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Abstract

Weighted ordered weighted averaging (WOWA) and semiuninorm-based
ordered weighted averaging (SUOWA) operators are two families of aggre-
gation functions that simultaneously generalize weighted means and OWA
operators. Both families can be obtained by using the Choquet integral
with respect to normalized capacities. Therefore, they are continuous,
monotonic, idempotent, compensative and homogeneous of degree 1 func-
tions. Although both families fulfill good properties, there are situations
where their behavior is quite different. The aim of this paper is to analyze
both families of functions regarding some simple cases of weighting vec-
tors, the capacities from which they are building, the weights affecting the
components of each vector, and the values they return.

1. INTRODUCTION
Weighted means and ordered weighted averaging (OWA) operators1 are well-
known functions widely used in the aggregation processes, which are basic in
many knowledge-based systems. Both families of functions are defined through
weighting vectors, but their behavior is quite different: in the case of weighted
means, the values are weighted according to the reliability of the information
sources, whereas in the case of OWA operators, the values are weighted in ac-
cordance with their relative position.

Although weighted means and OWA operators allow to solve a wide range
of problems, there are scenarios where both weightings are necessary. Some ex-
amples of these situations (in fields as diverse as robotics, vision, fuzzy logic
controllers, constraint satisfaction problems, scheduling, multicriteria aggrega-
tion problems, and decision making) have been given by several authors.2–8

Different models have appeared in the literature to deal with this kind of
problems. A usual approach is to consider families of functions parameterized
by two weighting vectors, one for the weighted mean and the other one for the
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OWA-type aggregation, that generalize weighted means and OWA operators in
the following sense: A weighted mean (or a OWA operator) is obtained when
the other weighting vector has a “neutral” behavior; that is, it is (1/n, . . . , 1/n).
In this framework, two of the families having better properties are the weighted
OWA (WOWA) operator3 and the semiuninorm-based ordered weighted averag-
ing (SUOWA) operator.8

WOWA and SUOWA operators can be represented by using the Choquet in-
tegral with respect to normalized capacities. In the case of the WOWA operator,
the capacity is obtained by considering the image of the capacity associated with
the weighted mean under a quantifier that satisfies certain properties. In turn, in
the case of the SUOWA operator, its capacity is the monotonic cover of a game,
which is defined by using the capacities associated with the weighted mean and
the OWA operator and “assembling” these values through a semiuninorm with
neutral element 1/n.

Because WOWA and SUOWA operators are defined through normalized ca-
pacities, they are continuous, monotonic, idempotent, compensative, and homo-
geneous of degree 1 functions. Since they are different families of functions,8 it
seems interesting to analyze them from other points of view, to make a distinction
between both families. In this sense, it is worthy of note that some results about
the behavior of WOWA operators have been given by Roy 6 and Llamazares.9

Given that WOWA and SUOWA operators generalize weighted means and
OWA operators, we know which they are when one of the weighting vector is
(1/n, . . . , 1/n). One of the aims of this paper is to study WOWA and SUOWA
operators for some simple cases of weighting vectors. More specifically, we focus
on the cases where the weighted mean is a projection or the OWA operator is an
order statistic, and analyze when it is possible to recover these functions through
WOWA or SUOWA operators.

The other line of research carried out in this paper analyzes some important
characteristics of WOWA and SUOWA operators with regard to the correspond-
ing ones of weighted means and OWA operators. The features studied are the
capacities associated with the operators, the weights affecting the components
of each vector, and the values they return.

The remainder of the paper is organized as follows. In Section 2, we recall
some basic properties of aggregation functions and the concepts of semiuninorms
and uninorms. Likewise, we give some interesting examples of such functions.
Section 3 is dedicated to the Choquet integral, including its most interesting par-
ticular cases: weighted means, OWA operators, WOWA operators, and SUOWA
operators. Section 4 is devoted to analyze WOWA and SUOWA operators for
some simple cases of weighting vectors. In Section 5, we study WOWA and
SUOWA operators through the capacities from which they are building, the
weights affecting the components of each vector, and the values they return.
Finally, some concluding remarks are provided in Section 6.
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2. PRELIMINARIES
Throughout the paper, we will use the following notation: N = {1, . . . , n}; given
A ⊆ N , |A| denotes the cardinality of A; vectors are denoted in bold; η denotes
the tuple (1/n, . . . , 1/n) ∈ Rn and, for each k ∈ N , ek denotes the vector with 1
in the kth coordinate and 0 elsewhere. We write x ≥ y if xi ≥ yi for all i ∈ N .
For a vector x ∈ Rn, [·] and (·) denote permutations such that x[1] ≥ · · · ≥ x[n]
and x(1) ≤ · · · ≤ x(n).

We now recall some well-known properties of aggregation functions.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if F (xσ(1), . . . , xσ(n)) = F (x1, . . . , xn) for all x ∈ Rn and
for all permutation σ of N .

2. F is monotonic if x ≥ y implies F (x) ≥ F (y) for all x,y ∈ Rn.

3. F is idempotent if F (x, . . . , x) = x for all x ∈ R.

4. F is compensative (or internal) if min(x) ≤ F (x) ≤ max(x) for all x ∈
Rn.

5. F is homogeneous of degree 1 (or a ratio scale invariant) if F (rx) = rF (x)
for all x ∈ Rn and for all r > 0.

A class of necessary functions in the definition of SUOWA operators are
semiuninorms.10 These functions are monotonic and have a neutral element in
the interval [0, 1]. They were introduced as a generalization of uninorms by
dispensing with the symmetry and associativity properties. In turn, uninorms
were proposed by Yager and Rybalov 11 as a generalization of t-norms and t-
conorms.

Definition 2. Let U : [0, 1]2 −→ [0, 1].

1. U is a semiuninorm if it is monotonic and possesses a neutral element
e ∈ [0, 1]

(
U(e, x) = U(x, e) = x for all x ∈ [0, 1]

)
.

2. U is a uninorm if it is a symmetric and associative
(
U(x, U(y, z)) =

U(U(x, y), z) for all x, y, z ∈ [0, 1]
)
semiuninorm.

We denote by U e (respectively, U ei ) the set of semiuninorms (respectively,
idempotent semiuninorms) with a neutral element e ∈ [0, 1]. The structure of
semiuninorms and idempotent semiuninorms has been studied by Liu 10 (see a
graphic representation in Llamazares 8).

SUOWA operators are defined by using semiuninorms with neutral element
1/n. Moreover, they have to belong to the following subset:8

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.
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Obviously U1/n
i ⊆ Ũ1/n. Notice that the smallest and the largest elements of

Ũ1/n are, respectively, the following semiuninorms:

U⊥(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

0 if (x, y) ∈ [0, 1/n)2,

min(x, y) otherwise,

U>(x, y) =


1/k if (x, y) ∈ Ik\Ik+1,where

Ik =
(
1/n, 1/k

]2 (
k ∈ N \{n}

)
,

min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In the case of idempotent semiuninorms, the smallest and the largest elements
of U1/n

i are, respectively, the following uninorms (which were given by Yager and
Rybalov 11):

Umin(x, y) =

{
max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

Umax(x, y) =

{
min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In addition to the previous ones, several procedures to construct semiuni-
norms have been introduced by Llamazares.12 One of them, which is based on
ordinal sums of aggregation operators, allows us to get continuous semiuninorms.
One of the most relevant continuous semiuninorm obtained is the following:

UTL(x, y) =

{
max(x, y) if (x, y) ∈ [1/n, 1]2,

max(x+ y − 1/n, 0) otherwise.

The plots of all these semiuninorms for the case n = 4 can be found in
Llamazares.13

3. CHOQUET INTEGRAL
The Choquet integral14 was introduced in 1953, and since then it has had a wide
variety of applications due to their simplicity and versatility.15,16 The notion of
the Choquet integral is based on that of capacity.14,17 The concept of capacity,
which was also introduced by Sugeno 18 as a fuzzy measure, resembles that of
probability measure, but in the definition of the former additivity is replaced by
monotonicity. A game is then a generalization of a capacity where the mono-
tonicity is no longer required.

Definition 3.

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.

4



2. A capacity (or fuzzy measure) µ on N is a game on N satisfying µ(A) ≤
µ(B) whenever A ⊆ B. In particular, it follows that µ : 2N −→ [0,∞). A
capacity µ is said to be normalized if µ(N) = 1.

A straightforward way to get a capacity from a game is to consider the mono-
tonic cover of the game.19,20

Definition 4. Let υ be a game on N . The monotonic cover of υ is the set
function υ̂ given by

υ̂(A) = max
B⊆A

υ(B).

Some basic properties of υ̂ are given in the sequel.

Remark 1. Let υ be a game on N . Then:

1. υ̂ is a capacity.

2. If υ is a capacity, then υ̂ = υ.

3. If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1, then υ̂ is a normalized capacity.

The Choquet integral is usually defined as a functional,14,17,21 but in the dis-
crete case and once the capacity has been chosen it can be seen as an aggregation
function over Rn.22 This is the approach taken in this paper. Moreover, by anal-
ogy with the original definition of OWA operators, we represent it by using a
decreasing sequence of values:8,23

Definition 5. Let µ be a capacity on N . The Choquet integral with respect to
µ is the function Cµ : Rn −→ R given by

Cµ(x) =
n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
, (1)

where A[i] = {[1], . . . , [i]}, and we use the convention x[n+1] = 0.

From this definition, it is straightforward to show explicitly the weights of
the components x[i] by representing the Choquet integral as follows:

Cµ(x) =
n∑
i=1

(
µ(A[i])− µ(A[i−1])

)
x[i], (2)

where we use the convention A[0] = ∅. It is worth noting that the Choquet
integral possesses properties22 which are useful in certain information aggregation
contexts.a

Remark 2. Let µ be a capacity on N . Then Cµ is continuous, monotonic and
homogeneous of degree 1. Moreover, it is idempotent and compensative when µ
is a normalized capacity.

aAlthough, for instance, monotonicity is a very restrictive property in certain areas.24
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Remark 3. Let µ1 and µ2 be two capacities on N . Then µ1 ≤ µ2
b if and only if

Cµ1 ≤ Cµ2 .
In the following subsections, we recollect the most important particular cases

of the Choquet integral: weighted means, OWA operators, WOWA operators,
and SUOWA operators.

3.1. Weighted means and OWA operators

Weighted means and OWA operators1 are well-known functions in the theory
of aggregation operators (see Emrouznejad and Marra 25 in the case of OWA
operators). Both classes of functions are defined in terms of weight distributions
that add up to 1.

Definition 6. A vector q ∈ [0, 1]n is a weighting vector if
∑n

i=1 qi = 1.

Definition 7. Let p be a weighting vector. The weighted mean associated with
p is the function Mp : R

n −→ R given by

Mp(x) =
n∑
i=1

pixi.

Definition 8. Let w be a weighting vector. The OWA operator associated with
w is the function Ow : Rn −→ R given by

Ow(x) =
n∑
i=1

wix[i].

It is well known that weighted means and OWA operators are Choquet inte-
grals with respect to normalized capacities.8,26–28

Remark 4.

1. If p is a weighting vector, then the weighted mean Mp is the Choquet
integral with respect to the normalized capacity µp(A) =

∑
i∈A pi.

2. If w is a weighting vector, then the OWA operator Ow is the Choquet
integral with respect to the normalized capacity µ|w|(A) =

∑|A|
i=1wi.

So, according to Remark 2, weighted means and OWA operators are con-
tinuous, monotonic, idempotent, compensative, and homogeneous of degree 1.
Moreover, in the case of OWA operators, given that the values of the variables
are previously ordered in a decreasing way, they are also symmetric.

bThe symbol ≤ in the middle of two functions represents the usual order between them; in
this case, µ1 ≤ µ2 if µ1(A) ≤ µ2(A) for all A ⊆ N .
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3.2. WOWA operators

WOWA operators3 were introduced to consider situations where both the impor-
tance of information sources and the importance of values had to be taken into
account. Initially, they were defined by using monotonic functions that interpo-
lates the points

(
i/n,

∑i
j=1wj

)
together with the point (0, 0). But, given that

quantifiers satisfy these properties, Torra and Godo 29 suggested an alternative
definition by using these functions. The relationship between quantifiers and the
weighting vectors w was given by Yager.30.

Definition 9. A function Q : [0, 1] −→ [0, 1] is a quantifier if it satisfies the
following properties:

1. Q(0) = 0, Q(1) = 1.

2. x > y ⇒ Q(x) ≥ Q(y); i.e., it is a monotonic function.

Given a quantifier Q, we can obtain a weighting vector w by means of the
following expression:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n.

In this case, we will say that the quantifier Q generates the weighting vector
w. Notice that Q interpolates the points

(
i/n,

∑i
j=1wj

)
together with the point

(0, 0).

Definition 10. Let p and w be two weighting vectors and let Q be a quantifier
generating the weighting vector w. The WOWA operator associated with p, w
and Q is the function WQ

p,w : Rn −→ R given by

WQ
p,w(x) =

n∑
i=1

qix[i],

where the weight qi is defined as

qi = Q

(
i∑

j=1

p[j]

)
−Q

(
i−1∑
j=1

p[j]

)
.

It is worth noting that, in order to generalize the weighted mean Mp, it is
necessary that the quantifier Q be the identity when w = η. Likewise, notice
that WOWA operators are a specific case of the Choquet integral.23

Remark 5. If p and w are two weighting vectors and Q is a quantifier generating
the weighting vector w, then WQ

p,w is the Choquet integral with respect to the
normalized capacity µQp,w(A) = Q

(
µp(A)

)
= Q

(∑
i∈A pi

)
. Moreover, according

to expression (1), the WOWA operator can also be written as

WQ
p,w(x) =

n∑
i=1

Q

(
i∑

j=1

p[j]

)(
x[i] − x[i+1]

)
. (3)
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WOWA operators generalize weighted means and OWA operators in the sense
that WQ

p,η = Mp and WQ
η,w = Ow. Moreover, according to Remark 2, they are

continuous, monotonic, idempotent, compensative, and homogeneous of degree
1.3

3.3. SUOWA operators

SUOWA operators8 were introduced as an alternative to WOWA operators.
These functions are also a particular case of the Choquet integral where their
capacities are the monotonic cover of specific games. These games are defined
by using semiuninorms with neutral element 1/n and the values of the capacities
associated with the weighted means and the OWA operators. To be specific, the
games from which SUOWA operators are built are defined as follows.

Definition 11. Let p and w be two weighting vectors and let U ∈ Ũ1/n.

1. The game associated with p, w and U is the set function υUp,w : 2N −→ R

defined by

υUp,w(A) = |A|U
(
µp(A)

|A|
,
µ|w|(A)

|A|

)
if A 6= ∅, and υUp,w(∅) = 0.

2. υ̂Up,w, the monotonic cover of the game υUp,w, will be called the capacity
associated with p, w and U .

Notice that υUp,w(A) ≤ 1 for all A ⊆ N and υUp,w(N) = 1. Therefore, according
to the third item of Remark 1, υ̂Up,w is always a normalized capacity.

Definition 12. Let p and w be two weighting vectors and let U ∈ Ũ1/n. The
SUOWA operator associated with p,w and U is the function SUp,w : Rn −→ R

given by

SUp,w(x) =
n∑
i=1

six[i],

where si = υ̂Up,w(A[i])− υ̂Up,w(A[i−1]) for all i ∈ N , υ̂Up,w is the capacity associated
with p,w and U , and A[i] =

{
[1], . . . , [i]

}
(with the convention that A[0] = ∅).

According to expression (1), the SUOWA operator associated with p,w and
U can also be written as

SUp,w(x) =
n∑
i=1

υ̂Up,w(A[i])
(
x[i] − x[i+1]

)
. (4)

By the choice of υ̂Up,w we have SUp,η = Mp and SUη,w = Ow for any U ∈
Ũ1/n. Moreover, by Remark 2 and given that υ̂Up,w is a normalized capacity,
SUOWA operators are continuous, monotonic, idempotent, compensative, and
homogeneous of degree 1.
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It is worthy of note that SUOWA operators preserve the order of the cor-
responding semiuninorms. As an immediate consequence of this fact, we know
the bounds of SUOWA operators when we consider generic semiuninorms or
idempotent semiuninorms.

Proposition 1 (Llamazares 8). Let p and w be two weighting vectors. Then
the following holds:

1. If U1, U2 ∈ Ũ1/n and U1 ≤ U2, then SU1
p,w ≤ SU2

p,w.

2. If U ∈ Ũ1/n, then SU⊥p,w ≤ SUp,w ≤ SU>
p,w.

3. If U ∈ U1/n
i , then SUmin

p,w ≤ SUp,w ≤ SUmax
p,w .

4. SPECIFIC CASES OF WEIGHTING
VECTORS

WOWA and SUOWA operators have been built for generalizing simultaneously
weighted means and OWA operators. So, we know their behavior when p = η
or when w = η (recall that η = (1/n, . . . , 1/n)). The aim of this section is to
analyze both families when we consider simple cases of the weighting vectors p
and w. More specifically, we focus on the weighting vectors p = ek and w = el,
where k, l ∈ N , and analyze when WOWA and SUOWA operators allow us to
recover the projection Mek and the order statistic Oel .

In the sequel, we show explicitly the capacities of weighted means and OWA
operators when the weighting vectors are p = ek andw = el, respectively. Notice
that when p = ek the capacity µek is known as the Dirac measure centered on k
and when w = el the capacity µ|el| is known as the threshold measure τl.22

Remark 6. Let k, l ∈ N . The following holds:

1. If p = ek, then

µek(A) =
∑
i∈A

pi =

{
0 if k 6∈ A,
1 if k ∈ A.

2. If w = el, then

µ|el|(A) =

|A|∑
i=1

wi =

{
0 if |A| < l,

1 if |A| ≥ l.

4.1. WOWA operators

We first consider the weighting vector p = ek. In this case, it is known that given
any weighting vector w and any quantifier Q generating the weighting vector w,
the WOWA operator associated with ek, w and Q coincides with the projection
Mek .
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Proposition 2 (Torra 3). If k ∈ N , then for any weighting vector w and for
any quantifier Q generating the weighting vector w we have WQ

ek,w
=Mek .

We now examine the case w = el. In the sequel, we give a necessary and
sufficient condition for the existence of a quantifier Q generating the weighting
vector el so that the WOWA operator associated with p, el, and Q coincides with
the order statistic Oel . The condition is that the sum of l−1 largest components
of p is less than the sum of l smallest components of p. For the sake of simplicity,
we can suppose, without loss of generality, that the components of the weighting
vector p are ordered in a decreasing way.

Proposition 3. Let l ∈ N and let p be a weighting vector such that p1 ≥ p2 ≥
· · · ≥ pn. The following conditions are equivalent:

1. There exists a quantifier Q generating the weighting vector el such that
WQ
p,el

= Oel.

2. p1 + · · ·+ pl−1 < pn−(l−1) + · · ·+ pn.

Proof.
(1) ⇒ (2) : Consider A = {1, 2, . . . , l − 1} and B = {n − (l − 1), n − (l −

2), . . . , n}. Then Q(p1 + · · · + pl−1) = µQp,el(A) = µ|el|(A) = 0 and Q(pn−(l−1) +
· · · + pn) = µQp,el(B) = µ|el|(B) = 1. Since Q is a monotonic function, we have
p1 + · · ·+ pl−1 < pn−(l−1) + · · ·+ pn.

(2) ⇒ (1) : Let p′ be located between p1 + · · ·+ pl−1 and pn−(l−1) + · · ·+ pn;
that is, p1 + · · · + pl−1 < p′ < pn−(l−1) + · · · + pn, and let Q be the quantifier
defined by

Q(x) =

{
0 if x ≤ p′,

1 if x > p′.

Since p1 ≥ p2 ≥ · · · ≥ pn and p1+· · ·+pn = 1, we get p1+· · ·+pl−1 ≥ (l−1)/n and
pn−(l−1)+· · ·+pn ≤ l/n. Therefore, (l−1)/n < p′ and l/n > p′ and, consequently,
Q
(
(l − 1)/n

)
= 0 and Q(l/n) = 1; that is, Q generates the weighting vector el.

Now we are going to see that µQp,el = µ|el|. Given A ⊆ N , we distinguish two
cases:

1. If |A| < l, then µQp,el(A) = Q
(∑

i∈A pi
)
≤ Q(p1 + · · · + pl−1) = 0; that is,

µQp,el(A) = 0.

2. If |A| ≥ l, then µQp,el(A) = Q
(∑

i∈A pi
)
≥ Q(pn−(l−1) + · · · + pn) = 1; that

is, µQp,el(A) = 1.

So, according to the second item of Remark 6, µQp,el = µ|el|.

Some specific cases are given in the sequel.

Corollary 1. Let p be a weighting vector. The following holds:

1. There exists a quantifier Q generating the weighting vector e1 such that
WQ
p,e1

= max if and only if min(p) > 0.
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2. There exists a quantifier Q generating the weighting vector en such that
WQ
p,en = min if and only if min(p) > 0.

We have seen that, when w = el, we can recover the order statistic Oel
from the WOWA operator if the weighting vector p satisfies a certain condition.
However, as we can see in the following proposition, it is also possible to obtain
a projection when we consider other weighting vectors p.

Proposition 4. Let l ∈ N and let p be a weighting vector. If there exists k ∈ N
such that pk ≥ max(l/n, 1 − (l − 1)/n), then WQ

p,el
= Mek for any quantifier Q

generating the weighting vector el.

Proof. We are going to show that µQp,el = µek . Notice that if Q is a quantifier
generating the weighting vector el, then Q(x) = 0 if x ≤ (l− 1)/n and Q(x) = 1
if x ≥ l/n. Therefore, given A ⊆ N , we have

µQp,el(A) =


0 if

∑
i∈A pi ≤ (l − 1)/n,

Q
(∑

i∈A pi
)

if (l − 1)/n <
∑

i∈A pi < l/n,

1 if
∑

i∈A pi ≥ l/n.

Suppose now that there exists k ∈ N such that pk ≥ max(l/n, 1− (l−1)/n). We
distinguish two cases:

1. If k 6∈ A, since pk ≥ 1− (l − 1)/n, then
∑

i∈A pi = 1−
∑

i 6∈A pi ≤ 1− pk ≤
(l − 1)/n and, consequently, µQp,el(A) = 0.

2. If k ∈ A, since pk ≥ l/n, then
∑

i∈A pi ≥ l/n and, consequently, µQp,el(A) =
1.

So, according to the first item of Remark 6, µQek,w = µek .

Propositions 2–4 reflect that, in a certain sense, WOWA operators grant more
importance to the weighting vector p than to the weighting vector w: When p =
ek, we always obtain the projection Mek whereas when w = el we cannot always
get the order statistic Oel and, in some cases, we obtain a projection Mek . For
instance, consider p = (0.6, 0.4, 0, 0, 0), w = (0, 0, 1, 0, 0) and x = (10, 5, 6, 4, 4).
According to Proposition 4, for any quantifier Q generating the weighting vector
e3 we getWQ

p,e3
(x) =Me1(x) = 10 despite the fact that the value 10 is associated

with the weights p1 = 0.6 and w1 = 0 whereas the value 5 is associated with the
weights p2 = 0.4 and w3 = 1 (the topic of the weights will be discussed further
in the next section).

4.2. SUOWA operators

In the case of SUOWA operators, the following propositions show that when
we consider the weighting vectors p = ek and w = el, the functions Mek and
Oel can be recovered from SUOWA operators. Notice that this fact is possible
independently of the other weighting vector considered.
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Proposition 5. If k ∈ N , then there exists U ∈ Ũ1/n such that SUek,w = Mek

for any weighting vector w.

Proof. Let w be a weighting vector. Notice that given U ∈ Ũ1/n, the game
associated with ek, w, and U is defined by

υUek,w(A) =


|A|U

(
0,
µ|w|(A)

|A|

)
if k 6∈ A,

|A|U
(

1

|A|
,
µ|w|(A)

|A|

)
if k ∈ A.

Consider now the semiuninorm Uminmax defined by

Uminmax(x, y) =

{
min(x, y) if x < 1/n or (x, y) ∈ {1/n} × [0, 1/n],

max(x, y) otherwise.

It is easy to check that Uminmax ∈ Ũ1/n (in fact Uminmax ∈ U1/n
i ) and that

υUminmax
ek,w

(A) =

{
0 if k 6∈ A,
1 if k ∈ A.

Therefore, υUminmax
ek,w

is a capacity on N and, taking into account the first item of
Remark 6, υUminmax

ek,w
= µek .

Proposition 6. If l ∈ N , then there exists U ∈ Ũ1/n such that SUp,el = Oel for
any weighting vector p.

Proof. Let p be a weighting vector. Notice that given U ∈ Ũ1/n, the game
associated with p, el, and U is defined by

υUp,el(A) =


|A|U

(
µp(A)

|A|
, 0

)
if |A| < l,

|A|U
(
µp(A)

|A|
,
1

|A|

)
if |A| ≥ l.

Consider now the semiuninorm Umax
min defined by

Umax
min (x, y) =

{
min(x, y) if y < 1/n or (x, y) ∈ [0, 1/n]× {1/n},
max(x, y) otherwise.

It is easy to check that Umax
min ∈ Ũ1/n (in fact Umax

min ∈ U
1/n
i ) and that

υ
Umax
min
p,el (A) =

{
0 if |A| < l,

1 if |A| ≥ l.

Therefore, υU
max
min
p,el is a capacity on N and, taking into account the second item of

Remark 6, υU
max
min
p,el = µ|el|.

12



In the sequel, we put both conditions together and study the case p = ek
and w = el. Notice that when k, l ∈ N and U ∈ Ũ1/n, the game associated with
ek, el, and U is defined by

υUek,el(A) =



0 if k 6∈ A and |A| < l,

|A|U
(
0,

1

|A|

)
if k 6∈ A and |A| ≥ l,

|A|U
(

1

|A|
, 0

)
if k ∈ A and |A| < l,

1 if k ∈ A and |A| ≥ l,

where the last case, υUek,el(A) = 1 when k ∈ A and |A| ≥ l, is obtained from the
fact that

1 = |A| max

(
1

|A|
,
1

|A|

)
≤ |A|U

(
1

|A|
,
1

|A|

)
≤ |A| 1

|A|
= 1.

In the specific cases of U⊥, U>, Umin, and Umax we get

υU⊥ek,el(A) = υUmin
ek,el

(A) =

{
0 if k 6∈ A or |A| < l,

1 if k ∈ A and |A| ≥ l,

υU>
ek,el

(A) = υUmax
ek,el

(A) =

{
0 if k 6∈ A and |A| < l,

1 if k ∈ A or |A| ≥ l,

and it is easy to check that both games are capacities. In the following proposi-
tion, we show which are the SUOWA operators associated with these capacities.

Proposition 7. Let k, l ∈ N . Then, given x ∈ Rn, SU⊥ek,el(x) = SUmin
ek,el

(x) =
min(xk, x[l]) and SU>

ek,el
(x) = SUmax

ek,el
(x) = max(xk, x[l]).

Proof. Let x ∈ Rn and consider Umin. First, we are going to see that

SUmin
ek,el

(x) =

{
x[l] if k ∈ A[l],

xk if k 6∈ A[l].

We distinguish two cases:

1. If k ∈ A[l], then υUmin
ek,el

(A[l]) = 1 and υUmin
ek,el

(A[l−1]) = 0. Therefore, according
to expression (2), SUmin

ek,el
(x) = x[l].

2. If k 6∈ A[l], let j ∈ N such that [j] = k. Then υUmin
ek,el

(A[j]) = 1 and
υUmin
ek,el

(A[j−1]) = 0. Therefore, according to expression (2), SUmin
ek,el

(x) = x[j] =
xk.

Now, let us see that SUmin
ek,el

(x) = min(xk, x[l]). We distinguish three cases:

1. If xk > x[l], then k ∈ A[l] and, consequently, SUmin
ek,el

(x) = x[l] = min(xk, x[l]).

13



2. If xk = x[l], then, obviously, SUmin
ek,el

(x) = min(xk, x[l]).

3. If xk < x[l], then k 6∈ A[l] and, consequently, SUmin
ek,el

(x) = xk = min(xk, x[l]).

The statement SU>
ek,el

(x) = SUmax
ek,el

(x) = max(xk, x[l]) can be proven in a similar
way.

As an immediate consequence of Proposition 1, we get the following results.

Corollary 2. Let k, l ∈ N and U ∈ Ũ1/n. Then the following holds:

1. Given x ∈ Rn, min(xk, x[l]) ≤ SUek,el(x) ≤ max(xk, x[l]).

2. If U⊥ ≤ U ≤ Umin, then SUek,el(x) = min(xk, x[l]) for all x ∈ Rn.

3. If Umax ≤ U ≤ U>, then SUek,el(x) = max(xk, x[l]) for all x ∈ Rn.

Some specific cases are given in the following corollary.

Corollary 3. Let U ∈ Ũ1/n. Then the following holds:

1. Me1 ≤ SUe1,e1 ≤ Oe1, SUe1,e1 = Me1 if U⊥ ≤ U ≤ Umin, and SUe1,e1 = Oe1 if
Umax ≤ U ≤ U>.

2. Oen ≤ SUen,en ≤Men, SUen,en = Oen if U⊥ ≤ U ≤ Umin, and SUen,en =Men if
Umax ≤ U ≤ U>.

5. CAPACITIES, WEIGHTS, AND VALUES
WOWA and SUOWA operators are Choquet integrals that generalize weighted
means and OWA operators. Hence, they are depicted through the capacities
from which they are building or the weights affecting the components of x (see
expressions (1) and (2)). Moreover, from a behavioral perspective, it is also
important to analyze the values they return. So, it seems very interesting to
know the relationship between these features of WOWA and SUOWA operators
and the corresponding ones of weighted means and OWA operators. The aim of
this section is to analyze WOWA and SUOWA operators from these three points
of view: the capacities, the weights, and the values they return.

5.1. The capacities

As we have seen, the notion of capacity is essential in the definition of the Cho-
quet integral. Given A ⊆ N , the value µ(A) can be seen as the “weight” related
to the subset of criteria A.31 Given that WOWA and SUOWA operators have
appeared in the literature as an answer to the problem of combining weighted
means and OWA operators in a single function, it seems suitable to analyze the
capacities of WOWA and SUOWA operators in relation to those of weighted
means and OWA operators. In the case of SUOWA operators, we have the
following properties.

14



Proposition 8 (Llamazares 8). Let p and w be two weighting vectors, and U ∈
U1/n
i . Given A ⊆ N , the following holds:

1. min
(
µp(A), µ|w|(A)

)
≤ υ̂Up,w(A) ≤ max

(
µp(A), µ|w|(A)

)
.

2. If µp(A) = µ|w|(A), then υ̂Up,w(A) = µp(A).

Hence, when we consider idempotent semiuninorms, the capacity associated
with a SUOWA operator ranges between the capacities of the corresponding
weighted mean and OWA operator. Moreover, when both capacities take the
same value on a set, the capacity associated with the SUOWA operator coincides
with them. As we can see in the following example, WOWA operators do not
satisfy these properties.

Example 1. Consider the weighting vectors p = (0.3, 0.3, 0.2, 0.1, 0.1) and w =
(0.4, 0.3, 0.1, 0.1, 0.1) and A = {1, 2, 3}. It is easy to check that µp(A) =
µ|w|(A) = 0.8. Now, if Q is a quantifier generating the weighting vector w,
then Q(0) = 0, Q(0.2) = 0.4, Q(0.4) = 0.7, Q(0.6) = 0.8, Q(0.8) = 0.9, and
Q(1) = 1. Consequently, µQp,w(A) = Q

(
µp(A)

)
= Q(0.8) = 0.9.

5.2. The weights

Weighted means and OWA operators are functions defined through weighting
vectors. So, given x ∈ Rn, the element x[i] is weighted by the value p[i] in the
case of weighted means while it is weighted by the value wi in the case of OWA
operators. Hence, a natural question is the relationship between the weights
associated with x[i] in the case of WOWA and SUOWA operators, qi and si
respectively, and the weights p[i] and wi. As we show in the following results,c
in the case of SUOWA operators and under certain hypothesis on p, w, and U ,
we can provide some interesting information on the weight si. For instance, in
some cases, the weight si can be straightforward obtained from p[i] and wi.

Proposition 9. Let p and w be two weighting vectors such that
∑j

i=1wi ≤ j/n
for all j ∈ N and mini∈N pi +mini∈N wi ≥ 1/n. Then the following holds:

1. For any A ⊆ N such that 1 ≤ |A| ≤ n we have

υ
UTL
p,w (A) = µp(A) + µ|w|(A)−

|A|
n

=
∑
i∈A

pi +

|A|∑
i=1

wi −
|A|
n
.

2. υUTL
p,w is a capacity on N .

3. Given x ∈ Rn, sUTL
i = p[i] + wi − 1/n for any i ∈ N , and, consequently,

S
UTL
p,w (x) =Mp(x) +Ow(x)− x (where x is the average of x).

cIn some results, we will use the notation sUi to indicate that we are employing the semi-
uninorm U for obtaining the weight si.
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Proof.

1. Let A ⊆ N be such that 1 ≤ |A| ≤ n. Since
(∑j

i=1wi

)
/j ≤ 1/n for all

j ∈ N , and

µp(A)

|A|
+
µ|w|(A)

|A|
=

∑
i∈A

pi

|A|
+

|A|∑
i=1

wi

|A|
≥ min

i∈N
pi +min

i∈N
wi ≥

1

n
,

we have

υ
UTL
p,w (A) = |A|UTL

(
µp(A)

|A|
,
µ|w|(A)

|A|

)
= µp(A) + µ|w|(A)−

|A|
n

=
∑
i∈A

pi +

|A|∑
i=1

wi −
|A|
n
.

2. Consider B ( A ⊆ N . Since mini∈N pi +mini∈N wi − 1/n ≥ 0, we have

∑
i∈A\B

pi +

|A|∑
i=|B|+1

wi −
|A| − |B|

n
≥ 0.

Therefore,

υ
UTL
p,w (B) =

∑
i∈B

pi +

|B|∑
i=1

wi −
|B|
n
≤
∑
i∈B

pi +

|B|∑
i=1

wi −
|B|
n

+
∑
i∈A\B

pi +

|A|∑
i=|B|+1

wi

− |A| − |B|
n

=
∑
i∈A

pi +

|A|∑
i=1

wi −
|A|
n

= υ
UTL
p,w (A),

that is, υUTL
p,w is a capacity on N .

3. Given x ∈ Rn, for any i ∈ N we have

s
UTL
i = υ

UTL
p,w (A[i])− υ

UTL
p,w (A[i−1])

=
i∑

j=1

p[j] +
i∑

j=1

wj −
i

n
−

i−1∑
j=1

p[j] −
i−1∑
j=1

wj +
i− 1

n
= p[i] + wi − 1/n.

Hence,

S
UTL
p,w (x) =

n∑
i=1

(
p[i] + wi − 1/n

)
x[i] =Mp(x) +Ow(x)− x.

Idempotent semiuninorms allow us to obtain the following result.
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Proposition 10 (Llamazares 8). Let p and w be two weighting vectors, let U ∈
U1/n
i , and let x ∈ Rn such that p[i] = wi for all i ∈ N . Then si = p[i] = wi for

all i ∈ N (and, consequently, SUp,w(x) =Mp(x) = Ow(x)).

Therefore, given x ∈ Rn, if the weights p[i] and wi are equal for all i ∈ N and
we consider idempotent semiuninorms, then the corresponding weights si of the
SUOWA operator coincide with them. Notice that this property is not satisfied
in the case of WOWA operators, as it has been made clear by Llamazares.12

Another interesting question about the weights si is to know whether they
are located between p[i] and wi; that is, when min(p[i], wi) ≤ si ≤ max(p[i], wi)
for all i ∈ N . This condition can be guaranteed by considering some specific
weighting vectors w and the uninorms Umin and Umax. Before establishing these
results, in Propositions 11 and 12, we recall some useful properties.

Proposition 11 (Llamazares 12). Let w be a weighting vector with
∑j

i=1wi <
j/n for all j ∈ {1, . . . , n− 1}. Then, for all weighting vector p, we have

1. υUmin
p,w is a capacity on N .

2. υUmin
p,w (A) = min

(
µp(A), µ|w|(A)

)
for all A ⊆ N .

3. SUmin
p,w (x) ≤ min

(
Mp(x), Ow(x)

)
for all x ∈ Rn.

Proposition 12 (Llamazares 12). Let w be a weighting vector with
∑j

i=1wi >
j/n for all j ∈ {1, . . . , n− 1}. Then, for all weighting vector p, we get

1. υUmax
p,w is a capacity on N .

2. υUmax
p,w (A) = max

(
µp(A), µ|w|(A)

)
for all A ⊆ N .

3. SUmax
p,w (x) ≥ max

(
Mp(x), Ow(x)

)
for all x ∈ Rn.

Proposition 13. Let w be a weighting vector such that
∑j

i=1wi < j/n for all
j ∈ {1, . . . , n − 1}. Then, for any weighting vector p, for any x ∈ Rn and for
any i ∈ N , we have min(p[i], wi) ≤ sUmin

i ≤ max(p[i], wi).

Proof. Given i ∈ N , by Proposition 11 we get sUmin
i = min

(
µp(A[i]), µ|w|(A[i])

)
−

min
(
µp(A[i−1]), µ|w|(A[i−1])

)
. We distinguish four cases:

1. If µp(A[i]) ≤ µ|w|(A[i]) and µp(A[i−1]) ≤ µ|w|(A[i−1]), then

sUmin
i = µp(A[i])− µp(A[i−1]) = p[i].

2. If µp(A[i]) ≤ µ|w|(A[i]) and µp(A[i−1]) > µ|w|(A[i−1]), then sUmin
i = µp(A[i])−

µ|w|(A[i−1]), and notice that

wi = µ|w|(A[i])− µ|w|(A[i−1]) ≥ sUmin
i > µp(A[i])− µp(A[i−1]) = p[i].
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3. If µp(A[i]) > µ|w|(A[i]) and µp(A[i−1]) ≤ µ|w|(A[i−1]), then we have sUmin
i =

µ|w|(A[i])− µp(A[i−1]), and note that

p[i] = µp(A[i])− µp(A[i−1]) > sUmin
i ≥ µ|w|(A[i])− µ|w|(A[i−1]) = wi.

4. If µp(A[i]) > µ|w|(A[i]) and µp(A[i−1]) > µ|w|(A[i−1]), then

sUmin
i = µ|w|(A[i])− µ|w|(A[i−1]) = wi.

So, in any of the four cases, the condition min(p[i], wi) ≤ sUmin
i ≤ max(p[i], wi) is

satisfied.

A similar result can be established in the case of the uninorm Umax (the proof
is omitted because it is similar to that of Proposition 13).

Proposition 14. Let w be a weighting vector such that
∑j

i=1wi > j/n for all
j ∈ {1, . . . , n − 1}. Then, for any weighting vector p, for any x ∈ Rn and for
any i ∈ N , we have min(p[i], wi) ≤ sUmax

i ≤ max(p[i], wi).

Another interesting property is obtained when we consider convex combi-
nations of semiuninorms and the games associated with the semiuninorms are
normalized capacities. Then, given x ∈ Rn, the weight associated with x[i] (for
the SUOWA operator associated with the new semiuninorm) can be straightfor-
ward obtained by using the same convex combination of the weights associated
with x[i] in the SUOWA operators associated with the former semiuninorms. Be-
fore establishing the result, in the following proposition we recall some useful
properties of convex combinations of semiuninorms.

Proposition 15 (Llamazares 12). Let p and w be two weighting vectors, let
U1, . . . , Um ∈ Ũ1/n such that υU1

p,w, . . . , υ
Um
p,w be normalized capacities, let λ ∈

[0, 1]m be a weighting vector, and let U =
∑m

j=1 λjUj. Then the following holds:

1. U ∈ Ũ1/n, and if U1, . . . , Um ∈ U1/n
i , then U ∈ U1/n

i .

2. υUp,w(A) =
∑m

j=1 λjυ
Uj
p,w(A) for any subset A of N .

3. υUp,w is a normalized capacity.

4. SUp,w =
∑m

j=1 λjS
Uj
p,w.

Proposition 16. Let p and w be two weighting vectors, let U1, . . . , Um ∈ Ũ1/n

such that υU1
p,w, . . . , υ

Um
p,w be normalized capacities, let λ ∈ [0, 1]m be a weighting

vector, and let U =
∑m

j=1 λjUj. Then, for any x ∈ Rn and for any i ∈ N , we
have sUi =

∑m
j=1 λjs

Uj

i .
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Proof. Let x ∈ Rn and i ∈ N . By Proposition 15, we get

sUi = υUp,w(A[i])− υUp,w(A[i−1]) =
m∑
j=1

λjυ
Uj
p,w(A[i])−

m∑
j=1

λjυ
Uj
p,w(A[i−1])

=
m∑
j=1

λj

(
υUj
p,w(A[i])− υUj

p,w(A[i−1])
)
=

m∑
j=1

λjs
Uj

i .

Obviously, if all the weights sUj

i are located between p[i] and wi, then so does
the convex combination of them.

Corollary 4. Let p and w be two weighting vectors, let U1, . . . , Um ∈ Ũ1/n

such that υU1
p,w, . . . , υ

Um
p,w be normalized capacities, let λ ∈ [0, 1]m be a weighting

vector, and let U =
∑m

j=1 λjUj. Given x ∈ Rn and i ∈ N , if min(p[i], wi) ≤
s
Uj

i ≤ max(p[i], wi) for all j ∈ {1, . . . ,m} then we also get min(p[i], wi) ≤ sUi ≤
max(p[i], wi).

In the sequel, and using some of the previous results, we illustrate how we
can get a SUOWA operator having a specific weight si.

Example 2. Let us consider the weighting vectors p = (0.1, 0.4, 0.4, 0.1) and
w = (0.2, 0.2, 0.3, 0.3), and the idempotent uninorms Umin and Umax. In the case
of Umin, the first item of Proposition 11 guarantees that υUmin

p,w is a capacity. As
we can see in Table 1, this is also the case when we consider the uninorm Umax.

Consider now x = (5, 8, 10, 7). In the case of Umin, Proposition 13 guarantees
that min(p[i], wi) ≤ sUmin

i ≤ max(p[i], wi) for all i ∈ N . As we can see in Table 2,
this is also the case when we consider the uninorm Umax (note that for this
particular value of x we also have sUmin

i = wi and sUmax
i = p[i] for all i ∈ N).

So, according to Corollary 4, any convex combination between Umin and Umax

allows us to obtain weights located between p[i] and wi. Moreover, notice that, by
Proposition 16, we can easily obtain an idempotent semiuninorm that allows us to
get a SUOWA operator having a specific weight sUi . For instance, if we look for an
idempotent semi-uninorm U such that sU1 = 0.3, it is sufficient to consider Uam =
0.5Umin + 0.5Umax, that is, the idempotent semi-uninorm obtained through the
arithmetic mean:

Uam(x, y) =


min(x, y) if (x, y) ∈ [0, 0.25]2,

max(x, y) if (x, y) ∈ [0.25, 1]2 \
{
(0.25, 0.25)

}
,

(x+ y)/2 otherwise.

5.3. The values

A first question is whether the value returned by the WOWA operator and the
SUOWA operator lies between the values returned by the weighted mean and
the OWA operator. As we can see in the following example, this property is not
generally satisfied.
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Table 1: Capacities associated with Umin and Umax.

Set υUmin
p,w υUmax

p,w

{1} 0.1 0.1
{2} 0.2 0.4
{3} 0.2 0.4
{4} 0.1 0.1
{1, 2} 0.4 0.4
{1, 3} 0.4 0.4
{1, 4} 0.2 0.2
{2, 3} 0.4 0.8
{2, 4} 0.4 0.4
{3, 4} 0.4 0.4
{1, 2, 3} 0.7 0.9
{1, 2, 4} 0.6 0.6
{1, 3, 4} 0.6 0.6
{2, 3, 4} 0.7 0.9
N 1 1

Table 2: Weights associated with x[i], where x = (5, 8, 10, 7).

i p[i] wi sUmin
i sUmax

i

1 0.4 0.2 0.2 0.4
2 0.4 0.2 0.2 0.4
3 0.1 0.3 0.3 0.1
4 0.1 0.3 0.3 0.1

Example 3. Consider p = (2/3, 1/6, 1/6), w = (0.4, 0.6, 0) and x = (10, 8, 6).
It is easy to check that Mp(x) = 9 and Ow(x) = 8.8. In the case of WOWA
operators, and according to expression (3), given any quantifier Q generating
the weighting vector w we know that Q(0) = 0, Q(1/3) = 0.4, Q(2/3) = 1 and
Q(1) = 1. Therefore, we have

WQ
p,w(x) = Q(2/3) · 2 +Q(5/6) · 2 +Q(1) · 6 = 10,

and, consequently, WQ
p,w(x) > max

(
Mp(x), Ow(x)

)
. In the case of SUOWA

operators, we calculate the capacity associated with the semi-uninorm U⊥. Notice
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that, in this case, the capacity coincides with the game (see Table 3).

Table 3: Capacities associated with U⊥ and U>.

Set υ̂U⊥p,w υ̂U>
p,w

{1} 2/3 1
{2} 1/6 0.4
{3} 1/6 0.4
{1, 2} 1 1
{1, 3} 1 1
{2, 3} 1/3 1
N 1 1

Now, by expression (4) we get

SU⊥p,w(x) = υ̂U⊥p,w
(
{1}
)
· 2 + υ̂U⊥p,w

(
{1, 2}

)
· 2 + υ̂U⊥p,w(N) · 6 = 28/3.

Therefore, given any semiuninorm U ∈ Ũ1/n, by the second item of Proposi-
tion 1 we get SUp,w(x) ≥ SU⊥p,w(x) > max

(
Mp(x), Ow(x)

)
.

Nevertheless, in the case of SUOWA operators we can establish conditions
under which the property is satisfied for some specific semiuninorms.

Proposition 17. Let p and w be two weighting vectors such that
∑j

i=1wi ≤
j/n for all j ∈ N and mini∈N pi + mini∈N wi ≥ 1/n. Given x ∈ Rn, if
min

(
Mp(x), Ow(x)

)
≤ x ≤ max

(
Mp(x), Ow(x)

)
then min

(
Mp(x), Ow(x)

)
≤

S
UTL
p,w (x) ≤ max

(
Mp(x), Ow(x)

)
.

Proof. Let x ∈ Rn such that min
(
Mp(x), Ow(x)

)
≤ x ≤ max

(
Mp(x), Ow(x)

)
.

Suppose that Mp(x) ≤ x ≤ Ow(x) (the case Ow(x) ≤ x ≤ Mp(x) can be
treated similarly). Then we have Mp(x) ≤Mp(x) +Ow(x)−x ≤ Ow(x). Since
by the third item of Proposition 9 we know that SUTL

p,w (x) =Mp(x)+Ow(x)−x,
we conclude that Mp(x) ≤ S

UTL
p,w (x) ≤ Ow(x).

Proposition 18. Let p and w be two weighting vectors, and U ∈ U1/n
i . Then:

1. If µp ≤ µ|w|, then Mp ≤ SUp,w ≤ Ow.

2. If µ|w| ≤ µp, then Ow ≤ SUp,w ≤Mp.

Proof. We will only consider the first statement (the proof of the second assertion
is similar). By the first item of Proposition 8, we get µp ≤ υ̂Up,w ≤ µ|w|. And
now, by Remark 3, we have Mp ≤ SUp,w ≤ Ow.
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Notice that, although the assumptions of Proposition 18 are satisfied, WOWA
operators still do not meet the property.

Example 4. Consider p = (0.3, 0.3, 0.2, 0.1, 0.1), w = (0.4, 0.3, 0.1, 0.1, 0.1), and
x = (10, 10, 8, 6, 6). It is easy to check that µp ≤ µ|w| and that Mp(x) = 8.8 and
Ow(x) = 9. Now, if Q is a quantifier generating the weighting vector w, then
Q(0) = 0, Q(0.2) = 0.4, Q(0.4) = 0.7, Q(0.6) = 0.8, Q(0.8) = 0.9, and Q(1) = 1.
According to expression (3), we get

WQ
p,w(x) = Q(0.3) · 0 +Q(0.6) · 2 +Q(0.8) · 2 +Q(0.9) · 0 +Q(1) · 6 = 9.4,

and, consequently, WQ
p,w(x) > max

(
Mp(x), Ow(x)

)
.

Another interesting question is the following: given y, z ∈ Rn, such that
Mp(y) ≤ Mp(z) and Ow(y) ≤ Ow(z), under which conditions is it possible to
guarantee that WQ

p,w(y) ≤ WQ
p,w(z) (or SUp,w(y) ≤ SUp,w(z))? As we can see in

the following example, this property is not generally satisfied.

Example 5. Consider the weighting vectors of Example 3, p = (2/3, 1/6, 1/6)
and w = (0.4, 0.6, 0), and y = (10, 7, 3), z = (9, 8, 7). It is easy to check that
Mp(y) = 50/6 < 51/6 = Mp(z) and that Ow(y) = 8.2 < 8.4 = Ow(z). In the
case of WOWA operators, and according to expression (3), given any quantifier
Q generating the weighting vector w we have

WQ
p,w(y) = Q(2/3) · 3 +Q(5/6) · 4 +Q(1) · 3 = 10,

WQ
p,w(z) = Q(2/3) · 1 +Q(5/6) · 1 +Q(1) · 7 = 9,

and, consequently, WQ
p,w(y) > WQ

p,w(z). In the case of SUOWA operators, con-
sider a semiuninorm U ∈ Ũ1/n. Then

SUp,w(y) = υ̂Up,w
(
{1}
)
· 10 +

(
υ̂Up,w

(
{1, 2}

)
− υ̂Up,w

(
{1}
))
· 7

+
(
υ̂Up,w(N)− υ̂Up,w

(
{1, 2}

))
· 3.

Since U⊥ ≤ U ≤ U>, we get υ̂U⊥p,w ≤ υ̂Up,w ≤ υ̂U>
p,w (see the proof of Proposition 8 in

Llamazares 8). According to the values of Table 3 we have 2/3 ≤ υ̂Up,w
(
{1}
)
≤ 1

and υ̂Up,w
(
{1, 2}

)
= υ̂Up,w(N) = 1. Therefore,

SUp,w(y) = 10α + 7(1− α) = 7 + 3α,

where α = υ̂Up,w
(
{1}
)
. Analogously,

SUp,w(z) = 9α + 8(1− α) = 8 + α.

Now we compare SUp,w(y) and SUp,w(z):

SUp,w(y) > SUp,w(z) ⇔ 7 + 3α > 8 + α ⇔ α > 0.5,

which is true because α > 2/3.
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As we can see in the following propositions, in the case of SUOWA operators
we can establish conditions under which the property is satisfied for some specific
semi-uninorms.

Proposition 19. Let p and w be two weighting vectors such that
∑j

i=1wi ≤ j/n
for all j ∈ N and mini∈N pi + mini∈N wi ≥ 1/n. Given y, z ∈ Rn, if Mp(y) ≤
Mp(z), Ow(y) ≤ Ow(z) and y ≥ z, then S

UTL
p,w (y) ≤ S

UTL
p,w (z).

Proof. It is obvious by the third item of Proposition 9.

Proposition 20. Let p and w be two weighting vectors such that µp ≤ µ|w|, or
µ|w| ≤ µp, and let y, z ∈ Rn with max

(
Mp(y), Ow(y)

)
≤ min

(
Mp(z), Ow(z)

)
.

If U ∈ U1/n
i , then SUp,w(y) ≤ SUp,w(z).

Proof. Suppose that µp ≤ µ|w| (the proof when the other condition is satisfied is
similar). By Proposition 18, we get SUp,w(y) ≤ Ow(y) ≤Mp(z) ≤ SUp,w(z).

It is worthy of note that, although the assumptions of Proposition 20 are
satisfied, WOWA operators do not fulfill the property.
Example 6. Consider again the weighting vectors of Example 4, where p =
(0.3, 0.3, 0.2, 0.1, 0.1) andw = (0.4, 0.3, 0.1, 0.1, 0.1), and y = (10, 10, 5, 4, 4), z =
(9, 9, 8, 7, 7). It is easy to check that µp ≤ µ|w|, and that max

(
Mp(y), Ow(y)

)
=

max(7.8, 8.3) = 8.3 < 8.4 = min(8.4, 8.5) = min
(
Mp(z), Ow(z)

)
. According to

expression (3), if Q is a quantifier generating the weighting vector w, we have

WQ
p,w(y) = Q(0.3) · 0 +Q(0.6) · 5 +Q(0.8) · 1 +Q(0.9) · 0 +Q(1) · 4 = 8.9,

WQ
p,w(z) = Q(0.3) · 0 +Q(0.6) · 1 +Q(0.8) · 1 +Q(0.9) · 0 +Q(1) · 7 = 8.7,

and, consequently, WQ
p,w(y) > WQ

p,w(z).

6. CONCLUDING REMARKS
WOWA and SUOWA operators have been purpose-built for dealing with situ-
ations where two weighting vectors are necessary: One of them provides infor-
mation about the reliability of each information source, whereas the other one
allows to weight the values according to their ordering. Both are Choquet inte-
grals with respect to normalized capacities; therefore, they have properties such
as continuity, monotonicity, idempotency, compensativeness, and homogeneity
of degree 1. To make a distinction between both families, it seems interesting to
analyze their behavior from other points of view. In this paper, we have studied
these operators for some simple cases of weighting vectors, the capacities from
which they are building, the weights affecting the components of each vector,
and the values they return. We can summarize the main results as follows:

1. In some cases, WOWA operators grant more importance to the weighting
vector p than to the weighting vector w. In turn, it seems that SUOWA
operators have a more equitable behavior between the weighting vectors
(on this, see also Proposition 11 and Example 3 in Llamazares 12).
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2. In the case of idempotent semiuninorms, the capacity of the SUOWA oper-
ator is located between the capacities of the weighted mean and the OWA
operator. This is not the case for WOWA operators.

3. For some specific semiuninorms, and assuming suitable conditions on the
weighting vectors, it is possible to give explicitly the weights si or to guar-
antee that they range between the weights p[i] and wi.

4. For some specific semiuninorms, and assuming some additional conditions,
the value returned by the SUOWA operator lies between the values returned
by the weighted mean and the OWA operator.

Finally, notice that some results of the paper are obtained by imposing the
conditions

∑j
i=1wi ≤ j/n,

∑j
i=1wi < j/n, or

∑j
i=1wi > j/n, for all j ∈ N . It

is worth of emphasizing that some useful weighting vectors satisfy the previous
conditions. For instance, those ones with increasing weights satisfy the condition∑j

i=1wi ≤ j/n while those ones with decreasing weights satisfy the condition∑j
i=1wi ≥ j/n.

Proposition 21 (Llamazares 12). Let w be a weighting vector.

1. If w1 ≤ w2 ≤ · · · ≤ wn, then w = η or
∑j

i=1wi < j/n for all j ∈
{1, . . . , n− 1}.

2. If w1 ≥ w2 ≥ · · · ≥ wn, then w = η or
∑j

i=1wi > j/n for all j ∈
{1, . . . , n− 1}.
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