
1035 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf D1 %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, pow((newenergy[kARTstep]-
REFENERGY),2), msd[kARTstep]);

1036 #endif
1037

1038 // I3
1039 #ifdef I3
1040 if((ndesplgrupo[i] - nretgrupo[i])!=3)
1041 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf NO_GROUP %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1042 else if(label==0)
1043 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf OTHER %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1044 else if(count<8)
1045 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf P%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count+1, pow((newenergy[kARTstep
]-REFENERGY),2), msd[kARTstep]);

1046 else if(count<27)
1047 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf F%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-8+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1048 else if(count<45)
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1049 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %
lf %lf %lf C%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-27+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1050 else if(count<47)
1051 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf E%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-45+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1052 else if(count<54)
1053 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf FC%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-47+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1054 else if(count<55)
1055 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf 111 %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, pow((newenergy[kARTstep]-
REFENERGY),2), msd[kARTstep]);

1056 #endif
1057

1058 // I4
1059 #ifdef I4
1060 if((ndesplgrupo[i] - nretgrupo[i])!=4)
1061 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf NO_GROUP %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1062 else if(label==0)
1063 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf OTHER %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
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ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1064 else if(count<4)
1065 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf F%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count+1, pow((newenergy[kARTstep
]-REFENERGY),2), msd[kARTstep]);

1066 else if(count<9)
1067 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf CC%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-4+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1068 else if(count<18)
1069 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf CL%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-9+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1070 else if(count<28)
1071 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf T%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-18+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1072 else if(count<37)
1073 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf FC%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-28+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1074 else if(count<38)
1075 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf 111 %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
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ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, pow((newenergy[kARTstep]-
REFENERGY),2), msd[kARTstep]);

1076 #endif
1077

1078 // I5
1079 #ifdef I5
1080 if((ndesplgrupo[i] - nretgrupo[i])!=5)
1081 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf NO_GROUP %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1082 else if(label==0)
1083 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf OTHER %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1084 else if(count<16)
1085 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf F%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count+1, pow((newenergy[kARTstep
]-REFENERGY),2), msd[kARTstep]);

1086 else if(count<27)
1087 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf FC%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-16+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1088 else if(count<36)
1089 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf CF%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
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eFormation, count-27+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1090 else if(count<46)
1091 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf CL%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-36+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1092 else if(count<72)
1093 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf CC%d %lf %lf\n", kARTstep, simTime
[kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-46+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1094 #endif
1095

1096 //I6
1097 #ifdef I6
1098 if((ndesplgrupo[i] - nretgrupo[i])!=6)
1099 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf NO_GROUP %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1100 else if(etiqueta==0)
1101 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf OTHER %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1102 else if(count<7)
1103 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf F%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count+1, pow((newenergy[kARTstep
]-REFENERGY),2), msd[kARTstep]);

1104 else if(count<13)
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1105 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %
lf %lf %lf C%d %lf %lf\n", kARTstep, simTime[
kARTstep], cpuTime[kARTstep], numgrupo+1,
ndesplgrupo[i], nretgrupo[i], ndesplgrupo[i]
- nretgrupo[i], oldenergy[kARTstep],
newenergy[kARTstep], barrier[kARTstep],
eFormation, count-7+1, pow((newenergy[
kARTstep]-REFENERGY),2), msd[kARTstep]);

1106 else if(count<21)
1107 fprintf(outkART,"%d %.15lf %lf %d %d %d %d %lf %

lf %lf %lf 111%d %lf %lf\n", kARTstep,
simTime[kARTstep], cpuTime[kARTstep],
numgrupo+1, ndesplgrupo[i], nretgrupo[i],
ndesplgrupo[i] - nretgrupo[i], oldenergy[
kARTstep], newenergy[kARTstep], barrier[
kARTstep], eFormation, count-13+1, pow((
newenergy[kARTstep]-REFENERGY),2), msd[
kARTstep]);

1108 #endif
1109 }
1110 }
1111

1112 fclose(outkART);
1113

1114

1115 // In addition, we save the coordinate files with
1116 // the crystal atoms and the displaced atoms. Empty
1117 // spaces are not represented as they are not our
1118 // aim.
1119

1120 j=0; // Atom counter for Rasmol.
1121

1122 // We adapt defect coordinates to network distance.
1123 xmax_def=xcm[0]*semired+(sidex*semired)/2;
1124 xmin_def=xcm[0]*semired-(sidex*semired)/2;
1125 ymax_def=ycm[0]*semired+(sidey*semired)/2;
1126 ymin_def=ycm[0]*semired-(sidey*semired)/2;
1127 zmax_def=zcm[0]*semired+(sidez*semired)/2;
1128 zmin_def=zcm[0]*semired-(sidez*semired)/2;
1129

1130 // We apply boundary conditions for each defect.
1131 for (i=0; i<ndefectos; i++)
1132 {
1133 xat_def[i]=xdef[i]*semired;
1134 while(xat_def[i] < xmin_def)
1135 xat_def[i]+=(xmax_def - xmin_def);
1136 while(xat_def[i] > xmax_def)
1137 xat_def[i]-=(xmax_def - xmin_def);
1138

1139 yat_def[i]=ydef[i]*semired;
1140 while(yat_def[i] < ymin_def)
1141 yat_def[i]+=(ymax_def - ymin_def);
1142 while(yat_def[i] > ymax_def)
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1143 yat_def[i]-=(ymax_def - ymin_def);
1144

1145 zat_def[i]=zdef[i]*semired;
1146 while(zat_def[i] < zmin_def)
1147 zat_def[i]+=(zmax_def - zmin_def);
1148 while(zat_def[i] > zmax_def)
1149 zat_def[i]-=(zmax_def - zmin_def);
1150 }
1151

1152 // We calculate the distance between the
1153 // defect and the rest of the atoms because
1154 // we are going to represent only a fragment
1155 // of the cell in order to see the defects
1156 // properly. Note that we also apply boundary
1157 // to calculate de difference.
1158 for (i=0; i<natoms; i++)
1159 {
1160 xat_prod[i]=xat[i]*semired;
1161 while(xat_prod[i] < xmin_def)
1162 xat_prod[i]+=(xmax_def - xmin_def);
1163 while(xat_prod[i] > xmax_def)
1164 xat_prod[i]-=(xmax_def - xmin_def);
1165

1166 yat_prod[i]=yat[i]*semired;
1167 while(yat_prod[i] < ymin_def)
1168 yat_prod[i]+=(ymax_def - ymin_def);
1169 while(yat_prod[i] > ymax_def)
1170 yat_prod[i]-=(ymax_def - ymin_def);
1171

1172 zat_prod[i]=zat[i]*semired;
1173 while(zat_prod[i] < zmin_def)
1174 zat_prod[i]+=(zmax_def - zmin_def);
1175 while(zat_prod[i] > zmax_def)
1176 zat_prod[i]-=(zmax_def - zmin_def);
1177

1178 xdif=abs(xcm[0]*semired-xat_prod[i]);
1179 ydif=abs(ycm[0]*semired-yat_prod[i]);
1180 zdif=abs(zcm[0]*semired-zat_prod[i]);
1181

1182 // We represent a 7 angstroms cubic
1183 // box around a given defect position.
1184 if((xdif<7)&&(ydif<7)&&(zdif<7))
1185 j++;
1186 }
1187

1188 // Now we are going to print the atoms
1189 // according to the Rasmol format (see
1190 // http://www.openrasmol.org/doc/rasmol.html
1191 // for more information).
1192

1193 // Number of atoms (DA + crystal atoms).
1194 fprintf(F_defectos, "%d \n\n",j + ndesplazados);
1195
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1196

1197 for (j=0; j<numgrupo+1; j++)
1198 {
1199 // We print the coordinates for displaced
1200 // atoms.
1201 for (i=0; i<ndesplazados; i++)
1202 if (grupo[i] == j)
1203 fprintf(F_defectos, "si0 %lf %lf %lf -5\n", xat_def[

i], yat_def[i], zat_def[i]);
1204

1205 // We print the coordinates for displaced
1206 // atoms with other colour label.
1207 for (i=ndesplazados; i<ndefectos; i++)
1208 if (grupo[i] == j)
1209 fprintf(F_defectos, "si0 %lf %lf %lf -5\n", xat_def[

i], yat_def[i], zat_def[i]);
1210

1211

1212 // And we print the atoms which are crystal and
1213 // are within the nose radios with other label.
1214 for (i=0; i<natoms; i++)
1215 {
1216 xdif=abs(xcm[0]*semired-xat_prod[i]);
1217 ydif=abs(ycm[0]*semired-yat_prod[i]);
1218 zdif=abs(zcm[0]*semired-zat_prod[i]);
1219

1220 if((xdif<7)&&(ydif<7)&&(zdif<7))
1221 fprintf(F_defectos, "si0 %lf %lf %lf 0\n", xat_prod[

i], yat_prod[i], zat_prod[i]);
1222 }
1223 }
1224

1225

1226 // We remove dynamic arrays for each kART step.
1227 for (i=0; i<ndefectos; i++)
1228 {
1229 delete [] numDefVec[i];
1230 numDefVec[i] = NULL;
1231 }
1232 delete [] numDefVec;
1233 numDefVec = NULL;
1234

1235 } // End of the global loop for each kART step.
1236

1237

1238 // We delete the dynamic arrays from the whole
1239 // kART simulation.
1240 for (i=0; i<DIMCUBEX; i++)
1241 {
1242 for (j=0; j<DIMCUBEY; j++)
1243 {
1244 delete [] cube[i][j];
1245 cube[i][j] = NULL;
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1246 }
1247

1248 delete [] cube[i];
1249 cube[i] = NULL;
1250 }
1251 delete [] cube;
1252 cube = NULL;
1253

1254 }
1255

1256

1257 // Function to group atoms by neighbourhood.
1258 void agrupa(int n)
1259 {
1260 int j;
1261

1262 grupo[n] = numgrupo;
1263

1264 xcm[numgrupo] = xdef[n];
1265 ycm[numgrupo] = ydef[n];
1266 zcm[numgrupo] = zdef[n];
1267

1268 if (n<ndesplazados)
1269 ndesplgrupo[numgrupo]++;
1270 else
1271 nretgrupo[numgrupo]++;
1272

1273 for (j=0; j<ord[n]; j++)
1274 if (grupo[vecinos[n][j]] == -1)
1275 agrupa(vecinos[n][j]);
1276 }
1277

1278 // Function to round X with k decimals.
1279 double round(double X, int k)
1280 {
1281 return floor( pow(double (10),k)*X + 0.5) / pow(double (10),k) ;
1282 }
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