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Abstract
Oscillatory systems in biology are tightly regulated process where the individual compo-

nents (e.g. genes) express in an orderly manner by virtue of their functions. The temporal

order among the components of an oscillatory system may potentially be disrupted for vari-

ous reasons (e.g. environmental factors). As a result some components of the system may

go out of order or even cease to participate in the oscillatory process. In this article, we

develop a novel framework to evaluate whether the temporal order is unchanged in different

populations (or experimental conditions). We also develop methodology to estimate the

order among the components with a suitable notion of “confidence.” Using publicly available

data on S. pombe, S. cerevisiae and Homo sapiens we discover that the temporal order

among the genes cdc18;mik1; hhf1; hta2; fkh2 and klp5 is evolutionarily conserved from

yeast to humans.

Introduction
Oscillatory systems arise naturally in biological sciences such as in, circadian biology [1–3], cell
biology [4–9], endocrinology [10], metabolic cycle [11], evolutionary psychology [12, 13],
motor behavior [14], and so on. An unperturbed oscillatory system is a tightly regulated tem-
poral process with several components that execute their functions in an orderly manner like
an orchestra. Thus a temporal order among the components is intrinsic to an oscillatory sys-
tem. For example, it is well-known that our daily sleep and wake patterns lead to a sequence of
biochemical events in the body in an orderly manner, such as breakdown of molecules to gen-
erate energy (catabolism) during the wake period and anabolism that takes place during the
sleep period where growth of tissues occurs. Discussing the oscillations of individual neurons
of the suprachiasmatic nuclei (SCN) in a 24 hour period, [15] describe the temporal order of
circadian genes such as Bmal1, Clock, Period, Cryptochrome, Rev-erb [3]. The effect of sleep
patterns on the temporal order of several circadian genes and consequently the effect on oxida-
tive stress and metabolism was discussed in [16].

The common underlying question of scientific interest is to determine (relative) time to
peak expression of genes participating in the oscillatory system [7, 12], i.e. to determine the
underlying temporal order. A related question of interest is to understand the differences in the
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oscillatory systems of different populations or experimental groups such as; environmental
conditions, species, organs within a species [17, 18], etc. Often raw expressions from time
course experiments are used to make such inferences. For example studying circadian genes in
various tissues in a whole animal and those in a cell line, [2] note that “relative phasing of core
clock genes was estimated by visual inspection and plotted on a circular phase map.” Although
such visual methods are easy to understand and implement, and widely used, they ignore
uncertainty associated with the estimated values of angular parameters. Consequently it is not
entirely surprising that there are disagreements in the literature regarding phases and phase
order of various cell-cycle genes, even within the same species let alone across species [19].

Notice that, in this paper, we are not trying to establish which genes are periodic [20, 21] or
to cluster genes according to their expression pattern [22, 23] but to see if the different phase
angles assigned in different experiments to orthologs coming from several species are compati-
ble with a common ordering of the phase angles of these genes across the species considered.

It is important to note that phase or time to peak expression of an oscillatory gene is a
parameter on a unit circle and not on the real line. Consequently standard methods of analysis,
such as the t-test or ANOVA, designed for real line data, cannot be used. Toy example in S1
File amplifies the problem of using such methods for angular data. Yet, they are commonly
used in the literature [16], which may potentially result in incorrect or meaningless interpreta-
tions of the data.

Analysis of angular data has a long history with well-developed theory and methodology
documented in several books [24, 25]. Until recently much of the literature was developed for
drawing inferences on individual parameters, but not for studying order among a set of angular
parameters (e.g. phases of a system of oscillatory genes), which is the focus of this article. More
precisely, suppose an oscillatory system consists of genes, g1, g2, g3, . . ., g8, with phase angles ϕ1,
ϕ2, . . ., ϕ8, respectively. Then a researcher is typically interested in determining the circular
order (temporal order) among these phase angles. For example, determine whether g1 peaks
before g2 which peaks before g3, etc. g7 peaks before g8 and g8 before g1. Mathematically, deter-
mine if ϕ1 precedes ϕ2 which precedes ϕ3 and so on ϕ7 precedes ϕ8 which in turn precedes ϕ1
around the unit circle (e.g. Fig 1). We shall denote the order by ϕ1 � ϕ2 � � � � � ϕ7 � ϕ8 � ϕ1.

For two or more study groups (e.g. organs or species, etc.), researchers are typically inter-
ested in testing whether the temporal order of a set of oscillatory genes is conserved. If so, they
are interested in discovering the common temporal order with an estimate of confidence. In
this article we introduce a statistical framework to address such problems. We illustrate the
methodology by discovering a temporal order among a core set of cell cycle genes that is con-
served from yeast to humans. Although the methodology described in this paper is suitable for
any oscillatory system, for convenience of exposition we use cell-cycle terminology.

The temporal order derived by the proposed methodology could potentially help biologists
to discover or explore novel regulatory relationships among the genes in the oscillatory system.
Thus our methodology can potentially lead to new hypotheses for biologists to study.

Materials and Methods

Estimation of temporal order
Before describing the methodology to test hypothesis regarding the circular order among a set
of oscillatory genes, we discuss the problem of estimating their common unknown circular
order (assuming it exists). Using this estimator we then develop a statistical procedure to test
the null hypothesis that a given set of oscillatory genes in two or more study groups (or popula-
tions) share the same temporal order.
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In addition to estimating the unknown phase angles ϕ1, ϕ2, . . ., ϕn the goal is also to estimate
the true relative order among them, denoted by O = (o1, o2, . . ., on), where ϕo1 � ϕo2 � � � � �
ϕon � ϕo1. Note that O is rotation invariant. Thus by moving the pole around the circle between
each consecutive pair of angular parameters, we obtain n possible equivalent orders to O. The
goal is to estimate O using data obtained from p experiments. We will denote the estimator of

O as ~O and is obtained by the procedure explained below.

Fig 1. An illustration of the temporal order among genes g1, g2, . . ., g8 whose phase angles are in order along a circle (in counterclock-wise
direction).

doi:10.1371/journal.pone.0124842.g001
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Typically, researchers conduct time course gene expression studies to obtain the phases of
each cell-cycle gene. For the ith gene in the jth experiment, let θij denote the estimate of phase
angle ϕi obtained by using the Random Periods Model, RPM [26]. Since the estimates obtained
from RPM are not constrained by any order among the phase angles, they are called the uncon-
strained estimators. Accordingly, let

Yj ¼ ðy1j; . . . ; yij; . . . ; ynjÞ0 8j ¼ 1; � � � ; p;

denote the vector of RPM estimators of (ϕ1, ϕ2, . . ., ϕn)0 obtained from the jth experiment.
Stacking all such estimators for the p experiments together, we have Θ = [Θ1, . . ., Θp].

We estimate O using the minimum distance principle as follows. LetO denote the set of all
possible orders among ϕ1, ϕ2, . . ., ϕn. Using the data from the jth experiment, under a given

order O 2O, let ~YðOÞ
j ¼ ð~yðOÞ

1j ; ~y
ðOÞ
2j ; . . . ; ~y

ðOÞ
nj Þ0 denote the circular isotonic regression estimator

(CIRE) of ϕ1, ϕ2, . . ., ϕn under the circular order constraint O [8].
As in [4] and [8] the sum of circular errors (SCE), which serves as the distance between Θj

and the order O, is defined as follows.
Definition 1 The Sum of Circular Errors (SCE) corresponding to circular order O for data in

the jth experiment,Θj = (θ1j, θ2j, . . ., θnj)0, is given by:

SCEðYj;
~YðOÞ

j Þ ¼
Xn
i¼1

f1� cos ðyij � ~yðOÞ
ij Þg:

For a given order O, its mean sum of circular errors (MSCE) over all p experiments is given
by:

dðY;OÞ ¼ MSCEðY; ~YðOÞÞ ¼
Xp

j¼1

oj

1

n
SCEðYj;

~YðOÞ
j Þ; ð1Þ

where ωj is the weight associated with jth experiment. Suppose θij *M(ϕi, κj) whereM denotes
the von-Mises distribution with angular mean ϕi and concentration parameter κj (known),

then we define oj ¼ kjPp

j¼1
kj
.

The optimum circular order can be obtained by solving the following minimization prob-
lem:

min
O2O

dðY;OÞ ¼ min
O2O

Xp

j¼1

oj

1

n
SCEðYj;

~YðOÞ
j Þ: ð2Þ

The above problem resembles the classical problem of determining the “true” order or
ranks among n objects using the scores assigned by p independent “judges”. For example, sup-
pose there are n gymnasts competing in an event and there are p judges assigning scores to
each of the contestants. The goal is to estimate the true rank among the n contestants using the
scores assigned by the p judges. Although this NP-hard problem [27] is well-studied in the
Euclidean space [28–31], it has not been discussed for other geometries such as the circle. Due
to the underlying geometry, the Euclidean space based methods cannot be directly applied
here.

Since the above formulation is NP hard even for real line data, we obtain an approximate
solution by reformulating Eq (2) as a traveling salesman problem (TSP) which is known to be
NP-complete [32, 33].

The TSP is well-studied in the graph theory literature [34–36] and is formulated using a
weighted graph which is a triple consisting a set of nodes, a set of edges and a cost associated
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with each edge. The purpose of TSP is to determine the tour with minimum total cost, where a
tour is the path traveled by a salesman such that all nodes are visited and each node is visited
exactly once. In our application genes are the nodes, edge is the path between two genes and a
tour is a circular order among the genes. For the simulations we have performed with a moder-
ate number of elements to be ordered (notice that, as usual in these problems, the optimum
value cannot be computed in a reasonable time when the number of elements increases), this
TSP approach performed very well so that we expect the tour with minimum total cost to be a
good approximation to our original problem Eq (2).

To determine the tour with minimum total cost we first define the total cost of traveling

between nodes h and k in the p experiments (Ehk) as the weighted sum Ehk ¼
Pp

j¼1 ojE
j
hk, where

Ej
hk is the cost in the jth experiment. For each j, the cost Ej

hk is defined through a measure of dis-
tance between the nodes h and k. A common measure of distance between a pair of points on a
unit circle is 1 − cos(θkj − θhj) [25]. This measure is symmetric but cell-cycle is a biological pro-
cess where the functional relations between genes are not symmetric. Without loss of generality
the sequential order of events (or phases) of cell-cycle may be represented in the counter-clock-
wise direction around the unit circle. For this reason we define distances asymmetrically,
depending upon whether the salesman is traveling counter-clockwise (d1) or clockwise (d2) as
follows:

dj
1ðh; kÞ ¼

1� cos ðykj � yhjÞ if 0 � ykj � yhj � p

3� cos ðykj � yhj � pÞ if p < ykj � yhj � 2p;

(

dj
2ðh; kÞ ¼

3� cos ðykj � yhj � pÞ if 0 � ykj � yhj � p

1� cos ðykj � yhjÞ if p < ykj � yhj � 2p:

(

Asymmetric distances are common in the application of TSP and are widely studied [37].
Using the above distances, we define the cost of traveling between the nodes h and k in the
experiment j as follows:

Ej
hk ¼ minðdj

1; ad
j
2Þ;

where α represents the penalty for traveling in the clockwise direction. Based on extensive sim-
ulation studies using different values of α, we found α = 3 provided the best results and hence
we use this value throughout the paper.

Let X denote an n × nmatrix where xhk = 1 if the salesman travels directly from node h to
node k, otherwise let xhk = 0. No sub-tours are allowed. Let X denote the collection of all such
matrices which represent a tour. Then, TSP reduces to solving the following minimization
problem

min
X2X

X
hk

xhkEhk ¼ min
X2X

Xp

j¼1

oj

X
hk

xhkE
j
hk

 !
: ð3Þ

We denote as ~X 0 the solution of Eq (3). The resulting order among the nodes denoted as ~O0

is taken to be an approximate solution to Eq (2). To improve this approximation, we refine it
by eliminating any local bumps (i.e misalignment of order). The chances of misalignment of
order can occur locally as the number of nodes (genes) increases or as some nodes get closer to
each other. We accomplish this by modifying the Local Kemenization algorithm that was origi-
nally developed by [38] for the Euclidean data to the present context of circular data. We call
the resulting algorithm the Circular Local Minimization algorithm. It consists of checking each
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consecutive triple (h, k, l) of adjacent elements in ~O0 (while preserving the estimated circular
order among rest of the elements) to see if a permutation of oh, ok, ol improves the result.
Namely, we calculate the MSCE as defined in Eq (1) between the possible new circular order,
with the permutation, and the data. If the new MSCE is smaller then the circular order is

appropriately changed. The resulting refined estimate is ~O.

Comparison of temporal orders
Suppose there are S experimental groups and n genes in each group that oscillate. Let Os, s = 1,
2, . . ., S, denote the order among the phase angles of the n genes in the sth group. Then the
problem of interest is to test:

H0 : O1 ¼ O2 ¼ . . . ¼ OS ¼ O�

H1 : H0 not true:

The equality sign “=” in the null hypothesis denotes “identical circular order” which would
be represented by O�. Corresponding to the sth group, s = 1, 2, . . ., S, suppose there are ps exper-

iments. Let P ¼PS
s¼1 ps denote the total number of experiments. Then the above hypothesis

can be tested along the lines of classical analysis of variance (ANOVA). Let ~Os denote the esti-

mated order obtained with the experiments from the sth group and ~O� denotes the estimated
common order under the above null hypothesis obtained by using the data from P experiments
combining data from all S groups.

Let dðYðsÞ; ~OsÞ ¼
Pps

j¼1 o
s
j
1
n
SCEðYðsÞ

j ; ~Yð~OsÞ
j Þ denote the corresponding value of the objective

function Eq (2) for the experiments in the sth group. Here os
j denotes the weight corresponding

to the jth experiment in the sth experimental group. Adding over all S experimental groups we

have the following which resembles the within groups variability,
PS

s¼1 dðYðsÞ; ~OsÞ.
Let dðYð:Þ; ~O�Þ ¼

PS
s¼1

Pps
j¼1 o

s
j
1
n
SCEðYðsÞ

j ; ~Yð~O�Þ
j Þ denote the corresponding value of the

objective function Eq (2) using the data for all P experiments. This expression resembles the
global variability. Hence, resembling the classical ANOVA, one may consider any monotonic
function of the following test statistic for testing above null hypothesis:

T ¼ dðYð:Þ; ~O�Þ �
PS

s¼1 dðYðsÞ; ~OsÞ
dðYð:Þ; ~O�Þ

:

Since not all species (in this case the experimental groups) are represented by equal number
of experiments and not all experiments are subject to same experimental error/noise, we use a
“weighted” resampling method to derive the p-values based on T that takes into account all
such features of the data. The goal is to create artificial species that resemble the original species
in terms of the expected proportions of experiments within each species. We therefore select
experiments randomly with replacement and equal probabilities per species and per experi-
ment within species. Thus each experiment in the sth species has a probability 1/(Sps) of selec-
tion. Under this sampling scheme we select P random experiments with replacement from the
P actual experiments and assign the first p1 to artificial species 1, the next p2 to artificial species
2 etc. The weights per experiment are suitably calculated with each resample. Extensive simula-
tion experiments, under a variety of configurations of phase angles and the order among phase
angles were conducted to evaluate the Type I error rate of the proposed resampling scheme.
Based on our results, detailed in the S3 File, we discover that the proposed resampling proce-
dure yields honest statistical test in the sense that the estimated Type I error never exceeds the
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nominal rate of 0.05 by more than a standard error. Furthermore, the proposed methodology
enjoys very high power even under minor departures from the null hypothesis.

For genes identified to satisfy a common global order, we use the above resampling proce-
dure in combination with the estimation procedure described in the previous section to esti-
mate the common global partial order with confidence as follows. We take the union of most
frequent orders coherent with the common global order to deduce the global partial order. The
sum of the frequencies of those orders relative to the total number of resamples provides the
confidence coefficient. To illustrate the methodology, suppose g1, g2, . . ., g5 are determined to
satisfy common global order among 3 species according to the above test. Suppose we obtain
1000 samples according to the above resampling scheme and for 600 of them the global order
is g1 � g3 � g4 � g5 � g2 � g1 and for 300 of them the global order is g1 � g3 � g4 � g2 � g5 �
g1. For the remaining 100 resamples, suppose the global orders are arbitrarily distributed
among the other possible orders. Note that in a large proportion of resampled data the order
between g2 and g5 is not consistent. In 60% of the resamples g5 precedes g2 whereas in 30% of
the resamples the order is reversed. In such cases we assign a “partial order” to indicate that the
order between g2 and g5 is undetermined. Thus the global partial order in this toy example is
given by g1 � g3 � g4 � {g5, g2}� g1 with 90% confidence.

Results

Motivation and background
Since cell division cycle is an essential process for growth and development of all living organ-
isms, there has been considerable interest among cell biologists to identify cell-cycle genes that
are evolutionarily conserved in their functions across multiple species [5–7, 9, 19, 39]. Cell-
cycle is a well-coordinated process where events must take place in an orderly fashion for a suc-
cessful cell division. Hence genes participating in the cell division cycle express in an order
according to their function. Throughout this section we focus on only those cell-cycle genes
that have a periodic or oscillatory expression (i.e. dynamic) and not those genes that participate
in cell division cycle but are static in their expression. Thus a question of interest is to deter-
mine, among periodically expressed genes, whether the order of peak expression is evolution-
arily conserved. Such questions were extensively discussed and debated during the past decade
using gene expression data obtained from budding yeast (S. cerevisiae), fission yeast (S. pombe)
and human Hela cell [5–7, 9]. There are several biological complexities associated with such
questions. Firstly, there is considerable disagreement in the literature on the number of genes
that are periodic in multiple species [5–7, 9]. As noted in [19], there is considerable disagree-
ment among studies even within the same species. They observed that the three recent studies
on the fission yeast [6, 7, 9], together identified about 1400 genes to be periodic, yet only about
10% of these genes were common to all three studies and only about 30% were common to any
pair of studies. Given that there is such a large disagreement among studies even within the
same species, it is not surprising that there are diverse opinions regarding the number of genes
that are periodic in the two species of yeast, namely, the budding yeast (S. cerevisiae) and the
fission yeast (S.pombe). Conservative estimates of the number of genes that are periodic in
both species of yeast is about 35 and the number that are periodic in the two yeasts and humans
is about 11, see [4]. Furthermore, among genes that were identified to be periodic within the
same species by different studies, there are disagreements regarding the phase of peak expres-
sion of some genes. For example, [40] assigned E2F5, an important transcription factor, to G2/
M phase whereas according [41, 42] it peaks during G1/S phase. In the case of fission yeast, [7]
assigned cdc18, a gene whose protein is essential for the initiation of DNA replication, to G1/S
phase whereas [6] as well as cyclebase (www.cyclebase.org) [43] assigned the gene to peak in
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the M phase. It has been a challenging problem to determine if the phase of a cell-cycle gene is
conserved evolutionarily. This is partly because, in addition to the above mentioned issues, the
amount of time a cell spends in a given phase is not evolutionarily conserved. For example, a
fission yeast cell spends more than 70% of its time in the G2 phase while a budding yeast cell
spends about equal time in all phases.

Secondly, a gene needs to be converted into protein before it performs its function. So, even
if a cell-cycle gene’s function is conserved evolutionarily, its phase may not necessarily be.
Thirdly, for a given gene in a particular species it may have multiple orthologs in other species,
hence it is a many to many mapping and not a one to one mapping. Since not all orthologs are
equally periodic (using the periodicity measure provided in cyclebase), it is a challenging prob-
lem to discuss conservation of phase across all orthologs of a gene. Thus it is not surprising for
[5] to state that these analysis reveal that periodic expression is poorly conserved at the level of
individual genes: conserved periodic expression across the organisms considered is observed in
only five cases and for only two of these is the timing conserved as well, namely histones H2A
andH4.

Although, for the above reasons, it may be difficult to ascertain if the phase of a cell-cycle
gene is evolutionarily conserved, it may be plausible that the relative order among a collection
of cell cycle genes may be evolutionarily conserved. An attempt was made in [4] to answer this
question by testing the null hypothesis that the relative order of a subset of cell-cycle genes is
conserved between fission yeast and budding yeast. They also performed a similar test between
fission yeast and human Hela cells. A drawback with their methodology is that they assume the
relative order of cell-cycle genes is known with certainty in one of the two species that are
being compared. This is analogous to the “one sample test”. Furthermore their methodology is
not suitable for testing for the order in more than two species. The present methodology, how-
ever, overcomes those deficiencies. In this section we illustrate the methodology by analyzing
the phase angle data on 11 cell-cycle genes that are known to be periodic in the 3 organisms. In
addition to testing whether the relative order is conserved among the 3 species, we discover the
order along with an estimate of confidence in the estimated order. Before proceeding further,
we like to remark that [4] do not draw distinctions between orthologs and paralogs since their
goal was to determine conservation of order among periodic genes. Again, as noted earlier, not
all orthologs of a gene across species are equally periodic -some may not be periodic at all. In
such cases, rather asking the question if the relative order of a gene is conserved across all spe-
cies for all orthologs of a gene, we limit only to the most periodic ortholog (as determined by
databases pombase and cyclebase). As in [4] we use the periodicity rank provided in cyclebase.
The only exception is human ortholog of ace2, which we took to be ZNF367.

Remark: For illustration purposes, in this section we are only considering the case where
one is interested in testing the order g1 � g2 � . . .� gn � g1 among a set of singleton genes g1,
g2, . . ., gn. However, as seen from the results of the analysis provided in the next section, for a
given data set, it is possible that our algorithm may declare a subset of these genes to have same
order relative to other genes (see Eq (5) in the next section).

If one is interested in the testing for the conservation order of groups of genes (or orthologs)
rather than singletons as above, then our methodology can be easily extended to test orders
among groups of genes. More precisely, our methodology can be extended to test the order

fg11; g12; . . . ; g1r1g � fg21; g22; . . . ; g2r2g � . . . � fgn1; gn2; . . . ; gnrng;

where the order among the genes (or orthologs) within {} is irrelevant but as a group they are
ordered with the previous and the next group. Thus our method can handle situations where a
biologist may be interested in studying the relative order of groups of cell-cycle genes. For

Temporal Order among the Components of an Oscillatory System

PLOSONE | DOI:10.1371/journal.pone.0124842 July 7, 2015 8 / 14



example, several cell-cycle genes encode proteins that make up large protein assemblies and
since all of the subunits within each assembly would be needed for the function of that assem-
bly to be carried out, one may be interested in testing for the order among such large assemblies
and not interested in the order among the elements within each assembly.

Determination of the common temporal order across species
We used the publicly available time course gene expression microarray data on humans (Hela
cell), the budding yeast and fission yeast. Specifically, we used the four human data obtained
from [40]; six budding yeast data (one from [44], another from [45], two from [46] and two
from [20] and ten fission yeast data (five by [9], three by [6] and two by [7]. Thus we had access
to data from 20 experiments conducted on 3 different species. We focused on the expression of
11 cell-cycle genes that are periodic in all 3 species (see Table 1). We estimated the phase angle
of each gene within each experiment by fitting the RPM [26]. These estimates, known as the
unconstrained estimates because they are obtained with no constraints of the phase angles, are
reported in Table A in S2 File. The κj values used to determine the ωj weights have been
obtained using the procedure developed in [4] and appear in Table B in S2 File.

To determine whether the temporal order is conserved across the 3 species, we first tested
the following hypotheses using all 11 genes:

H0 : Ofission yeast ¼ Obudding yeast ¼ Ohumans

H1 : H0 not true:
ð4Þ

Our resampling procedure rejected the null hypothesis with a p-value of 0.0045. This sug-
gests that at least one of the 11 genes was out of order in at least one pair of species. In order to
determine a maximum size subset of genes for which the three species share a common order
we applied the forward procedure described in the S4 File.

The process ended with the 6 genes, klp5, fkh2, cdc18,mik1, hhf1 and hta2, that failed to
reject the null hypothesis with a p-value of 0.488 (see Table 2). Thus we conclude that the tem-
poral order among these genes is evolutionary conserved from yeast to humans with the

Table 1. Evolutionarily conserved human cell-cycle genes along with corresponding S. pombe and S.
cerevisiae orthologs.

Genes S. pombe S. cerevisiae Humans

1 ace2 ACE2 ZNF367

2 cdc18 cdc18 CDC6

3 mik1 SWE1 PKMYT1

4 hhf1 HHF1 HIST2H4B

5 hta2 HTA2 H2AFX

6 fkh2 FKH1 FOXM1

7 klp5 KIP3 KIF10

8 cig2 CLB1 CCNB1

9 plo1 CDC5 PLK1

10 slp1 CDC20 CDC20

11 rad21 MCD1 RAD21

doi:10.1371/journal.pone.0124842.t001
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following partial order,

cdc18 � mik1 � hhf 1 � hta2 � ffkh2; klp5g � cdc18 ð5Þ

Using the estimation and the resampling methodology described in this article, we esti-
mated that the confidence of this partial order Eq (5) is 100%. The most frequent simple circu-
lar order cdc18�mik1� hhf1� hta2� klp5� fkh2� cdc18 had an estimated confidence
coefficient of 76.06%.

The two yeasts shared a common ancestor nearly a billion years ago and neither is closer to
human beings more than the other [47]. However, according to [48] and [49], while S. pombe
and metazoan cell-cycle genes retained some of the functions from their common ancestor, the
budding yeast cell-cycle genes may have lost them. In fact, relative to S. cerevisiae there are pro-
portionally more S. pombe genes conserved in metazoans [48, 50]. There are other similarities
between S. pombe and higher order animals including stress response pathways. For a review
one may refer to [47–50]. In view of the above discussion, we performed pairwise comparisons
between the 3 species starting with the 6 genes discovered above.

The pairwise forward selection analysis between the two yeasts (S. pombe and S. cerevisiae)
revealed that the relative order of peak expression among 10 out of the 11 genes was conserved
with an associated p-value of 0.336. The relative was determined to be cdc18� rad21�mik1
� {ace2, hhf1, hta2, cig2}� {fhk2, klp5}� slp1� cdc18 with a confidence coefficient of
72.31%. In the case of S. pombe and humans the relative order was conserved among 8 of the
11 genes with an associated p-value of 0.436, with relative order {ace2, cdc18}�mik1� hhf1�
hta2� plo1� {fhk2, klp5}� {ace2, cdc18}. The confidence coefficient associated with this
order was estimated to be 92.6%. However, in the case of S. cerevisiae and humans we discov-
ered that the order conserved only among the original 6 genes whose order was conserved
among the 3 species, namely, cdc18,mik1, hhf1, hta2, klp5 and fkh2. Thus, we did not find any
additional genes unlike the other 2 pairwise analyses. The p-value associated with these 6 genes
in the S. cerevisiae and humans pair was 0.119 and the relative order was essentially same as
when all three species were considered together but slightly perturbed. The estimated relative
order among these 6 genes in the pair S. cerevisiae and humans was estimated to be cdc18�
mik1� hhf1� hta2� {fkh2, klp5}� cdc18 with a confidence coefficient of 99.15%. These
results are summarized in Table 2. Full details of each of the steps in the procedure can be
found in the Supporting Information.

Using published phases of these 6 genes in the literature, we summarize the phases of these
6 genes in the 3 species in Table 3. Note that while the phase order of the 6 genes is same across
the 3 species their phases are not same across species.

In the case of the two yeasts it is well known that the yeast orthologs of fkh2 and ace2 partic-
ipate in a regulatory network loop where fkh2 regulates the expression of ace2 which in turn
regulates fkh2 [51]. Furthermore fkh2, the S. pombe ortholog of fkh2, is one of the regulators of

Table 2. Summary of the 4 comparisons.

#genes P-value Confidence Coefficient

All 3 species together 6 0.488 100%

S. pombe—S. cerevisiae 10 0.336 72.31%

S. pombe—Humans 8 0.436 92.6%

S. cerevisiae—Humans 6 0.119 99.15%

doi:10.1371/journal.pone.0124842.t002

Temporal Order among the Components of an Oscillatory System

PLOSONE | DOI:10.1371/journal.pone.0124842 July 7, 2015 10 / 14



the Cdc15 clusters which peak in late G2 or M phase. In fact, according to [6] its expression
peaks prior to 94% of the genes in the Cdc15 cluster, implying that it potentially regulates most
of the genes in the cluster. Gene ace2, belongs to the Eng1 cluster which contains genes that
regulate cell separation. These genes peak after the Cdc15 cluster of genes.

Interaction between the proteins of cdc18 andmik1 are well-known [52]. Furthermore,
according to the Human Protein-Protein Interaction Prediction software [53, 54], the proteins
cdc18 andmik1 are highly interactive. The probability that they interact with each other is
17.80 times the probability that they do not. Thus our method not only validates some of the
well-known relationships and interactions but also provides the direction of the interaction,
suggesting that possibly one gene regulates the other which may lead to new hypotheses for
biologists to investigate.

Discussion
Often biological processes involve complex network of inter-relationships among the compo-
nents of the process (e.g. genes). Biologists have been interested in deriving such networks and
using them for drawing inferences regarding the underlying biological process. In the case of
an oscillatory system, such as the cell-cycle or circadian clock, these networks are intrinsically
dynamic in nature with the system going through different states or phases (e.g. phases in cell-
cycle) over time before returning to the original state. At each state, due to the underlying biol-
ogy, a subset of the components plays a prominent role. For example, only those genes that are
involved in DNA synthesis are likely to express during the S-phase of the cell-cycle and the oth-
ers may not. However, once S-phase is completed, the next wave of genes that are involved in
the G2 phase express, and so on. It is of interest for biologist to understand the temporal order
of how genes regulate each other as the cell goes through various phases. Thus, in an oscillatory
system it is of interest to determine the temporal order among the components. Because of the
structure of oscillatory system, underlying statistical parameters of interest (e.g. phase angles of
cell-cycle genes) are points on a unit circle and not the entire Euclidean space. Focus of this
research is to determine the temporal order with confidence and to compare the temporal
orders among various study groups. Because of the underlying geometry of the circle, standard
Euclidean space based methods are not suitable and until [4] there did not exist any rigorous
statistical framework to analyze such data. Although [4] take important first step towards this
problem, their methodology cannot be used to estimate the underlying order among the com-
ponents. Secondly, their methodology does not allow a researcher to simultaneously test for
the equality of the order among 3 or more populations. Lastly, when comparing two

Table 3. Phases of the 6 cell-cycle genes whose circular ordered is conserved in the 3 species accord-
ing to www.cyclebase.org.

S. pombe S. cerevisiae Humans

Gene Phase Gene Phase Gene Phase

klp5 G2 KIP3 S/G2 KIF10 S

fkh2 G2 FKH1 G2/M FOXM1 S/G2

cdc18 G1/S cdc18 M CDC6 M

mik1 S SWE1 M PKMYT1 G1/S

hhf1 S HHF1 G1/S HIST2H4B S

hta2 S/G2 HTA2 G1/S H2AFX S

doi:10.1371/journal.pone.0124842.t003
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populations, their methodology assumes that the order of expression among the components
of one of the populations is known with certainty, an unreasonable assumption in practice. We
not only overcome the above deficiencies of [4] but we also provide a novel method to estimate
the common temporal order among a set of oscillatory genes across multiple populations,
along with the associated confidence coefficient. Using the proposed methodology we success-
fully demonstrated that the temporal order of 6 cell-cycle genes is conserved in the two species
of yeast and the humans. The proposed methodology can potentially be extended to develop
dynamic networks for oscillatory systems where a biologist may be interested in not only infer-
ring gene networks at a given time point but draw inferences across time points.
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