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a b s t r a c t

We describe a procedure which is useful to select an appropriate numerical method in a
size-structured populationmodel. We consider four different numerical methods based on
finite difference schemes or characteristics curves integration. We compute an analytical
approximation in terms of the discretization parameters for the theoretical error principal
terms and the computational cost. Thus, we show the efficiency curve that allows to select
the best relationship between the discretization parameters for each numerical method.
Finally, we obtain the most efficient numerical method for each test.

© 2015 Published by Elsevier B.V.

1. Introduction1

Wewill consider a well-knownmodel describing the evolution of a populationwhich is structured bymeans of a physio-2

logical variable that usually is named as size. In particularwe consider amodel that consists of a nonlinear partial differential3

equation with nonlocal terms (the population balance law)4

ut + (g(x, Ig(t), t) u)x = −µ(x, Iµ(t), t) u, xmin < x < xmax, t > 0, (1.1)5

a nonlinear and nonlocal boundary condition that represents the birth law6

g(xmin, Ig(t), t) u(xmin, t) =

 xmax

xmin

α(x, Iα(t), t) u(x, t) dx, t > 0, (1.2)7

and an initial condition8

u(x, 0) = u0(x), xmin ≤ x ≤ xmax, (1.3)9
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where Iµ(t), Iα(t) and Ig(t) are defined by 1

Iµ(t) =

 xmax

xmin

γµ(x) u(x, t) dx, t ≥ 0, (1.4) 2

Iα(t) =

 xmax

xmin

γα(x) u(x, t) dx, t ≥ 0, (1.5) 3

Ig(t) =

 xmax

xmin

γg(x) u(x, t) dx, t ≥ 0. (1.6) 4

The independent variables x and t represent size and time, respectively. The values xmin and xmax represent the minimum 5

andmaximum size, respectively. The dependent variable u(x, t) is the size-specific density of individuals with size x at time 6

t . We assume that the size of any individual varies according to the next ordinary differential equation 7

dx
dt

= g(x, Ig(t), t). (1.7) 8

The functions g, α and µ represent the growth, the fertility and mortality rate, respectively. These are usually called the 9

vital functions and define the life history of an individual. Functions g, α and µ are nonnegative. Note that all the vital func- 10

tions depend on the size x (the structuring internal variable) and on the time t . The explicit time dependence can reflect the 11

influence of some environmental changes on the vital functions or a seasonal
∧
behavior of the population. These functions 12

also depend on the total amount of individuals in the population by means of the weighted functions Ig(t), Iα(t) and Iµ(t), 13

which represent a way of weighting the size distribution density in order to model the diverse influence of the individuals 14

of different sizes on the life conditions. 15

We can find an extensive study on physiologically structured population models, with analytical studies of aspects such 16

as derivation, existence and uniqueness, smoothness and the asymptotic
∧
behavior of solutions in [1–3]. In particular, this 17

size-structured populationmodel has been studied for the last three decades and the properties of existence and uniqueness 18

of solutions was given in [4,5]. It has been successfully applied to the study of different real population problems. In order 19

not to be exhaustive we can mention its application to the cellular dynamics [6,7], the forest dynamics that employs a 20

hierarchical version [8,9],
∧
Daphnia magna population studies [10], etc. 21

The increase in the biological realism in such a model is achieved at the expense of a loss in mathematical tractability. 22

Moreover, when suchmodels include nonlinearities and environmental dependence on the different physiological rates, the 23

use of efficient methods that provide a numerical approach is the most suitable mathematical tool for studying the problem 24

and, indeed, it is often the only one available. Nevertheless, the numerical approach to these equations has important 25

drawbacks because they are usually nonlinear equations and the nonlinearities in the partial differential equation and the 26

nonlocal boundary condition are caused by nonlocal terms. A revision of the numerical schemes proposed for the solution 27

of this problem was made in [11]. Also, the numerical integration allows us the study of some other qualitative properties 28

as, for example, the long-time
∧
behavior in real data problems, and they shown their effectiveness [6–8]. 29

The choice of a suitable numerical method for the integration of the problem is an important challenge. The convergence 30

is the main property we look for. In general, it means that the numerical solution is close to a representation of the exact 31

solution as the discretization parameters go to zero. The order of convergence quantifies the rate of convergence of this 32

approach with respect to the discretization parameters, and it is quite important too. Also it is necessary to evaluate the 33

computational cost which quantifies the effort needed to obtain the numerical approximation. One way to measure it is the 34

time spent to derive the numerical results. This time increaseswith the accuracy or the complexity of the numerical scheme. 35

In this work, wewill pay attention to the relationship between the global error and the computational cost. First, we shall 36

try to obtain the most efficient relation to solve the problem between the discretization parameters for a given numerical 37

method. Next, we shall compare diverse numerical methods for a given problem to look for the most efficient. 38

The order of a numerical method depends strongly on the smoothness properties of the theoretical solution and, for 39

example, compatibility between initial and boundary conditions must be held and the data functions should be regular. We 40

believe that for real problemswith empirical data, the conditions needed to obtain a convergence order greater than two are 41

too demanding. On the other hand, first convergence order method presents a lack of efficiency in comparison to the second 42

order ones. So, second order schemes maintain a good compromise between the required smoothness and the efficiency of 43

the schemes. 44

Wewill employ four second order numerical methods developed and analyzed in different works. Two of them are based 45

on a finite-difference discretization (Lax–Wendroff and Box schemes) [12] and the others are based on a characteristics 46

curves integration, the first one considers all the nodes in the spatial grid,
∧
aggregation grid node method (AGN), and the 47

second one uses a selection procedure to keep constant the number of spatial grid nodes, selection grid nodes method 48

(SGN) [11]. We obtained their convergence order in [12,13]. 49

In the following section, we introduce the procedure and we apply it to several theoretical test problems.
∧
In the final 50

section, we present the procedure in a real data problem for which we do not know the exact solution. We describe briefly 51

the employed numerical methods in the Appendix. 52
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2. Analytical approximation to efficiency1

The numerical methods considered involve two discretization parameters: one step size k used for the time integration,2

and the other one h related to the size variable. In the theoretical analysis of the error of a second order method, it is typical3

to obtain a bound of the global error in the form4

Eh,k = C1h2
+ C2k2, (2.1)5

with C1 and C2 positive constants. As the parameters go to zero, we consider this expression as the representative part of6

the exact error and, for our purposes, we admit it as a valid approximation to the global error of a specific second order7

numerical method.8

On the other hand, it is natural to consider that computational cost depends on the size of the problem, which is given by9

the size of the system of equations that can be represented in terms of the discretization parameters. In [14], it is declared10

that themeasure of thework in complex algorithms is not linear and follows a power law. However, taking into account that11

we discretize two different variables in a different way, we do not use the same power for both discretization parameters12

(as we will see, numerical experiments corroborate such assumption). Then, we establish13

Ch,k = C3 ha kb, (2.2)14

with a and b negative real numbers, and C3 positive. Constants C1, C2, C3, a and b, that appears in the error and cost expres-15

sions of the numerical method depend on the specific problem being approximated.16

Fromnumerical simulations of themethod, it is usual to analyze its efficiency through log–log efficiency charts: the verti-17

cal axis correspond to the error and the horizontal axis is the cost. So, for different values of the discretization parameters, we18

plot the error produced for the corresponding approximation versus the computational effort required. When we compare19

two different methods in the efficiency plot, we prefer the method that gives more accuracy for the same computational20

effort (or, in other words, the method that provides the cheapest way of obtaining a prescribed precision).21

On the other hand, whenwe consider a specific numerical method for the approximation of a problem, we consider what22

the best choice of the discretization parameters is. Here, we look for the best relationship between h and k for each problem:23

that is, we assume that24

k = r h, (2.3)25

with r a fixed positive constant. So, our purpose is to select the most efficient value of r . From expressions (2.1) and (2.2),26

and assuming (2.3), we can write the error in terms of the cost:27

Eh = (C1 + C2r2)


Ch

C3rb

 2
a+b

. (2.4)28

In the log–log representation, we have29

log Eh = log
C1 + C2r2

(C3rb)
2

a+b
+

2
a + b

logCh. (2.5)30

Note that, for each r fixed, different values of h provide a line with the negative slope 2/(a + b) (the error decreases as the31

cost increases), and this slope is r independent (the lines associated to a specific method, and corresponding to different32

values of r , are parallel). So, the most efficient line corresponds to the value of r which minimizes the first term on the right33

hand size of (2.5). It is easy to see that such minimum is reached at34

r =


C1

C2

b
a
. (2.6)35

So, if we compare different methods for a problem, for each method we take the optimal value of r provided by (2.6). In36

this comparison, one can hope that for a sufficiently small value of h, the best method comes from the line with the biggest37

absolute value of the slope. That is, when its computational effort satisfies that |a| + |b| is minimum. However, numerical38

simulations for very small values of hwould be unsuitable due to the effect of the rounding errors.39

Now, we use a test problem to illustrate the above analysis. It satisfies the regularity hypotheses that the numerical40

schemes need to obtain their optimal order [13]. We consider (1.1)–(1.6) on the size interval [0, 1], with the following data41

functions: the size-specific growth, fertility and mortality moduli42

g(x, z, t) = 0.1 (1 − x4)
z

1 + z2
(1 + exp(−0.2 sin2 t)) exp(0.1 sin2 t),43

α(x, z, t) = 3 x2(1 − x2)
z

(z + 1)2
(1 + exp(−0.1 sin2 t))2

exp(−0.1 sin2 t)
,44

µ(x, z, t) = 0.2 z
1 + x2 + 2x3 +

sin 2 t
2

exp(−0.1 sin2 t)
.45
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Table 1
Test problem. Errors, CPU time (seconds) and order of the Lax–Wendroff method.

k\h 1.563E−2 7.813E−3 3.906E−3 1.953E−3

1.563E−2 1.70887E−04 4.32113E−05 1.19400E−05 4.55518E−06
2.16 4.23 8.29 16.08

7.813E−3 1.70403E−04 4.27032E−05 1.07997E−05 2.98008E−06
4.27 8.31 2.00 16.06 2.00 30.30 2.00

3.906E−3 1.70293E−04 4.25816E−05 1.06751E−05 2.69960E−06
8.38 16.09 2.00 30.24 2.00 60.58 2.00

1.953E−3 1.70270E−04 4.25526E−05 1.06447E−05 2.66877E−06
16.22 30.31 2.00 60.46 2.00 121.16 2.00

Table 2
Test problem. Errors, CPU time (seconds) and order of the Box method.

k\h 1.563E−2 7.813E−3 3.906E−3 1.953E−3

1.563E−2 1.60938E−04 3.90024E−05 1.05184E−05 4.31543E−06
5.98 11.63 21.23 39.31

7.813E−3 1.62287E−04 4.02536E−05 9.75213E−06 2.62964E−06
11.66 22.52 2.00 40.45 2.00 78.79 2.00

3.906E−3 1.62628E−04 4.05910E−05 1.00647E−05 2.43809E−06
22.54 42.56 2.00 78.18 2.00 156.29 2.00

1.953E−3 1.62713E−04 4.06757E−05 1.01491E−05 2.51628E−06
42.95 76.83 2.00 154.93 2.00 309.97 2.00

Table 3
Test problem. Errors, CPU time (seconds) and order of the AGN method.

k\h 1.563E−2 7.813E−3 3.906E−3 1.953E−3

1.563E−2 1.97544E−04 5.36689E−05 2.04184E−05 1.23818E−05
8.09 9.42 12.04 17.27

7.813E−3 1.98990E−04 4.93843E−05 1.34139E−05 5.10102E−06
27.79 30.26 2.00 35.16 2.00 44.94 2.00

3.906E−3 1.99622E−04 4.97482E−05 1.23457E−05 3.35301E−06
105.73 110.63 2.00 120.44 2.00 140.07 2.00

1.953E−3 1.99792E−04 4.99071E−05 1.24371E−05 3.08636E−06
413.41 423.27 2.00 442.98 2.00 482.24 2.00

The weight functions, φ = g, µ and α, are taken as 1

γφ(x) =

c, 0 ≤ x ≤ 1/3
c (2 − 3 x)3(54 x2 − 27 x + 4), 1/3 < x ≤ 2/3
0, 2/3 < x ≤ 1

, 2

c =
1

21250 ln(5/3) − 21248 ln(4/3) − 71131/15
, 3

and we consider as the initial size-specific density the function 4

u0(x) =
1 − x
1 + x

. 5

The problem (1.1)–(1.6) has the periodic solution u(x, t) given by 6

u(x, t) =
1 − x
1 + x

exp(−0.1 sin2 t). 7

The numerical integration for this numerical experiment was carried out on the time interval [0, 10]. 8

The first step is to obtain, for eachnumerical scheme, a tablewith errors and cpu-times (as ameasure of the computational 9

cost). At each entry in columns two to five of Tables 1–4, for the Lax–Wendroff, Box, AGN and SGNmethods respectively, the 10

upper value represents the global error Eh,k in the maximum norm. The lower number on the left is the cpu-time measured 11

in seconds and the lower number on the right is the order s of the method computed as 12

s =
log(E2 h,2 k/Eh,k)

log(2)
. 13

Each column and each row of the tables correspond with different values of the spatial and time discretization parameter, 14

respectively. The results in the tables clearly confirm the expected second order of convergence for all of them. 15
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Table 4
Test problem. Errors, CPU time (seconds) and order of the SGN method.

k\h 1.563E−2 7.813E−3 3.906E−3 1.953E−3

1.563E−2 2.06511E−04 5.24792E−05 1.66820E−05 1.09822E−05
2.80 5.51 10.94 21.63

7.813E−3 2.17214E−04 5.25011E−05 1.29471E−05 4.15956E−06
5.21 10.27 1.98 20.40 2.02 40.66 2.00

3.906E−3 2.17952E−04 5.35886E−05 1.26666E−05 3.24574E−06
10.41 20.54 2.02 40.78 2.05 81.29 2.00

1.953E−3 2.19986E−04 5.45466E−05 1.33365E−05 3.16631E−06
20.82 41.06 2.00 81.56 2.01 162.53 2.00

Table 5
Test problem. Analytical approximations of global error and computational cost, and optimal r .

Error Computational cost ropt

Lax–Wendroff 1.9 h2
+ 6.0E − 03 k2 7.3E − 04 h−0.93 k−0.99 18.32

Box 6.1E − 01 h2
+ 8.0E − 03 k2 3.6E − 03 h−0.86 k−0.94 9.18

AGN 8.0E − 01 h2
+ 3.3E − 02 k2 3.8E − 03 h−0.27 k−1.66 12.17

SGN 8.4E − 01 h2
+ 2.6E − 02 k2 1.4E − 03 h−0.91 k−0.94 5.80

Fig. 1. Test problem. Efficiency plot. Box method solid line, Lax–Wendroff method dotted line, AGN dotted-dashed line, SGN dashed line.

The second step is to derive the values of C1, C2, C3, a and b in the error and cost expressions (2.1) and (2.2). For this1

issue, we have used amultiple regression technique.We compute such constants with theMatlab© routine regress. Also,2

it provides R2 (coefficient of determination which represents a quantitative measure of how well the fitted model predicts3

the dependent variable: if R2
= 1, then the fit of the model is perfect). In Table 5, we present the analytical approximations4

to the global error and the computational cost (with R2 higher than 0.99), and the optimal value of r provided by (2.6).5

These approximations show us that the error caused by the size-discretization is higher than the error caused by the time-6

discretization. This fact could be explained by the existence of nonlinearities based on nonlocal terms. With respect to the7

computational cost, there is an equilibrium between the size and time discretization unless the integration with the AGN8

method which shows a higher dominance of the time discretization due to the accumulation of grid nodes.9

In Fig. 1 we present the corresponding efficiency plot, where we display the error (in the vertical axis) and the work10

(in the horizontal axis) in logarithmic scale. We choose for each method the value of r that represents the most efficient11

∧
behavior, unless for the Lax–Wendroff method which also must satisfy the

∧
Courant–Friedrichs–Lewy (CFL) condition [15],12

r < 9.09. We obtain in such figure that the difference methods behave better than characteristics curves methods on the13

error interval shown. Themost efficient method correspondwith the Lax–Wendroff method although the boxmethod slope14

is the best. Also it is shown that the selection procedure improves the
∧
behavior of the characteristic curves methods.15

Remark 1. Numerical experiments confirm the proposed expression for the computational cost formula (2.2).16

Remark 2. Again, numerical experiments corroborate expression (2.1) for the global error. However, such formula would17

not be valid for not so smooth functions. In that case, the powers in (2.1) must be determined, for example, by means of18
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a nonlinear least-squares fitting technique (into Matlab© is developed with lsqcurvefit function) which provides a 1

similar procedure. 2

Remark 3. Again, we have to point out that constants in formulae (2.1) and (2.2) depend on the specific problem being 3

approximated: functions data chosen, size of the time integration considered, etc. 4

3. Real data case: mosquitofish population 5

In this section, we deal with the evolution of a mosquitofish population described in [16]. The size interval is [9, 63] and 6

we use the following
∧
function data: the fertility rate, α(x, t) = α(x) Tα(t), where α(x) fitted to field data and 7

Tα(t) =




t
30

3 
1 −

t − 30
10

+
(t − 30)2

150


, for 0 ≤ t ≤ 30,

1, for 30 ≤ t ≤ 90,

−


t − 120

30

3 
1 +

t − 90
10

+
(t − 90)2

150


, for 90 ≤ t ≤ 120,

0, for 120 ≤ t ≤ 365,

8

the growth rate g(x, t) = g(x) Tg(t), g(x) =
63
80.2


1 −

x
63


, 9 ≤ x ≤ 63, and 9

Tg(t) =



0.2 + 0.8


t
30

3 
1 −

t − 30
10

+
(t − 30)2

150


, for 0 ≤ t ≤ 30,

1, for 30 ≤ t ≤ 90,

0.2 − 0.8

t − 120

30

3 
1 +

t − 90
10

+
(t − 90)2

150


, for 90 ≤ t ≤ 120,

0.2, for 120 ≤ t ≤ 365,

10

the mortality rate µ(x, z, t) = µ(x, z) Tµ(t), 11

µ(x, z) =



0.1 exp


−2000
z


, for 9 ≤ x ≤ 31,

0.1 exp


−2000
z


+


0.023 − 0.1 exp


−2000

z


(x − 31)3 (1 − 3 (x − 32) (65 − 2 x)), for 31 < x ≤ 32,

0.023, for 32 < x ≤ 63,

12

with γµ(x) =

2, 9 ≤ x ≤ 30,
−2 (x − 31)3 (1 + 3 (x − 30) (2 x − 59)), 30 < x < 31,
0, 31 ≤ x ≤ 63.

13

Tµ(t) =



2 −


t
30

3 
1 −

t − 30
10

+
(t − 30)2

150


, 0 ≤ t ≤ 30,

1, 30 ≤ t ≤ 90,

2 +


t − 120

30

3 
1 +

t − 90
10

+
(t − 90)2

150


, 90 ≤ t ≤ 120,

2, 120 ≤ t ≤ 365.

14

The numerical integration was carried out on the time interval [0, 365] (1 year). For this real situation, a theoretical solu- 15

tion is unknown so, for the analysis developed in the previous section, we take, for each numerical method, the numerical 16

approximation computed on the finest grid as a representation of the exact solution. More precisely, we have employed 17

different values of the size and time discretization parameters and we choose the finest grid values as the solution (k = 18

h = 7.813E− 3). We present the results on Tables 6–9, for the Lax–Wendroff, Box, AGN and SGNmethods respectively. The 19

results in the tables clearly confirm the expected second order of convergence for such methods. We have to note that, in 20

Table 6, we show how the Lax–Wendroff method is not able to obtain the solution of the problem when the CFL condition, 21

r < 1.485, is not satisfied. 22

With the same procedure used in the previous section, we can describe the expressions of the principal error terms and 23

computational cost with respect to the discretization parameters and the optimal value of r , for each method, as shown in 24

Table 10, with R2 higher than 0.98. The
∧
behavior of the dominant error is as in the theoretical test example unless in the case 25

of the AGN method in which the time discretization error is dominant. 26
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Table 6
Mosquitofish problem. Errors, CPU time (seconds) and order for Lax–Wendroff method.

k\h 1.250E−1 6.250E−2 3.125E−2 1.563E−2

1.250E−1 2.386E−04
2.16

6.250E−2 2.428E−04 5.883E−05
4.31 8.56 2.02

3.125E−2 2.441E−04 5.982E−05 1.410E−05
8.61 17.13 2.02 34.19 2.06

1.563E−2 2.446E−04 6.017E−05 1.444E−05 3.094E−06
17.33 34.51 2.02 68.77 2.05 138.93 2.19

Table 7
Mosquitofish problem. Errors, CPU time (seconds) and order for the Box method.

k\h 1.250E−1 6.250E−2 3.125E−2 1.563E−2

1.250E−1 2.049E−04 5.432E−05 2.544E−05 2.097E−05
5.47 10.75 21.88 43.30

6.250E−2 2.025E−04 5.088E−05 1.306E−05 6.189E−06
10.44 20.34 2.01 40.78 2.06 83.90 2.04

3.125E−2 2.022E−04 5.020E−05 1.203E−05 2.750E−06
20.10 39.47 2.01 78.39 2.08 160.86 2.25

1.563E−2 2.022E−04 5.020E−05 1.203E−05 2.750E−06
38.75 76.17 2.01 152.76 2.06 313.28 2.13

Table 8
Mosquitofish problem. Errors, CPU time (seconds) and order for the AGN method.

k\h 1.250E−1 6.250E−2 3.125E−2 1.563E−2

1.250E−1 2.854E−05 2.854E−05 2.854E−05 2.854E−05
6.20 7.90 11.29 18.72

6.250E−2 7.220E−06 7.220E−06 7.220E−06 7.220E−06
21.91 25.62 1.98 33.09 1.98 48.59 1.98

3.125E−2 1.891E−06 1.891E−06 1.891E−06 1.891E−06
86.54 94.17 1.93 109.61 1.93 141.13 1.93

1.563E−2 9.283E−07 9.283E−07 9.283E−07 9.283E−07
356.52 372.65 1.03 405.10 1.03 470.83 1.03

Table 9
Mosquitofish problem. Errors, CPU time (seconds) and order for the SGN method.

k\h 1.250E−1 6.250E−2 3.125E−2 1.563E−2

1.250E−1 1.653E−04 5.707E−05 2.991E−05 2.819E−05
1.58 3.14 6.35 12.92

6.250E−2 1.740E−04 3.858E−05 1.031E−05 7.220E−06
3.17 6.30 2.10 12.56 2.47 25.44 2.05

3.125E−2 1.435E−04 4.748E−05 8.595E−06 2.750E−06
6.35 12.64 1.87 25.16 2.17 50.27 1.91

1.563E−2 1.368E−04 2.984E−05 1.097E−05 1.788E−06
12.71 25.32 2.27 50.52 2.11 100.85 2.27

Table 10
Mosquitofish problem. Analytical approximations of global error and computational cost, and optimal r .

Error Computational cost ropt

Lax–Wendroff 1.3E − 02 h2
+ 4.9E − 04 k2 3.4E − 02 h−0.99 k−0.99 5.19

Box 1.2E − 02 h2
+ 1.1E − 03 k2 1.1E − 01 h−0.98 k−0.92 3.30

AGN 2.8E − 05 h2
+ 2.1E − 03 k2 1.3E − 01 h−0.37 k−1.68 0.25

SGN 1.2E − 02 h2
+ 2.2E − 03 k2 2.6E − 02 h−1.00 k−0.99 2.27

Then we compare all the methods in the corresponding efficiency plot, Fig. 2, in which we use the optimal r for all the1

methods unless the Lax–Wendroff method which is limited by the CFL condition. The results confirm that the Box method2

is the most efficient and that the SGN is the most efficient into the characteristics methods. These conclusions are different3

from the ones given in [16]. In such work, we did not use the analytical expressions of the optimal r obtained in this work.4

Finally, we want to add two aspects that we pointed out in [16]. The use of the finite difference methods introduces5

spurious oscillations that are more difficult to avoid in the case of the Lax–Wendroff one. Thus the characteristics schemes6
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Fig. 2. Mosquitofish problem. Efficiency plot. Box method solid line, Lax–Wendroff method dotted line, AGN dotted-dashed line, SGN dashed line.

perform solutions that fit the qualitative
∧
behavior better than the finite difference methods. On the other hand, the long- 1

time integration shows some weakness in the numerical integration with the AGN method and makes more efficient the 2

SGN method because of the selection procedure. 3

4. Conclusions 4

We have presented a procedure to obtain an analytical approximation to the efficiency. We have used it to compare four 5

different second-order numericalmethods.We have shown the best relation between the discretization parameters for each 6

method and we have obtained the most efficient numerical method in two situations: a theoretical example and other one 7

based on biological data. We have limited our study to these second order techniques, however other numerical procedures 8

would be considered. 9

Such comparisons
∧
depend strongly on the problemanalyzed, so,we cannot expect for a numericalmethodwhich behaves 10

better in all the possible numerical tests. Thus, for a particular problem, in which we usually have to compute numerically 11

the solution with many different data, the most efficient method seems to be the most useful and here we establish an 12

appropriate technique in order to compare them. 13

However, previous works [16] showed that not only the accuracy of the numerical approximations is an influential fact 14

but other qualitative properties are also necessary. At least, we expect the numerical integration provides a non-negative 15

approximation because the problem is biologicallymeaningful and theymust keep the singularities the vital functions could 16

present and not to introduce other misunderstandings in the solution as, for example, spurious oscillations. 17

In general, on a long time integration, the use ofmethodswhich preserve someof the qualitative properties of the solution 18

can perform better. In this way, characteristics curvesmethodswould be good candidates. Qualitative considerations should 19

be incorporated to select a particular numerical method for a specific problem. 20
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Appendix. Numerical methods 26

A.1. The Lax–Wendroff method 27

Let J be a positive integer. Let the points of the grid in the size variable be xj = xmin + j h, 0 ≤ j ≤ J , where h =
xmax−xmin

J 28

is the grid diameter. We denote by k the time step, and the discrete time levels as tn = n k, 0 ≤ n ≤ N,N =
 T
k


. The sub- 29

index jmakes reference to the grid point xj and the super-index n to the time level tn. Finally, we denote by Un
j the numerical 30
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approximation to u(xj, tn), 0 ≤ j ≤ J, 0 ≤ n ≤ N . We
∧
suppose that an approximation to the initial condition (1.3), U0, is1

given (for example, the grid restriction of the initial data u0).2

The Lax–Wendroffmethod is a two-stage schemedefined for eachn = 0, 1, . . . ,N−1. Firstwe calculate the intermediate3

values in the following way4

U
n+ 1

2
j− 1

2
= Un

j− 1
2

−
k
2 h


gn
j Un

j − gn
j−1 U

n
j−1


−

k
2
µn

j− 1
2
Un
j− 1

2
, (A.7)5

where
∧
gn
j = g


xj,Qh


γg Un


, tn

, j = 0, 1, . . . , J; xj− 1

2
=

1
2


xj−1 + xj


,Un

j− 1
2

=
1
2


Un
j−1 + Un

j


, µn

j− 1
2

= µ

xj− 1

2
,6

Qh

γµ Un


, tn

, j = 1, 2, . . . , J . The function Qh(Vn), n = 0, 1, . . . ,N − 1, denotes the composite trapezoidal quadrature7

rule and products γ s Un, s = µ, g , must be interpreted componentwise. In the second stage, we obtain the values Un+1
j , j =8

1, 2, . . . , J − 1, as9

Un+1
j = Un

j −
k
h


g
n+ 1

2
j+ 1

2
U

n+ 1
2

j+ 1
2

− g
n+ 1

2
j− 1

2
U

n+ 1
2

j− 1
2


− kµ

n+ 1
2

j U
n+ 1

2
j ,10

Un+1
J = 0,11

where
∧
U

n+ 1
2

j =
1
2


U

n+ 1
2

j+ 1
2

+ U
n+ 1

2
j− 1

2


, µ

n+ 1
2

j = µ

xj,Qh


γµ Un+ 1

2


, tn +

k
2


, j = 1, 2, . . . , J − 1; g

n+ 1
2

j+ 1
2

= g

xj+ 1

2
,12

Qh


γg Un+ 1

2


, tn +

k
2


, j = 0, 1, . . . , J − 1. Now, Qh(Vn+ 1

2 ), 0 ≤ n ≤ N − 1, denotes the composite mid-point quadrature13

rule. Finally, the approximation Un+1
0 to u(xmin, tn+1), for 0 ≤ n ≤ N − 1, is calculated with the condition14

gn+1
0 Un+1

0 = Qh(α
n+1 Un+1),15

where gn+1
0 = g


xmin,Qh


γg Un+1


, tn

and αn+1

j = α(xj,Qh

γα Un+1


, tn+1), j = 0, 1 . . . , J, 0 ≤ n ≤ N − 1. Again, the16

products αn+1 Un+1 and γ s Un+1, s = g, α, must be interpreted componentwise.17

A.2. The Box method18

The parameters J,N, h and k, and also the mesh grid, are defined as in Appendix A.1. Again, we start with an initial19

condition U0.20

We introduce the half integer grid points xj− 1
2

=
1
2


xj−1 + xj


, 1 ≤ j ≤ J; the mean value operators

∧
U

n+ 1
2

j :=
1
2


Un+1
j +21

Un
j


,Un

j− 1
2

=
1
2


Un
j−1 + Un

j


,U

n+ 1
2

j− 1
2

=
1
2


U

n+ 1
2

j−1 + U
n+ 1

2
j


and the difference operator DUn

j = Un+1
j − Un

j .22

The box method is defined by23

DUn
j + DUn

j−1

2 k
+

g
n+ 1

2
j U

n+ 1
2

j − g
n+ 1

2
j−1 U

n+ 1
2

j−1

h
= −µ

n+ 1
2

j− 1
2
U

n+ 1
2

j− 1
2

, (A.8)24

gn+1
0 Un+1

0 = Qh(α
n+1 Un+1), (A.9)25

1 ≤ j ≤ J, 0 ≤ n ≤ N − 1, where Qh(Vn) represents the trapezoidal quadrature rule, and, for 0 ≤ n ≤ N − 1: g
n+ 1

2
j =26

g

xj,Qh


γg Un+ 1

2


, tn +

k
2


, 0 ≤ j ≤ J, gn+1

0 = g

xmin,Qh


γg Un+1


, tn+1


;

∧
µ

n+ 1
2

j− 1
2

= µ

xj− 1

2
,Qh


γµ Un+ 1

2


, tn +

k
2


,27

1 ≤ j ≤ J . Notation for αn as in the Lax–Wendroff method.28

A.3. Aggregation grid nodes method (AGN)29

The parameters J,N, h and k are defined as in Appendix A.1.30

The initial grid nodes are given by X0
j = xmin + j h, 0 ≤ j ≤ J . We suppose that the approximations to the theoretical31

solution in such nodes are known, U0
j , 0 ≤ j ≤ J . We also suppose that at the first time level t1, the new grid nodes, X1, and32

the corresponding solution values, U1, are known. Furthermore, X0
j and X1

j+1, 0 ≤ j ≤ J − 1, are (numerically) in the same33

characteristic curve. Angulo and López-Marcos obtained the initial conditions by means of the well-known second order34

method [13].35

The numerical approximations at the time level tn+2, 0 ≤ n ≤ N − 2 are obtained as follows. We suppose that the nu-36

merical approximations at the previous time levels, tn and tn+1, are known, Xn,Un and Xn+1,Un+1. Where Xn
j and Xn+1

j+1 , 0 ≤37

j ≤ J + n − 1 belong (numerically) to the same characteristic curve. We introduce the notation µ∗(x, Ig(t), Iµ(t), t) =38

alaziker
Tachado
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µ(x, Ig(t), Iµ(t), t) + gx(x, Ig(t), t),Q (X,V) =
p−1

j=0
Xj+1−Xj

2 (Vj + Vj+1); (γ s)j = γs(Xj), s = α, g, µ, j = 0, 1, . . . , p. This 1

notation will be used throughout the subsection. First, the grid values at the time level tn+2 are calculated by 2

Xn+2
0 = xmin, Xn+2

J+n+2 = xmax, (A.10) 3

Xn+2
1 = Xn+1

0 + k g


Xn+1
0 +

k
2
g

Xn+1
0 ,Q


Xn+1, γg U

n+1 , tn+1

,

3Q (Xn+1, γg Un+1) − Q (Xn, γg Un)

2
, tn+1 +

k
2


, (A.11) 4

Xn+2
j = Xn

j−2 + 2 k g(Xn+1
j−1 ,Q


Xn+1, γg U

n+1 , tn+1), 2 ≤ j ≤ J + n + 1, (A.12) 5

and the approximations to the theoretical solution in these nodes at such time level using 6

Un+2
1 = Un+1

0 exp


−kµ∗


Xn+1
0 +

k
2
g(Xn+1

0 ,Q

Xn+1, γg U

n+1 , tn+1),

3Q (Xn+1, γg Un+1) − Q (Xn, γg Un)

2
,
3Q (Xn+1, γµ Un+1) − Q (Xn, γµ Un)

2
, tn+1 +

k
2


, (A.13) 7

Un+2
j = Un

j−2 exp

−2 kµ∗


Xn+1
j−1 ,Q


Xn+1, γg U

n+1 ,Q Xn+1, γµ Un+1 , tn+1


, 2 ≤ j ≤ J + n + 1, (A.14) 8

Un+2
J+n+2 = 0. (A.15) 9

The equations at the time level tn+2 are completed with the approximation Un+2
0 to u(xmin, tn+2) by means of the discretiza- 10

tion of the boundary condition (1.2) 11

Un+2
0 =

Q (Xn+2, α(Xn+2,Un+2)Un+2)

g(xmin,Q

Xn+2, γg Un+2


, tn+2)

, (A.16) 12

where αj(Xn+2,Un+2) = α

Xn+2
j ,Q (Xn+2, γα Un+2), tn+2


, 0 ≤ j ≤ J + n + 2, 0 ≤ n ≤ N − 2.Q2 13

A.4. Selection grid nodes method (SGN) 14

The following scheme considers a modification in the grid of the previous one so that, by using a selection of the grid 15

nodes, the number of nodes does not increase at each time level. Thus, we try to reduce the computational cost without loss 16

of accuracy. 17

The grid nodes and the numerical approximations at time t2,X2,U2, are defined by means of (A.10)–(A.16) for n = 0. 18

Next, we calculate Q 2(X2, γ2
µ U2). 19

At the new time level, there is a different number of nodes because a new node that fluxes through the boundary is 20

introduced. So, at the time level t0, we have (J + 1) grid nodes, at t1 we have (J + 2) and at t2 we have (J + 3). Now, the first 21

grid node X2
l that satisfies 22

|X2
l+1 − X2

l−1| = min
1≤j≤J+1

|X2
j+1 − X2

j−1| 23

is eliminated and, also X1
l−1, the grid node in the same characteristic curve at t1, is taken out. The number of nodes at the 24

levels involved in the implementation of our two-step scheme are kept fixed: (J +3) nodes for the time level reached in the 25

integration and (J + 2) and (J + 1) for the previous ones. However, the approximations to the nonlocal terms at such time 26

levels are not recomputed. 27

Now, we suppose that the numerical approximations at time levels tn and tn+1 are known, and they are denoted 28

by

Xn
0 , Xn

1 , . . . , Xn
J−1, X

n
J = xmax


,

Un
0 ,U

n
1 , . . . ,U

n
J−1,U

n
J = 0


,Q (Xn, γ s Un), s = α, g, µ, and

∧
{Xn+1

0 = xmin, Xn+1
1 , . . . , 29

Xn+1
J , Xn+1

J+1 = xmax},

Un+1
0 ,Un+1

1 , . . . ,Un+1
J ,Un+1

J+1 = 0

,Q (Xn+1, γ s Un+1), s = α, g, µ (note that Xn

j and Xn+1
j+1 , 0 ≤ j ≤ 30

J−1, are, numerically, in the same characteristic curve). In addition, the grid considered at tn has lost two nodeswith respect 31

to themoment when Xn was actually calculated, while the grid used at tn+1 has only one node less than Xn+1. The numerical 32

grid nodes at the new time level tn+2, are computed bymeans of (A.10)–(A.12), 2 ≤ j ≤ J +1, and the approximations to the 33

theoretical solution in these nodes are obtained using (A.13), (A.14), 2 ≤ j ≤ J+1, and (A.15). The equations at time level tn+2 34

are completed with the approximation Un+2
0 to u(xmin, tn+2) using (A.16). Now, we calculate Q (Xn+2, γ s Un+2), s = α, g, µ. 35

Note that, for the time levels tn, n ≥ 2, the quadrature rules always use the same number of nodes (J + 3). Finally, we 36

eliminate the first grid node Xn+2
l that satisfies 37

|Xn+2
l+1 − Xn+2

l−1 | = min
1≤j≤J+1

|Xn+2
j+1 − Xn+2

j−1 | 38

and we take out Xn+1
l−1 , the grid node in the same characteristic curve at the previous time level. 39
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