Supporting Information for

Alignment of Palladium Complexes into Columnar Liquid Crystals Driven by Peripheral Triphenylene Substituents

Emiliano Tritto, ${ }^{a}$ Rubén Chico, ${ }^{a}$ Gerardo Sanz-Enguita, ${ }^{b}$ César L. Folcia, ${ }^{c}$ Josu Ortega, ${ }^{b}$ Silverio Coco, ${ }^{* a}$ and Pablo Espinet. ${ }^{* a}$
${ }^{a}$ IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Castilla y León, Spain. ${ }^{b}$ Department of Applied Physics II, ${ }^{\text {c }}$ Condensed Matter Physics, University of the Basque Country, UPV/EHU, 48080 Bilbao, Spain.

Scheme S1. Synthesis of palladium orthometallated complexes

Experimental Section

Combustion analyses were made with a Perkin-Elmer 2400 microanalyzer. IR spectra $\left(\mathrm{cm}^{-1}\right)$ were recorded on a Perkin-Elmer BX instrument and ${ }^{1}$ H NMR spectra on Bruker AV-400 (400.13 $\mathrm{MHz})$ or Varian $500(499.73 \mathrm{~Hz})$ instruments in CDCl_{3}. UV/Vis absorption spectra were obtained by means of a Shimadzu UV-2550 spectrophotometer, in dichloromethane ($\sim 1 \times 10^{-4} \mathrm{M}$). Luminescent data was recorded with a Perkin-Elmer LS-55 luminescence spectrometer. Luminescence quantum yields were obtained at room temperature using the optically dilute method ($\mathrm{A}<0.1$) in degassed dichloromethane (quantum yield standard was quinine sulfate dihydrate in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\Phi \mathrm{fl}=0.51)$ using an excitation wavelength of 310 nm$) .{ }^{1}$

Microscopy studies were carried out on a Leica DMRB microscope equipped with a Mettler FP82HT hot stage and a Mettler FP90 central processor, at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. For differential scanning calorimetry (DSC) a Perkin-Elmer DSC7 instrument was used, which was calibrated with water and indium. The scanning rate was $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$, the samples were sealed in aluminum capsules in the air, and the holder atmosphere was dry nitrogen.

The X-ray studies were carried out in Debye-Scherrer operation mode, using a powder diffractometer with a high temperature implement. For the experiment, Lindemann capillaries of diameter 0.6 mm were utilized. A linear position-sensitive detector (DSP) was employed to measure the diffracted intensity. The angular resolution was better than 0.01°, and the 2θ interval was $0.5-35^{\circ}\left(\theta\right.$ is the Bragg angle). Monochromatic $\mathrm{Cu}-\mathrm{K} \alpha_{1}$ radiation $(\lambda=1.5406 \AA)$ was used.

Literature methods were used to prepare 2,3,6,7,10,11-hexakis(dodecyloxy)triphenylene, ${ }^{2}$ and B-bromocatecholborane. ${ }^{3}$

Preparation of 4-(6-bromohexyloxy)nitrobenzene (A). To a solution of 4-nitrophenol (4.6 g, $33.1 \mathrm{mmol})$ and 1,6 -dibromohexane $(8.9 \mathrm{~g}, 36.4 \mathrm{mmol})$ in dry acetone $(120 \mathrm{~mL})$ under nitrogen
was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.1 \mathrm{~g}, 44.3 \mathrm{mmol})$. After refluxing for 48 h , water $(150 \mathrm{~mL})$ was added, the product was extracted in dichloromethane $(3 \times 50 \mathrm{~mL})$ and purified by column chromatography (silica gel, dichloromethane/hexane $1: 1 \mathrm{v} / \mathrm{v}$ as eluent). The solvent was evaporated to obtain a white solid with a low melting point ($4.9 \mathrm{~g}, 50 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.18\left(\mathrm{~d}, 2 \mathrm{H}_{1}, \mathrm{ArH}\right)$, $6.93\left(\mathrm{~d}, 2 \mathrm{H}_{2}, \mathrm{ArH}\right), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=9.3 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 4.05(\mathrm{t}, 2 \mathrm{H}, J$ $\left.=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.43\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathbf{C H}_{2}\right), 1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$. Anal. Calcd. (\%) for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrNO}_{3}$: C, 47.69; H, 5.34; N, 4.64. Found: C, 47.72; H, 5.38; N, 4.70.

Preparation of monohydroxy-3,6,7,10,11-pentakis(dodecyloxy)triphenylene (C). The monohydroxy derivative C was synthesized as reported for similar systems. ${ }^{4}$ To an ice-cooled solution of $2,3,6,7,10,11$-hexakisdodecyloxytriphenylene ($0.5 \mathrm{~g}, 0.37 \mathrm{mmol}$) in dichloromethane $(15 \mathrm{~mL})$ was added B-bromocatecholborane ($0.6 \mathrm{~mL}, 0.44 \mathrm{mmol}, 0.74 \mathrm{M}$ in dichloromethane). The solution was stirred at room temperature for 24 h . Then it was poured on ice water (50 mL) and extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and the solvent removed under vacuum. The crude product was purified by column chromatography (silica gel, hexane/ethyl acetate $50: 1 \mathrm{v} / \mathrm{v}$ as eluent) to yield an off-white solid $\left(0.14 \mathrm{~g}, 31 \%\right.$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.77(\mathrm{~s}, 1 \mathrm{H}$, ArH), $5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.30-4.19\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.93\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{OCH}_{2} \mathbf{C H}_{2}\right), 1.55-1.27(\mathrm{~m}$, $90 \mathrm{H}, \mathrm{CH}_{2}$), $0.88\left(\mathrm{t}, 15 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. Anal. Calcd. (\%) for $\mathrm{C}_{78} \mathrm{H}_{132} \mathrm{O}_{6}: \mathrm{C}, 80.35 ; \mathrm{H}, 11.41$; Found: C, 80.37; H, 11.45.

Preparation of 2-(6-(4-nitrophenoxy)hexyloxy)-3,6,7,10,11-pentakis(dodecyloxy)triphenylene (D). To a solution of monohydroxy-3,6,7,10,11-pentakis(dodecyloxy)triphenylene ($2 \mathrm{~g}, 1.75$ mmol) and 4-(6-bromohexyloxy)nitrobenzene ($4.3 \mathrm{~g}, 14.2 \mathrm{mmol}$) in dry 2-butanone (30 mL), under nitrogen, was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.45 \mathrm{~g}, 10.5 \mathrm{mmol})$. The mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 16 h. Then water $(50 \mathrm{~mL})$ was added and the mixture was extracted with dichloromethane $(2 \times 50$
mL). The combined organic layers were dried over MgSO_{4} and the solvent was evaporated under vacuum. The crude product was purified by column chromatography (silica gel, hexane/dichloromethane $2: 1 \mathrm{v} / \mathrm{v}$ as eluent) to give a yellow waxy solid ($2.11 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.17\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system, $\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=$ $9.3 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}$), $7.83(\mathrm{~s}, 6 \mathrm{H}$, ArH-triphenylene $), 6.93\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}, \mathrm{XX}{ }^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system, $\left.J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=9.3 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.07(\mathrm{t}, 2 \mathrm{H}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 1.92\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{OCH}_{2} \mathbf{C H} 2\right), 1.70-1.26\left(\mathrm{~m}, 94 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. (\%) for $\mathrm{C}_{90} \mathrm{H}_{147} \mathrm{NO}_{9}$: C, 77.93 ; H, 10.68; N, 1.01. Found: C, $78.02 ; \mathrm{H}, 10.73 ; \mathrm{N}, 1.15$. Preparation of 2-(6-(4-acetilaminophenoxy)hexyloxy)-3,6,7,10,11pentakis(dodecyloxy)triphenylene (E). To a mixture of 2-(6-(4-nitrophenoxy)hexyloxy)-3,6,7,10,11-pentakisdodecyloxytriphenylene ($2 \mathrm{~g}, 1.44 \mathrm{mmol}$) in glacial acetic acid (100 ml), powder tin $(1.26 \mathrm{~g})$ was added. The mixture was refluxed for 4 h . After reaching room temperature, water $(200 \mathrm{ml})$ was added and the mixture was extracted with dichloromethane $(2 \times$ 100 ml). The combined organic layers were dried over MgSO_{4} and the solvent was evaporated under vacuum to give a white solid ($1.84 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArH}-$ triphenylene), $7.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system, $\left.\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=9.0 \mathrm{~Hz}\right)$, $7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.85\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}, \mathrm{XX}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system, $\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=9.0$ $\mathrm{Hz}), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.07\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.92(\mathrm{~m}, 14 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathbf{C H} 2\right), 1.70-1.26\left(\mathrm{~m}, 94 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. (\%) for $\mathrm{C}_{92} \mathrm{H}_{151} \mathrm{NO}_{8}$: C, 78.97; H, 10.88; N, 1.00. Found: C, 79.01; H, 10.95; N, 1.19.

Preparation of 2-(6-(4-aminophenoxy)hexyloxy)-3,6,7,10,11pentakis(dodecyloxy)triphenylene (F). To a mixture of 2-(6-(4-acetilaminophenoxy)hexyloxy)-3,6,7,10,11-pentakisdodecyloxytriphenylene ($1 \mathrm{~g}, 0.74 \mathrm{mmol}$) in ethanol (40 ml), $\mathrm{KOH}(1.26 \mathrm{~g})$ was added. The mixture was refluxed for 5 h and then the solvent was evaporated under vacuum. The residue was extracted with toluene $(3 \times 50 \mathrm{ml})$ and the solution obtained was washed with
water until neutral pH . The combined organic solution was dried over MgSO_{4} and the solvent was evaporated under vacuum to give a red solid ($0.73 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83$ (s, 6 H, ArH-triphenylene $), 6.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 6.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+\right.$ $\left.J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.07\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.40(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), $1.92\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{OCH}_{2} \mathbf{C H} 2\right), 1.70-1.26\left(\mathrm{~m}, 94 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calcd. (\%) for $\mathrm{C}_{90} \mathrm{H}_{149} \mathrm{NO}_{7}$: C, 79.65; H, 11.07; N, 1.03. Found: C, 79.72; H, 11.15; N, 1.12.

Preparation of the Imine ligand ($\mathbf{I m H}$). The imine was synthesized by acetic acid condensation of the 4 -octyloxy-benzaldehyde and 2-(6-(4-aminophenoxy)hexyloxy)-3,6,7,10,11pentakisdodecyloxytriphenylene ($0.200 \mathrm{~g}, 0.15 \mathrm{mmol}$) in toluene, as described for similar Schiff's bases. ${ }^{5}$ The imine was isolated as a cream solid $(0.148 \mathrm{~g}, 71 \%$ yield $)$. IR (KBr): $1627[v(\mathrm{C}=\mathrm{N})]$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCN}), 7.83\left(\mathrm{~s}, 6 \mathrm{H}\right.$, ArH-triphenylene), $7.81\left(\mathrm{~d}, 2 \mathrm{H}^{2,6}, \mathrm{ArH}\right.$, AA^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{*}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 7.19\left(\mathrm{~d}, 2 \mathrm{H}^{3,5}, \mathrm{ArH}\right.$, AA^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}$ sytem, $\left.\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.96\left(\mathrm{~d}, 2 \mathrm{H}^{3^{3}, 5^{\prime}}, \mathrm{ArH}\right.$, XX'part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.91\left(\mathrm{~d}, 2 \mathrm{H}^{2^{\prime}, 6^{\prime}}, \mathrm{ArH}\right)\right.$, XX^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 4.22(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.92-0.8$ (138 H , alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{105} \mathrm{H}_{169} \mathrm{NO}_{8}$: C, 80.15; H, 10.83; N, 0.89. Found: C, 80.25; H, 10.94; N, 0.92 .

Preparation of $(\boldsymbol{\mu} \mathbf{- O A c})_{\mathbf{2}}\left[\mathbf{P d}_{\mathbf{2}} \mathbf{I m}_{\mathbf{2}}\right] \mathbf{(1)}$. A mixture of palladium acetate $(0.021 \mathrm{~g}, 0.031 \mathrm{mmol})$ and imine $(0.147 \mathrm{~g}, 0.094 \mathrm{mmol})$ in glacial acetic acid was stirred at $50^{\circ} \mathrm{C}$ for 14 h . The solvent was removed and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through silica. The complex was crystallized as a yellow solid by concentration of the solution and addition of acetone (0.148 g , 91% yield). IR/KBr: $v(\mathrm{C}=\mathrm{N}): 1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83$ (s, 12H, ArH-triphenylene), $7.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 7.10\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}^{6}, \mathrm{ArH}\right), 6.68\left(\mathrm{~d}, 4 \mathrm{H}^{2,6}, \mathrm{ArH}\right), 6.65\left(\mathrm{~d}, 4 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}\right)$, $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \operatorname{spin} \operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.53\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.4\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}^{5}, \mathrm{ArH}\right), 6.05\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}^{3}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.13-3.49\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right)$;
1.92-0.8 (282H, alkylic protons $+\mathrm{CH}_{3} \mathrm{COO}$). Anal. Calcd. (\%) for $\mathrm{C}_{214} \mathrm{H}_{342} \mathrm{Pd}_{2} \mathrm{~N}_{2} \mathrm{O}_{20}$: C, 73.95; H , 9.92; N, 0.81. Found: C, 73.83; H, 9.80; N, 0.85 .

Preparation of $(\boldsymbol{\mu}-\mathbf{C l})_{2}\left[\mathbf{P d}_{2} \mathbf{I m}_{\mathbf{2}}\right]$ (2). To a stirred solution of $(\mu-\mathrm{OAc})_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right](0.079 \mathrm{~g}, 0.027$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added dropwise a stoichiometric amount of a HCl solution in methanol $(0.024 \mathrm{M}, 2 \mathrm{ml})$. After stirring at room temperature for 1 hour the solution was evaporated to dryness. Addition of acetone $(10 \mathrm{ml})$ afforded the chloro-bridged complex as a yellow solid which was purified by column chromatography (silica gel, dichloromethane as eluent) ($0.054 \mathrm{~g}, 55 \%$ yield). IR IR/KBr: $v(\mathrm{C}=\mathrm{N}): 1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~s}, 12 \mathrm{H}$, ArH-triphenylene), $7.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HCN}), 7.28\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}^{6}, \mathrm{ArH}\right)$), $7.19\left(\mathrm{~d}, 4 \mathrm{H}^{2,}{ }^{2}, \mathrm{ArH}\right), 6.88$ $\left(\mathrm{d}, 4 \mathrm{H}^{3^{\prime}, 5}, \mathrm{ArH}\right), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \operatorname{spin} \operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.83(\mathrm{~d}, \mathrm{~J}=2.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}^{3}, \mathrm{ArH}\right), 6.54\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 2 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.01(\mathrm{t}, 4 \mathrm{H}$, OCH_{2}), $3.93\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 1.92-0.8 (276H, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{210} \mathrm{H}_{336} \mathrm{Pd}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{16}$: C, 73.56; H, 9.88; N, 0.82. Found: C, $73.71 ; \mathrm{H}, 9.63 ; \mathrm{N}, 1.02$.

Preparation of $(\boldsymbol{\mu}-\mathrm{Br})_{2}\left[\mathbf{P d}_{2} \mathbf{I m}_{2}\right]$ (3). A mixture of $(\mu-\mathrm{Cl})_{2}\left[\mathrm{Pd}_{2} \operatorname{Im}_{2}\right](0.100 \mathrm{~g}, 0.029 \mathrm{mmol})$, potassium bromide ($0.138 \mathrm{~g}, 1.16 \mathrm{mmol}$) in dichloromethane/acetone ($20 \mathrm{ml} / 10 \mathrm{ml}$) was refluxed for 5 hours. The resulting suspensión was evaporated to dryness. The complex was extracted in dichloromethane $(25 \mathrm{ml})$ and the insoluble potassium chloride was filtered off. Evaporation of the dichloromethane solution and addition of acetone $(20 \mathrm{ml})$ afforded the complex as a yellow solid, which was filtered, washed with acetone and dried $(0.076 \mathrm{~g}, 75 \%$ yield $) . \mathrm{IR} / \mathrm{KBr}: ~ v(\mathrm{C}=\mathrm{N}): 1609$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83\left(\mathrm{~s}, 12 \mathrm{H}\right.$, ArH-triphenylene), $7.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HCN}), 7.26\left(\mathrm{~d}, \mathrm{~J}_{6,5}=8.3\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}^{6}, \mathrm{ArH}\right), 7.21\left(\mathrm{~d}, 4 \mathrm{H}^{2^{\prime}, 6^{\prime}}, \mathrm{ArH}\right), 7.02\left(\mathrm{~d}, 4 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}\right), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+\right.$ $\left.J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{*}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.89\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.2 \mathrm{~Hz}, 2 \mathrm{H}^{3}, \mathrm{ArH}\right), 6.53\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.2 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.92\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.92-0.8(276 \mathrm{H}$, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{210} \mathrm{H}_{336} \mathrm{Pd}_{2} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{16}$: C, 71.70; H, 9.63; N, 0.80. Found: C, Found: C, 71.54; H, 9.49; N, 0.99.

Preparation of $(\mu-\mathbf{C l})\left(\mu-\mathbf{S C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}+1}\right)\left[\mathrm{Pd}_{2} \mathbf{I m}_{2}\right], \mathbf{n}=\mathbf{6}$ (4), 12 (5). To a solution of $(\mu-\mathrm{Cl})_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$ (0.03 mmol) in 20 mL of dichloromethane was added $\left[\mathrm{AgSC}_{n} \mathrm{H}_{2 n+1}\right]$ (0.04 mmol). The mixture was stirred in the dark for 5 h at room temperature. After filtering off the AgCl precipitate, ethanol $(20 \mathrm{~mL})$ was added. The resulting solution was concentrated to a small volume affording the complex as a yellow solid, which was filtered, washed with ethanol and dried.

$$
\mathbf{n}=\mathbf{6}: 0.077 \mathrm{~g}, 73 \% \text { yield. IR/KBr: } v(\mathrm{C}=\mathrm{N}): 1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HCN}),
$$ 7.83 (s,12H, ArH-triphenylene), 7.39 (d, $\mathrm{J}_{3,5}=2.3 \mathrm{~Hz}, 2 \mathrm{H}^{3}, \mathrm{ArH}$), $7.27\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}^{6}, \mathrm{ArH}\right)$, $7.19\left(\mathrm{~d}, 4 \mathrm{H}^{2^{2}, 6^{\prime}}, \mathrm{ArH}\right), 6.77\left(\mathrm{~d}, 4 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}\right), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \operatorname{spin} \operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.56\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 2 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.01(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.96\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.97\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right) ; 1.92-0.8(287 \mathrm{H}$, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{216} \mathrm{H}_{349} \mathrm{Pd}_{2} \mathrm{ClN}_{2} \mathrm{O}_{16} \mathrm{~S}: \mathrm{C}, 73.89 ; \mathrm{H}, 10.04 ; \mathrm{N}, 0.80$. Found: C, 73.57; H, 9.91; N, 0.84. $\mathbf{n}=\mathbf{1 2}: 0.084 \mathrm{~g}, 71 \%$ yield. $\mathrm{IR} / \mathrm{KBr}: v(\mathrm{C}=\mathrm{N}): 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta \delta 7.91(\mathrm{~s}, 2 \mathrm{H}$, HCN), 7.83 ($\mathrm{s}, 12 \mathrm{H}$, ArH-triphenylene), $7.40\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.3 \mathrm{~Hz}, 2 \mathrm{H}^{3}, \mathrm{ArH}\right.$), $7.27(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}^{6}, \operatorname{ArH}\right), 7.20\left(\mathrm{~d}, 4 \mathrm{H}^{2^{\prime}, 6^{\prime}}, \mathrm{ArH}\right), 6.77\left(\mathrm{~d}, 4 \mathrm{H}^{3^{3}, 5^{\prime}}, \mathrm{ArH}\right), \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}\right.$ $\left.=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.56\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 2 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05$ $\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.97\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right) ; 1.92-0.8(299 \mathrm{H}$, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{222} \mathrm{H}_{361} \mathrm{Pd}_{2} \mathrm{ClN}_{2} \mathrm{O}_{16} \mathrm{~S}: \mathrm{C}, 74.16 ; \mathrm{H}, 10.14 ; \mathrm{N}, 0.78$. Found: C, $74.16 ; \mathrm{H}, 10.05$; N, 0.92 .

Preparation of [PdIm(acac)] (6). To a solution of $(\mu-\mathrm{Cl})_{2}\left[\mathrm{Pd}_{2} \operatorname{Im}_{2}\right](0.095 \mathrm{~g}, 0.028 \mathrm{mmol})$ in 30 mL of dichloromethane, $[\mathrm{Tl}(\mathrm{acac})](0.017 \mathrm{~g}, 0.055 \mathrm{mmol})$ was added. The mixture was stirred for 1 h at room temperature. After filtering off the TlCl precipitate, ethanol $(30 \mathrm{~mL})$ was added. The resulting solution was concentrated to a small volume affording the complex as a pale yellow solid, which was filtered, washed with ethanol and dried ($0.079 \mathrm{~g}, 72 \%$ yield). IR/KBr: $v(\mathrm{C}=\mathrm{N})+$ $v(\mathrm{C}=\mathrm{O})+v(\mathrm{C}=\mathrm{C}): 1585 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCN}), 7.83$ (s, 6H, ArHtriphenylene $), 7.33\left(\mathrm{~d}, 2 \mathrm{H}^{2^{\prime}, 6^{\prime}}, \mathrm{ArH}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8\right.$
$\left.\mathrm{Hz}, J_{\mathrm{A}, \mathrm{A}^{*}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 7.27\left(\mathrm{~d}, \mathrm{~J}_{6,5}=8.3 \mathrm{~Hz}, 1 \mathrm{H}^{6}, \mathrm{ArH}\right), 7.10\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.4 \mathrm{~Hz}, 1 \mathrm{H}^{3}, \mathrm{ArH}\right), 6.87(\mathrm{~d}$, $2 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}, \mathrm{XX}{ }^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.59$ (dd, $\mathrm{J}_{5,6}=8.3 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}^{5}, \mathrm{ArH}$), $5.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{acac}), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{acac}\right), 1.87(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{acac}\right), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, OCH_{2}), 1.92-0.8 (138H, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{110} \mathrm{H}_{175} \mathrm{PdNO}_{10}: \mathrm{C}, 74.29 ; \mathrm{H}, 9.94$; $\mathrm{N}, 0.79$. Found: C, $73.98 ; \mathrm{H}, 9.78 ; \mathrm{N}, 0.81$.

Preparation of $[\operatorname{PdImCl}(\mathbf{C N R})]$. To a solution of $\left(\mu-\mathrm{Cl}_{2}\right)_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right](0.027 \mathrm{mmol})$ in 20 mL of dichloromethane, the corresponding CNR $(0.054 \mathrm{mmol})$ was added. After stirring for 15 minutes, the resulting solution was concentrated and addition of acetone afforded the complexes as yellow solids, which were filtered and dried.
[PdImCl($\left.\mathbf{C N C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{O C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{2 5}}\right)$] (7): $0.066 \mathrm{~g}, 62 \%$ yield. IR/KBr: $v(\mathrm{C} \equiv \mathrm{N}): 2198 \mathrm{~cm}^{-1}\left(2200 \mathrm{~cm}^{-}\right.$ $\left.{ }^{1} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C}=\mathrm{N}): 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCN}), 7.83(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArH}-$ triphenylene $)$, $7.47\left(\mathrm{~d}, 2 \mathrm{H}\right.$, ArH-isocyanide, AA^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}}\right.$ $\left.=9.1 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 7.36\left(\mathrm{~d}, \mathrm{~J}_{6,5}=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{6}, \mathrm{ArH}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}^{2^{2}, 6^{\prime}}\right.$, $\mathrm{ArH}, \mathrm{AA}^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime} \operatorname{spin} \operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.9 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.92\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{3}, \mathrm{ArH}\right)$, 6.91 (d, 2H, ArH-isocyanide, XX^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=9.1 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.87\left(\mathrm{~d}, 2 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}, \mathrm{XX}\right.$ ' part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.9 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}}\right)^{\prime}$, $6.63\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.4 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.96(\mathrm{~m}, 6 \mathrm{H}$, OCH_{2}), 1.92-0.8 (161H, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{124} \mathrm{H}_{197} \mathrm{PdClN}_{2} \mathrm{O}_{9}$: C, 74.38; H, 9.94; N, 1.40. Found: C, 74.65 ; H, 9.89 ; N, 1.41.
[PdImCl($\left.\left.\mathbf{C N C}_{6} \mathbf{H}_{\mathbf{3}}\left(\mathbf{O C}_{12} \mathbf{H}_{\mathbf{2 5}}\right)_{\mathbf{2}}\right)\right]$ (8): $0.078 \mathrm{~g}, 67 \%$ yield. IR/KBr: $v(\mathrm{C} \equiv \mathrm{N}): 2198 \mathrm{~cm}^{-1}\left(2201 \mathrm{~cm}^{-}\right.$ $\left.{ }^{1} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C}=\mathrm{N}): 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCN}), 7.83$ (s, 6H, ArHtriphenylene $)$, $7.36\left(\mathrm{~d}, \mathrm{~J}_{6,5}=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{6}, \mathrm{ArH}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}^{2,, 6}, \mathrm{ArH}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin $\operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{-}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 7.10(\mathrm{dd}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, ArHisocyanide), $7.02(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$-isocyanide $), 6.93\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{3}, \mathrm{ArH}\right), 6.88(\mathrm{~d}$,
$2 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}, \mathrm{XX}{ }^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{*}} \approx J_{\mathrm{X}, \mathrm{X}}{ }^{\prime}\right), 6.83(\mathrm{~d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$-isocyanide $), 6.63\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.4 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.96\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.94-0.8(184 \mathrm{H}$, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{136} \mathrm{H}_{221} \mathrm{PdClN}_{2} \mathrm{O}_{10}$: C, $74.72 ; \mathrm{H}, 10.19 ; \mathrm{N}, 1.28$. Found: C, $74.90 ; \mathrm{H}, 10.22 ; \mathrm{N}, 1.39$.
[$\left.\mathbf{P d I m C l}\left(\mathbf{C N C}_{6} \mathbf{H}_{\mathbf{2}}\left(\mathbf{O C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{2 5}}\right)_{3}\right)\right] \mathbf{(9)}: 0.090 \mathrm{~g}, 63 \%$ yield. IR/KBr: $v(\mathrm{C} \equiv \mathrm{N}): 2197 \mathrm{~cm}^{-1}\left(2199 \mathrm{~cm}^{-}\right.$ $\left.{ }^{1} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v(\mathrm{C}=\mathrm{N}): 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \delta 7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCN}), 7.83(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArH}-$ triphenylene $)$, $7.37\left(\mathrm{~d}, \mathrm{~J}_{6,5}=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{6}, \mathrm{ArH}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}^{2,} 6^{\prime}, \mathrm{ArH}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin $\operatorname{system}\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}} \approx J_{\mathrm{X}, \mathrm{X}^{\prime}}\right), 6.93\left(\mathrm{~d}, \mathrm{~J}_{3,5}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{3}, \mathrm{ArH}\right), 6.88(\mathrm{~d}$, $2 \mathrm{H}^{3^{\prime}, 5^{\prime}}, \mathrm{ArH}, \mathrm{XX}{ }^{\prime}$ part of $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system $\left(\mathrm{N}_{\mathrm{A}, \mathrm{X}}=J_{\mathrm{A}, \mathrm{X}}+J_{\mathrm{A}, \mathrm{X}^{\prime}}=8.8 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{\prime}} \approx J_{\mathrm{X}, \mathrm{X}}\right), 6.74(\mathrm{~s}$, , $2 \mathrm{H}, \mathrm{ArH}$-isocyanide), $6.63\left(\mathrm{dd}, \mathrm{J}_{5,6}=8.4 \mathrm{~Hz}, \mathrm{~J}_{5,3}=2.3 \mathrm{~Hz}, 1 \mathrm{H}^{5}, \mathrm{ArH}\right), 4.22\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.96$ $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.94-0.8\left(207 \mathrm{H}\right.$, alkylic protons). Anal. Calcd. (\%) for $\mathrm{C}_{148} \mathrm{H}_{245} \mathrm{PdClO}_{11} \mathrm{~N}_{2}: \mathrm{C}$, 74.99; H, 10.42; N, 1.18. Found: C, 74.87; H, 10.21; N, 1.14.

Representative DSC scans

Figure S1. DSC scans for $\left(\mu-\mathrm{Cl}_{2}\right)_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$

Figure S2. DSC scans for $(\mu-\mathrm{Br})_{2}\left[\mathrm{Pd}_{2} \operatorname{Im}_{2}\right]$

Figure S3. DSC scans for $(\mu-\mathrm{Cl})\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{13}\right)\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$

Figure S4. POM textures (x 100) on cooling from the isotropic liquid. a) $(\mu-\mathrm{Cl})_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$ (2) at $49{ }^{\circ} \mathrm{C}$; b) $(\mu-\mathrm{Br})_{2}\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$ (3) at $45{ }^{\circ} \mathrm{C}$; c) $(\mu-\mathrm{Cl})\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{13}\right)\left[\mathrm{Pd}_{2} \mathrm{Im}_{2}\right]$ (4) at $50{ }^{\circ} \mathrm{C}$; d) $\left[\mathrm{PdImCl}\left(\mathrm{CNC}_{6} \mathrm{H}_{2}\left(\mathrm{OC}_{12} \mathrm{H}_{25}\right)_{3}\right)\right](9)$ at $58^{\circ} \mathrm{C}$.

X-ray diffraction studies

Figure S5. (a) X-ray diffraction pattern of compound 3 at $45^{\circ} \mathrm{C} . q$ is the diffraction vector. (b) Small angle region with the corresponding indexation scheme.

Figure S6. (a) X-ray diffraction pattern of compound 4 at $50^{\circ} \mathrm{C} . q$ is the diffraction vector. (b) Small angle region with the corresponding indexation scheme.

Figure S7. (a) X-ray diffraction pattern of compound 5 at $50^{\circ} \mathrm{C} . q$ is the diffraction vector. (b) Small angle region with the corresponding indexation scheme.

References

[^0]
[^0]: ${ }^{1}$ Velapoldi, R. A.; Tønnesen, H. H. Journal of Fluorescence, 2004, 14, 465-472.
 ${ }^{2}$ Bushby, R. J.; Boden, N.; Kilner, C. A.; Lozman, O. R.; Lu, Z.; Liu, Q.; Thornton-Pett, M. A. J. Mater. Chem., 2003, 13, 470-474.
 ${ }^{3}$ Sauer, S.; Steinke, N.; Baro, A.; Laschat, S.; Giesselmann, F.; Kantlehner, W. Chem. Mater., 2008, 20, 1909-1915.
 ${ }^{4}$ Kumar, S.; Manickam, M. Synthesis 1998, 1119-1122.
 ${ }^{5}$ Ros, M. B.; Ruiz, N.; Serrano, J. L.; Espinet, P. Liq. Cryst. 1991, 9, 77-96. b) Coco, S.; Cordovilla, C.; Espinet, P.; Gallani, J.-L.; Guillon, D.; Donnio, B. Eur. J. Inorg. Chem. 2008, 1210-1218.

