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a b s t r a c t

We present a new exactly solvable (classical and quantum)
model that can be interpreted as the generalization to the two-
dimensional sphere and to the hyperbolic space of the two-
dimensional anisotropic oscillator with any pair of frequencies ωx
and ωy. The new curved Hamiltonian Hκ depends on the curvature
κ of the underlying space as a deformation/contraction parame-
ter, and the Liouville integrability of Hκ relies on its separability in
terms of geodesic parallel coordinates, which generalize the Carte-
sian coordinates of the plane. Moreover, the system is shown to
be superintegrable for commensurate frequencies ωx : ωy, thus
mimicking the behaviour of the flat Euclidean case, which is always
recovered in the κ → 0 limit. The additional constant of motion
in the commensurate case is, as expected, of higher-order in the
momenta and can be explicitly deduced by performing the classi-
cal factorization of the Hamiltonian. The known 1 : 1 and 2 : 1
anisotropic curved oscillators are recovered as particular cases of
Hκ , meanwhile all the remaining ωx : ωy curved oscillators define
new superintegrable systems. Furthermore, the quantum Hamil-
tonian Ĥκ is fully constructed and studied by following a quantum
factorization approach. In the case of commensurate frequencies,
the Hamiltonian Ĥκ turns out to be quantum superintegrable and
leads to a new exactly solvable quantum model. Its corresponding
spectrum, that exhibits amaximal degeneracy, is explicitly given as
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an analytical deformation of the Euclidean eigenvalues in terms of
both the curvature κ and the Planck constant h̄. In fact, such spec-
trum is obtained as a composition of two one-dimensional (either
trigonometric or hyperbolic) Pösch–Teller set of eigenvalues.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The aimof this paper is to present a (classical and quantum) integrable generalization on the sphere
S2 and on the hyperbolic plane H2 of a unit mass two-dimensional anisotropic oscillator Hamiltonian

H =
1
2
(p2x + p2y) +

1
2
(ω2

xx
2
+ ω2

yy
2), (1.1)

where (x, y) ∈ R2 are Cartesian coordinates, (px, py) their conjugate momenta and the frequencies
(ωx, ωy) are arbitrary real numbers.

It is well-known that the Euclidean system (1.1) is always integrable (in the Liouville sense) due
to its obvious separability in Cartesian coordinates. On the other hand, for commensurate frequencies
ωx : ωy the Hamiltonian (1.1) defines a superintegrable oscillator, since an ‘‘additional’’ integral of
motion of higher-order in the momenta arises (see [1–3] and references therein). We recall that in
the classical case the superintegrability property ensures that all the bounded trajectories are closed,
thus leading to Lissajous curves, while in the quantum case superintegrability gives rise to maximal
degeneracy of the spectrum.

To the best of our knowledge, the only two knowngeneralizations on the sphere and the hyperbolic
space of the superintegrable anisotropic oscillator (1.1) are the 1 : 1 and 2 : 1 cases. In the classical case,
both systems arise within the classification of superintegrable systems on S2 andH2 that are endowed
with constants of motion that are quadratic in the momenta (see [4–8]).

In this paper, we present the generalization of this result for arbitrary commensurate frequencies
ωx : ωy, and the classical and quantum superintegrability of the proposed Hamiltonian Hκ , where κ
stands for the curvature of the surface, will be proven by making use of a factorization approach. We
remark that some preliminary results on the classical Hamiltonian Hκ have recently been anticipated
in [9]. The key point of our approach is that, in the same way as Cartesian coordinates are the
natural ones to write the anisotropic oscillator in the Euclidean plane, so are the geodesic parallel
coordinates on constant curvature surfaces to express the curved anisotropic oscillators. Moreover,
in order to show that our systems consist in a deformation of the Euclidean anisotropic oscillator we
have adopted a notation depending explicitly on the curvature parameter κ . For κ > 0 we have the
system defined on the sphere, for κ < 0 on the hyperboloid, while in the limit κ → 0 we will recover
all the well-known Euclidean results.

In Sections 2 and 3, we start by reviewing the integrability properties of classical and quantum
anisotropic oscillators on the Euclidean plane E2 through the factorization approach introduced
in [10–15] (see also [16–18] and references therein). In Section 4, we will revisit the well-known 1 :1
and 2 : 1 curved oscillators [6,19,20], and we will show that both Hamiltonians can be written in a
simple and unified way if we express them in terms of the so called geodesic parallel coordinates on
S2 andH2 (see [6,21–23]). This fact turns out to be the keystone for the generalization of the system in
the case of arbitrary frequencies, which is presented in Section 5 and is shown to be superintegrable
through a factorizaton approach similar to that used in the Euclidean case.

The quantization of the previous result is presented in Section 6, where the ladder and shift
operators for Ĥκ are explicitly constructed. From them, higher-order symmetries leading to the
quantum superintegrability are straightforwardly obtained. Sections 7 and 8 are devoted to a detailed
analysis of the spectral problem of the quantum commensurate oscillator on the sphere and the
hyperbolic space, respectively. In particular, the maximal degeneracy of the energy levels will
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be explicitly shown. A final section including some remarks and open problems close the paper,
and some technical tools or proofs that are needed along the paper have been included in the
Appendices.

2. The classical factorization method

In this section we review the Hamiltonian (1.1) from the classical factorization viewpoint intro-
duced in [15–18]. Although the results here presented are quite elementary, they are useful in order
to present the approach that we will follow in the curved case. If we denote

ωx = γωy, ωy = ω, γ ∈ R+/{0}, (2.1)

the Hamiltonian (1.1) can be rewritten, in terms of the parameter γ and the frequency ω, as

H =
1
2
(p2x + p2y) +

ω2

2


(γ x)2 + y2


. (2.2)

Now, we introduce the new canonical variables

ξ = γ x, pξ = px/γ , ξ ∈ R, (2.3)

yielding

H =
1
2
p2y +

ω2

2
y2 + γ 2


1
2
p2ξ +

ω2

2γ 2
ξ 2


. (2.4)

The two one-dimensional Hamiltonians Hξ and Hy given by

Hξ
=

1
2
p2ξ +

ω2

2γ 2
ξ 2, Hy

=
1
2
p2y +

ω2

2
y2, H = Hy

+ γ 2Hξ , (2.5)

are indeed two integrals of the motion for H , since {H,Hξ
} = {H,Hy

} = {Hξ ,Hy
} = 0.

The factorization approach is based on the definition of the so-called ‘‘ladder functions’’ B±, which
are obtained by requiring that Hξ

= B+B−, and take the expression

B±
= ∓

i
√
2
pξ +

1
√
2

ω

γ
ξ. (2.6)

They lead to the Poisson algebra

{Hξ , B±
} = ∓i

ω

γ
B±, {B−, B+

} = −i
ω

γ
.

Therefore, the functions (Hξ , B±, 1) generate the harmonic oscillator Poisson–Lie algebra h4.
On the other hand, the ‘‘shift functions’’ A± also arise by imposing that Hy

= A+A−, thus yielding

A±
= ∓

i
√
2
py −

ω
√
2
y. (2.7)

The four functions (Hξ , A±, 1) span again the Poisson–Lie algebra h4, since

{Hy, A±
} = ±iωA±, {A−, A+

} = iω.

We stress that in this flat model the terms ‘‘ladder’’ and ‘‘shift’’ are fully equivalent and could be
interchanged. However, in the curved cases both sets of functions will no longer be equivalent.

Consequently, the Hamiltonian (2.4) can be rewritten in terms of the above ladder and shift
functions as

H = A+A−
+ γ 2B+B−, {H, B±

} = ∓iγωB±, {H, A±
} = ±iωA±.
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The remarkable point now is that if we consider a rational value for γ ,

γ =
ωx

ωy
=

m
n

, m, n ∈ N∗, (2.8)

we obtain two complex constants of motion X± for H (2.4) such that

{H, X±
} = 0,

where we have defined

X±
= (B±)n(A±)m, X̄+

= X−, (2.9)

being X̄+ the complex conjugate of X+. The four constants ofmotion so obtained (Hξ ,Hy, X±), are not
functionally independent since from the factorization properties of A± and B± it can be proven that

X+X−
= (Hξ )n(Hy)m.

In fact, these four functions generate a polynomial Poisson algebra, namely,

{Hξ , X±
} = ∓iω

n2

m
X±, {Hy, X±

} = ±iωmX±,

{X+, X−
} = −i

ω

m
(Hξ )n−1(Hy)m−1 m3Hξ

− n3Hy . (2.10)

Notice that the integrals of motion (2.9) are of (m + n)th-order in the momenta and, since X± are
complex functions we can get real constants of motion given by

X =
1
2
(X+

+ X−), Y =
1
2i

(X+
− X−). (2.11)

The degree in the momenta for one of them is (m+ n) and (m+ n− 1) for the other one. From (2.10)
we find the following polynomial algebra of real symmetries

{Hξ , X} = ω
n2

m
Y , {Hξ , Y } = −ω

n2

m
X,

{Hy, X} = −ωmY , {Hy, Y } = ωmX,

{X, Y } =
ω

2m
(Hξ )n−1(Hy)m−1 m3Hξ

− n3Hy , (2.12)

which is generated by the four real integrals (Hξ ,Hy, X, Y ).
In this way, we have recovered all thewell-known results on the (super)integrability of anisotropic

oscillators [1–3] which can be summarized as follows.

Theorem 1. (i) The Hamiltonian H (2.4) is integrable for any value of the real parameter γ , since it is
endowed with a quadratic constant of motion given by either Hξ or Hy (2.5).
(ii) When γ = m/n is a rational parameter (2.8), the Hamiltonian (2.4) defines a superintegrable
anisotropic oscillator with commensurate frequencies ωx : ωy and the additional constant of motion is
given by either X or Y in (2.11). The sets (H,Hξ , X) and (H,Hξ , Y ) are formed by three functionally
independent functions.

2.1. The 1 : 1 oscillator

If γ = 1, we can set m = n = 1 such that ωx = ωy = ω and (2.3) gives ξ = x and pξ = px. Hence,
we recover the isotropic oscillator

H1:1
=

1
2
(p2x + p2y) +

ω2

2
(x2 + y2),
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and the integrals (2.11) reduce to

X = −
1
2 (pxpy + ω2xy), Y = −

1
2ω(xpy − ypx). (2.13)

Therefore, the quadratic integral X is one of the components of the Demkov–Fradkin tensor [24,25],
meanwhile Y is proportional to the angular momentum

J = xpy − ypx. (2.14)

Sincem + n is even, the symmetry with highest degree is X and the lowest one is given by Y .

2.2. The 2 : 1 oscillator

For γ = 2, we take m = 2 and n = 1. Thus, ωx = 2ωy = 2ω, ξ = 2x and pξ = px/2. The
Hamiltonian (2.4) and the integrals (2.11) read

H2:1
=

1
2
p2y +

ω2

2
y2 + 4


1
2
p2ξ +

ω2

8
ξ 2


=
1
2
(p2x + p2y) +

ω2

2


4x2 + y2


,

X = −
ω

4
√
2


py(ξpy − 4ypξ ) − ω2ξy2


= −

ω

2
√
2


pyJ − ω2xy2


,

Y =
1

2
√
2


pξp2y + ω2y(ξpy − ypξ )


=

1

4
√
2


pxp2y + ω2y(4xpy − ypx)


. (2.15)

The quadratic symmetry X , which involves the angularmomentum J (2.14), is the constant considered
in the literature (see e.g. [6,26]), whilst Y is a cubic integral. In this sense, the 2 : 1 oscillator can be
considered as a superintegrable system with quadratic constants of motion. In fact, the 1 : 1 and
2 : 1 oscillators are the only anisotropic Euclidean oscillators endowed with quadratic integrals (see
the classifications [6,27]), and all the remaining m : n oscillators have higher-order symmetries. In
this case, since m + n is odd, the highest (m + n)-degree symmetry is Y while X is of lowest order
(m + n − 1).

2.3. The 1 : 3 oscillator

In this case, we have that γ = 1/3, m = 1, n = 3, ωx = ωy/3 = ω/3, ξ = x/3 and pξ = 3px. The
Hamiltonian (2.4) is now given by

H1:3
=

1
2
p2y +

ω2

2
y2 +

1
9


1
2
p2ξ +

9ω2

2
ξ 2


=
1
2
(p2x + p2y) +

ω2

2


1
9
x2 + y2


,

and the integrals (2.11) are

X =
1
4


27p3xpy − 9ω2xpx(xpy − 3ypx) − ω4x3y


,

Y =
ω

4


27p2x J − ω2x2(xpy − 9ypx)


.

Since the symmetry X is quartic in the momenta but Y (that includes the angular momentum (2.14))
is cubic, H is a cubic superintegrable system.

Notice that, obviously, the 1 : 2 and 3 : 1 oscillators with γ = 1/2 and γ = 3 define equivalent
systems to the previous oscillators via the interchange x ↔ y. And, clearly, any m : n oscillator (with
γ ) is equivalent to the n : m one (with 1/γ ). Surprisingly enough, this (trivial) fact from the Euclidean
viewpoint will no longer hold when the curvature of the space is non-vanishing, as we will explicitly
show in Section 5.
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3. The quantum factorization method

In order to study the quantum analogue of the Hamiltonian (1.1), let us introduce the standard
definitions for quantum position (x̂, ŷ) and momentum (p̂x, p̂y) operators

x̂Ψ (x, y) = xΨ (x, y), p̂xΨ (x, y) = −ih̄
∂Ψ (x, y)

∂x
, [x̂, p̂x] = ih̄,

and similarly for (ŷ, p̂y). Hereafter, the hatwill be suppressed for the x̂, ŷ position operators to simplify
the presentation. Hence, as it is well-known, the quantum version of the Hamiltonian (1.1) reads

Ĥ =
1
2
(p̂2x + p̂2y) +

1
2
(ω2

xx
2
+ ω2

yy
2) = −

h̄2

2


∂2

∂x2
+

∂2

∂y2


+

1
2
(ω2

xx
2
+ ω2

yy
2).

By introducing the frequency ω (2.1) and the new variable ξ (2.3) we find that

Ĥ = −
h̄2

2
∂2

∂y2
+

ω2

2
y2 + γ 2


−

h̄2

2
∂2

∂ξ 2
+

ω2

2γ 2
ξ 2


, (3.1)

and the corresponding eigenvalue equation is given by

Ĥ Ψ (ξ , y) = E Ψ (ξ , y).

From (3.1) we get the one-dimensional Hamiltonian operators

Ĥξ
= −

h̄2

2
∂2

∂ξ 2
+

ω2

2γ 2
ξ 2, Ĥy

= −
h̄2

2
∂2

∂y2
+

ω2

2
y2, Ĥ = Ĥy

+ γ 2Ĥξ , (3.2)

such that [Ĥ, Ĥξ
] = [Ĥ, Ĥy

] = [Ĥξ , Ĥy
] = 0.

Now,we look for factorized solutions,Ψ (ξ , y) = Ξ(ξ) Y (y), where the component functionsΞ(ξ)
and Y (y) satisfy the following one-dimensional eigenvalue equations

Ĥξ Ξ(ξ) = Eξ Ξ(ξ), Ĥy Y (y) = Ey Y (y).

The factorizations of these systems are the standard ones

Ĥξ
= B̂+B̂−

+ λB, Ĥy
= Â+Â−

+ λA, (3.3)

and yield the following ladder

B̂±
= ∓

h̄
√
2

∂

∂ξ
+

ω
√
2γ

ξ, λB
=

h̄ω
2γ

,

and shift operators

Â±
= ∓

h̄
√
2

∂

∂y
−

ω
√
2
y, λA

= −
h̄ω
2

.

The commutation rules of the two sets of operators (Ĥξ , B̂±) and (Ĥy, Â±) read

[Ĥξ , B̂±
] = ±

h̄ω
γ

B̂±, [B̂−, B̂+
] =

h̄ω
γ

,

[Ĥy, Â±
] = ∓h̄ωÂ±, [Â−, Â+

] = −h̄ω,

and each set generates the harmonic oscillator Lie algebra h4. Hence, we find that

Ĥξ
= B̂+B̂−

+
h̄ω
2γ

= B̂−B̂+
−

h̄ω
2γ

, Ĥy
= Â+Â−

−
h̄ω
2

= Â−Â+
+

h̄ω
2

. (3.4)
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The eigenvalues of Ĥξ and Ĥy corresponding to the respective eigenfunctions Ξµ(ξ) and Y ν(y)
turn out to be

Eξ,µ
=

h̄ω
2γ

+ µ
h̄ω
γ

, Ey,ν
=

h̄ω
2

+ ν h̄ω, µ, ν = 0, 1, 2, . . . . (3.5)

Next, according to (3.2) and (3.4) the Hamiltonian (3.1) can be written as

Ĥ =
1
2


Â+Â−

+ Â−Â+

+

γ 2

2


B̂+B̂−

+ B̂−B̂+

,

where

[Ĥ, B̂±
] = ±γ h̄ωB̂±, [Ĥ, Â±

] = ∓h̄ωÂ±.

Finally, the eigenvalue of the wave function Ψ µ,ν(ξ , y) = Ξµ(ξ)Y ν(y), corresponding to (3.5) reads

Eµ,ν
= Ey,ν

+ γ 2Eξ,µ
= h̄ω

 1
2 (γ + 1) + γµ + ν


, µ, ν = 0, 1, 2, . . . . (3.6)

Furthermore, if γ = m/n, with m, n ∈ N∗, as in the classical case, we obtain ‘‘additional’’ higher-
order symmetries for Ĥ (3.1), beyond Ĥξ and Ĥy, since the operators

X̂±
= (B̂±)n (Â±)m are such that [Ĥ, X̂±

] = 0. (3.7)

From the factorization property (3.3) of Â± and B̂± we find that

X̂+X̂−
=


Ĥξ

−
h̄ω
2γ

n 
Ĥy

+
h̄ω
2

m

.

Therefore, the four constants of motion (Ĥy, Ĥξ , X̂±) are algebraically dependent, as they should be.
On the other hand, the sets (Ĥy, Ĥξ , X̂+) or (Ĥy, Ĥξ , X̂−) are algebraically independent. Notice that,
obviously, we could also consider the quantum observables X̂ and Ŷ defined by following (2.11) and
therefore the sets (Ĥy, Ĥξ , X̂±) or (Ĥy, Ĥξ , X̂, Ŷ ) will close a polynomial symmetry algebra similar to
(2.10) or (2.12).

As a straightforward consequence, if γ = m/n is a rational parameter (2.8), the energy levels of Ĥ
will be degenerate, since (3.6) can be written in the form

Eµ,ν
= h̄ω


1
2

m
n

+ 1


+
mµ + n ν

n


, µ, ν = 0, 1, 2, . . .

and the energy will be the same for all pairs (µ, ν) of quantum numbers for whichmµ+n ν takes the
same value. Moreover, the corresponding eigenstates are connected by means of the X̂± operators.

Summarizing, the quantum counterpart of Theorem 1 can be stated as follows.

Theorem 2. (i) The Hamiltonian Ĥ (3.1) commutes with the operators Ĥξ and Ĥy (3.2) and defines an
integrable quantum system for any value of the real parameter γ . The discrete spectrum of Ĥ depends on
two quantum numbers and is given by Eµ,ν (3.6).

(ii)Whenever γ = m/n is a rational parameter, the Hamiltonian Ĥ commuteswith the operators X̂± (3.7).
The sets (Ĥ, Ĥξ , X̂+) and (Ĥ, Ĥξ , X̂−) are formed by three algebraically independent operators. Therefore,
the quantum anisotropic oscillator with commensurate frequencies ωx : ωy is a superintegrable quantum
model, and the spectrum Eµ,ν is degenerate.
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4. The (known) 1 : 1 and 2 : 1 curved oscillators

The 1 : 1 and 2 : 1 cases are the only superintegrable Euclidean oscillators with integrals of
motion that are quadratic in the momenta, and they are the only ones whose corresponding curved
generalizations are well-known. In this section we will recall both of them, and we will show that by
rewriting these two Hamiltonians in terms of geodesic parallel coordinates we will find the keystone
in order to propose the curved analogue of the genericm : n oscillator.

The isotropic 1 : 1 oscillator is usually expressed in geodesic polar coordinates since in this way the
isotropic oscillator potential on S2 (characterized by the curvature κ = 1) and H2 (with κ = −1) is
simply written in terms of the functions tan2 r and tanh2 r , respectively, where the variable r is just
the geodesic distance from the particle to the centre of force. In this way, the first-order expansion for
both potentials around r = 0 gives the Euclidean potential function r2. This system is also known as
the Higgs oscillator [28,29] and has been widely studied (see [4–6,19,30–34] and references therein).

In order to be able to consider simultaneously the two curved spaces, and to take the Euclidean
limit as the zero curvature case, throughout the paper we will make use of the κ-dependent cosine
and sine functions defined by

Cκ(u) ≡

∞
l=0

(−κ)l
u2l

(2l)!
=

cos
√

κ u κ > 0
1 κ = 0

cosh
√

−κ u κ < 0,

Sκ(u) ≡

∞
l=0

(−κ)l
u2l+1

(2l + 1)!
=


1

√
κ
sin

√
κ u κ > 0

u κ = 0
1

√
−κ

sinh
√

−κ u κ < 0.

Obviously, the κ-tangent is defined by

Tκ(u) ≡
Sκ(u)
Cκ(u)

.

Some relations involving these κ-functions can be found in [6,21] and, more extensively, in [35]. For
instance:

C2
κ(u) + κS2κ(u) = 1, Cκ(2u) = C2

κ(u) − κS2κ(u), Sκ(2u) = 2Sκ(u)Cκ(u),

d
du

Cκ(u) = −κSκ(u),
d
du

Sκ(u) = Cκ(u),
d
du

Tκ(u) =
1

C2
κ(u)

. (4.1)

In terms of the curvature κ and the geodesic polar coordinates (r, φ) the complete Higgs
Hamiltonian is given by (see, for instance, [19])

H1:1
κ = Tκ + U1:1

κ =
1
2


p2r +

p2φ
S2κ(r)


+

ω2

2
T2κ(r), (4.2)

and the specific expressions for S2 (κ = 1) and H2 (κ = −1) are straightforwardly obtained.
On the other hand, the superintegrable 2 : 1 curved oscillator, with Hamiltonian H2:1

κ = Tκ + U2:1
κ ,

was firstly introduced in the classification carried out in [6] and it has been recently studied in detail
in [19,20]. In geodesic polar variables the potential U2:1

κ adopts the (rather cumbersome) expression

U2:1
κ =

ω2

2


4T2κ(r) cos

2 φ
1 − κS2κ(r) sin

2 φ
 

1 − κT2κ(r) cos2 φ
2 +

S2κ(r) sin
2 φ

1 − κS2κ(r) sin
2 φ


. (4.3)

Therefore, a glimpse on (4.2) and (4.3) makes evident that the generalization of these potentials for
the arbitrarym : n case is far from being obvious.
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Fig. 1. Schematic representation of the geodesic coordinates (x, y), (x′, y′) and (r, φ) of a point P on a curved space.

However, things drastically change if we make use of the geodesic parallel coordinates for S2 and
H2, that are described in detail in Appendix A. In order to define them, we take an origin O in the
space, two base geodesics l1, l2 orthogonal at O and the geodesic l that joins a point P (the particle)
and O (see Fig. 1). The geodesic polar coordinates (r, φ) are defined by the distance r between O and
P measured along l and the angle φ of l relative to l1. Let P1 be the intersection point of l1 with its
orthogonal geodesic l′2 through P . Then, the geodesic parallel coordinates (x, y) are just defined by the
distance x between O and P1 measured along l1 and the distance y between P1 and P measured along
l′2. Notice that a similar set of coordinates (x′, y′) can also be formed by considering the intersection
point P2 of l2 with its orthogonal geodesic l′1 through P and that generally (x, y) ≠ (x′, y′) if κ ≠ 0
(see [6,21]). It is straightforward to realize that on E2 with κ = 0, the coordinates (x, y) = (x′, y′)
reduce to Cartesian coordinates and (r, φ) give the usual polar ones.

In fact, the geodesic parallel coordinates turn out to be the closest to the Cartesian ones on
these two curved spaces, and they will be indeed the appropriate ones in order to write the curved
anisotropic oscillator Hamiltonians. This statement can be made evident if we consider the known
curved 1 : 1 and 2 : 1 cases. Namely, if we apply to (4.2) the relations (A.3) and the first identity given
in (4.1), we obtain two equivalent forms for the potential U1:1

κ written in geodesic parallel coordinates
(see [6]):

U1:1
κ =

ω2

2


T2κ(x) +

T2κ(y)
C2

κ(x)


=

ω2

2


T2κ(x)
C2

κ(y)
+ T2κ(y)


. (4.4)

By using the same transformation, the potential U2:1
κ (4.3) is shown to take the following expression

in terms of geodesic parallel coordinates

U2:1
κ =

ω2

2


T2κ(2x)
C2

κ(y)
+ T2κ(y)


. (4.5)

As a consequence, from both expressions U1:1
κ (4.4) and U2:1

κ (4.5) it is natural to propose the following
expression for the generic curved anisotropic oscillator potential:

Uγ
κ =

ω2

2


T2κ(γ x)
C2

κ(y)
+ T2κ(y)


, γ ∈ R+/{0}. (4.6)

In the next two sections, we will show that this Ansatz is correct, since (4.6) provides an integrable
system both in the classical and quantum contexts, that can be exactly solved by making use of the
factorization approach in terms of geodesic parallel coordinates. Moreover, in the commensurate case
γ = m/n the system turns out to be superintegrable due to the existence of an additional symmetry.
We also remark that, generically, Uγ

κ and U1/γ
κ will define two different systems, in contradistinction

with what happens in the Euclidean case.
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5. The generic classical curved anisotropic oscillator

Let us consider the following Hamiltonian function of a particle with unit mass written in terms of
geodesic parallel coordinates (x, y)

Hκ = Tκ + Uγ
κ =

1
2


p2x

C2
κ(y)

+ p2y


+

ω2

2


T2κ(γ x)
C2

κ(y)
+ T2κ(y)


, (5.1)

where ω and γ are positive real constants, and the potential term is just (4.6). Obviously, this Hamil-
tonian for κ = 0 reproduces the Euclidean anisotropic oscillator (2.2), while for κ > 0 gives a system
defined on S2 and for κ < 0 on H2. For κ < 0, the Hamiltonian is well defined for any real values of x
and y (A.7). However, if κ > 0 in order to avoid amultivalued Hamiltonian, restrictions on the domain
of the coordinates (A.6) arise from the term Tκ(γ x), namely:

S2 (κ > 0) : −
π

2
√

κ
< γ x <

π

2
√

κ
, −

π

2
√

κ
< y <

π

2
√

κ
, γ ≥

1
2
. (5.2)

H2 (κ < 0) : x, y ∈ R, γ ∈ R+/{0}. (5.3)

By assuming that κ ≠ 0 and by using the relation

1 + κT2κ(u) = 1/C2
κ(u), (5.4)

which can be derived from (4.1), the Hamiltonian Hκ can be rewritten as

Hκ =
p2y
2

+
1

C2
κ(y)


p2x
2

+
ω2

2κC2
κ(γ x)


−

ω2

2κ
, κ ≠ 0. (5.5)

After introducing the new variable ξ = γ x (2.3) with domain given by (5.2) and (5.3), the Hamiltonian
(5.5) takes the form

Hκ =
p2y
2

+
γ 2

C2
κ(y)


p2ξ
2

+
ω2

2κγ 2C2
κ(ξ)


−

ω2

2κ
, κ ≠ 0.

In this way the total Hamiltonian can be rewritten as

Hκ =
p2y
2

+
γ 2Hξ

κ

C2
κ(y)

−
ω2

2κ
, (5.6)

where the constant of the motion Hξ
κ is given by

Hξ
κ =

p2ξ
2

+
ω2

2κγ 2C2
κ(ξ)

, {Hκ ,Hξ
κ } = 0. (5.7)

Therefore, Hκ defines an integrable system for any value of ω and γ . We remark that the integral
Hξ

κ is, in fact, a one-dimensional Higgs-type oscillator (4.2) with ‘‘frequency’’ ω/γ on the variable ξ ,
since it can be rewritten through (5.4) as

Hξ
κ =

p2ξ
2

+
ω2

2γ 2
T2κ(ξ) +

ω2

2κγ 2
.

Note that its Euclidean limit Hξ (2.5) is recovered in the form

lim
κ→0


Hξ

κ −
ω2

2κγ 2


=

1
2
p2ξ +

ω2

2γ 2
ξ 2.

In what follows, we will factorize the classical Hamiltonians Hξ
κ and Hκ for a generic value

of γ , by taking into account that expressions (5.6) and (5.7) correspond to classical Pöschl–Teller
Hamiltonians, whose factorization properties have been previously considered in [15]. Moreover,
when γ is a rational number the factorization approach will lead us to the superintegrability of the
complete system (5.6).
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5.1. Ladder functions

Firstly, we search for some functions B±
κ (ξ) that generate a Poisson algebra of the type

{Hξ
κ , B±

κ } = ∓i f (Hξ
κ )B±

κ ,

for some function f . They will be the so-called ladder functions for Hξ
κ , and can be found to be [15]

B±

κ = ∓
i

√
2
Cκ(ξ) pξ +

Eκ
√
2
Sκ(ξ), (5.8)

where

Eκ(pξ , ξ) =


2κHξ

κ . (5.9)

In fact, it is straightforward to check that

Hξ
κ = B+

κ B
−

κ +
ω2

2κγ 2
, (5.10)

and the following Poisson algebra is obtained

{Hξ
κ , B±

κ } = ∓i Eκ B±

κ , {B−

κ , B+

κ } = −i Eκ . (5.11)

As a consequence,

{Hκ , B±

κ } = ∓i
γ 2Eκ

C2
κ(y)

B±

κ , (5.12)

where from (5.7) we know that the function Eκ (5.9) is a constant of the motion for Hκ .

5.2. Shift functions

Next, we look for shift functions A±
κ (y) that factorize Hκ . This implies the search for a Poisson

algebra of the type

{Hκ , A±

κ } = ±i g(Eκ , y)A±

κ ,

for a certain function g including the potential in (5.6). By taking into account that Eκ (5.9) is a constant
of the motion for Hκ (5.6) and by imposing that the Hamiltonian can be factorized in the form

Hκ = A+

κ A
−

κ + λA
κ , (5.13)

we obtain the shift functions

A±

κ = ∓
i

√
2
py −

γ Eκ
√
2
Tκ(y), λA

κ =
1
2κ


γ 2E2

κ − ω2 , (5.14)

and the Poisson algebra

{Hκ , A±

κ } = ±i
γ Eκ

C2
κ(y)

A±

κ , {A−

κ , A+

κ } = i
γ Eκ

C2
κ(y)

. (5.15)

5.3. Additional symmetries

The superintegrability of the Hamiltonian Hκ for rational values γ = m/n is now easily deduced
from the factorization approach. In fact, from (5.12) and (5.15), a straightforward computation shows
that the ladder and shift functions provide two additional integrals of the motion for Hκ :

{Hκ , X±

κ } = 0, where X±

κ = (B±

κ )n(A±

κ )m. (5.16)
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From the factorization properties of B± and A± given in (5.10) and (5.13), we conclude that

X+X−
=


Hξ

κ −
ω2

2κγ 2

n 
Hκ − γ 2


Hξ

κ −
ω2

2κγ 2

m

.

Therefore, the four constants of motion (Hκ ,Hξ
κ , X±

κ ) are functionally dependent. However, any of the
sets (Hκ ,Hξ

κ , X+
κ ) or (Hκ ,Hξ

κ , X−
κ ) is formed by functionally independent integrals.

In principle, the constants of motion X±
κ are complex and they include powers of the square root

Eκ (5.9). We have two situations giving rise to real constants of motion Xκ and Yκ :

(i) Ifm + n is even we have

X±

κ = ±i EκYκ + Xκ . (5.17)

(ii) Ifm + n is odd we find

X±

κ = EκXκ ± i Yκ . (5.18)

The symmetries Xκ and Yκ are polynomial in the momenta, whose degrees are m + n and m + n − 1
for case (i), and m + n − 1 and m + n in case (ii), respectively [36]. It can also be proven that the
algebraic structure generated by the Poisson brackets of the sets of integrals of motion (Hκ ,Hξ

κ , X±
κ )

or (Hκ ,Hξ
κ , Xκ , Yκ) also gives rise to a polynomial algebra, as in the Euclidean case. Therefore, the

generalization of Theorem 1 to the sphere and the hyperbolic space can be stated as follows:

Theorem 3. (i) For any value of the real anisotropy parameter γ , the Hamiltonian Hκ (5.1) defines an
integrable anisotropic curved oscillator on S2 andH2, whose (quadratic) constant of motion is given by Hξ

κ

(5.7).
(ii)When γ = m/n is a rational parameter, Hκ defines a superintegrable anisotropic curved oscillator and
the additional constant of motion is given by either Xκ or Yκ in (5.17) and (5.18). The sets (Hκ ,Hξ

κ , Xκ)

and (Hκ ,Hξ
κ , Yκ) are formed by three functionally independent functions.

As far as the (flat) Euclidean limit κ → 0 is concerned we remark that, despite the expressions
(5.6) and (5.7) are only defined if κ ≠ 0, all the remaining ones have a well defined Euclidean limit.
The latter can be achieved by taking into a account the following limits of the integrals Hξ

κ (5.7) and
Eκ (5.9)

lim
κ→0

κHξ
κ =

ω2

2γ 2
, lim

κ→0
Eκ =

ω

γ
. (5.19)

Hence, when κ = 0, we find that the curvedHamiltonianHκ (5.1) reduces toH (2.4), the curved ladder
functions B±

κ (5.8) to B± (2.6), the curved shift functions A±
κ (5.14) to A± (2.7), λA

κ to γ 2Hξ (2.5), and
the curved integrals X±

κ (5.16) to X± (2.9).

5.4. Examples

We now illustrate the results described by Theorem 3 through the particular cases with γ =

{1, 2, 1/2}. The first two ones generalize the Euclidean oscillators presented in Sections 2.1 and 2.2,
while the third one allows us to show explicitly the non-equivalence among the curved potentials Uγ

κ

and U1/γ
κ , despite of the fact that when κ = 0 both of them lead to equivalent Euclidean potentials.

5.4.1. The γ = 1 curved (Higgs) oscillator
We set γ = m = n = 1 so that ξ = x and pξ = px. The Hamiltonian Hκ (5.1) (with potential

Uγ=1
κ = U1:1

κ (4.4)) and also in the form (5.6) reads

Hγ=1
κ =

1
2


p2x

C2
κ(y)

+ p2y


+

ω2

2


T2κ(x)
C2

κ(y)
+ T2κ(y)


=

p2y
2

+
Hx

κ

C2
κ(y)

−
ω2

2κ
,
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where the quadratic integral Hx
κ ≡ Hξ

κ is given by

Hx
κ =

p2x
2

+
ω2

2κC2
κ(x)

.

The polynomial integrals (5.17) turn out to be

Xκ = −
1
2


Cκ(x)pxpy + E2

κ Sκ(x)Tκ(y)

,

Yκ = −
1
2


Sκ(x)py − Cκ(x)Tκ(y)px


. (5.20)

Notice that the integral Yκ is proportional to the (curved) angular momentum Jκ which in geodesic
parallel and polar variables can be shown to be given by [6,21]

Jκ = Sκ(x)py − Cκ(x)Tκ(y)px = pφ . (5.21)

Under the flat limit κ → 0, we recover the results of the Euclidean isotropic oscillator given in
Section 2.1. In particular, the integrals Xκ and EκYκ from (5.20) and the curved angular momentum
(5.21) reduce to (2.13) and (2.14), since Eκ → ω.

5.4.2. The γ = 2 curved oscillator
In this case, we choose γ = m = 2 and n = 1 so that ξ = 2x and pξ = px/2. Thus, the Hamiltonian

Hκ (5.1) with potential Uγ=2
κ = U2:1

κ (4.5) is given by

Hγ=2
κ =

1
2


p2x

C2
κ(y)

+ p2y


+

ω2

2


T2κ(2x)
C2

κ(y)
+ T2κ(y)


=

p2y
2

+
4Hξ

κ

C2
κ(y)

−
ω2

2κ
, (5.22)

where

Hξ
κ =

p2ξ
2

+
ω2

8κC2
κ(ξ)

=
p2x
8

+
ω2

8κC2
κ(2x)

.

From the additional symmetries X±
κ (5.16) we find that the polynomial integrals (5.18) read

Xκ = −
1

2
√
2


Sκ(2x)py − 2Cκ(2x)Tκ(y)px


py − 4E2

κ Sκ(2x)T2κ(y)

, (5.23)

Yκ =
1

4
√
2


Cκ(2x)pxp2y + 4E2

κ Tκ(y)

2Sκ(2x)py − Cκ(2x)Tκ(y)px


. (5.24)

If κ → 0, the limit (5.19) yields Eκ → ω/2 and the integrals EκXκ and Yκ reduce to (2.15), thus
reproducing the results of Section 2.2.

5.4.3. The γ = 1/2 curved oscillator
Now we fix γ = 1/2, m = 1 and n = 2. Then ξ = x/2, pξ = 2px and the corresponding

Hamiltonian Hκ (5.1) with potential Uγ=1/2
κ (4.6) is given by

Hγ=1/2
κ =

1
2


p2x

C2
κ(y)

+ p2y


+

ω2

2


T2κ(

x
2 )

C2
κ(y)

+ T2κ(y)


=

p2y
2

+
Hξ

κ

4C2
κ(y)

−
ω2

2κ
, (5.25)

where

Hξ
κ =

p2ξ
2

+
2ω2

κC2
κ(ξ)

= 2p2x +
2ω2

κC2
κ(

x
2 )

.

Notice that, due to the term T2κ(
x
2 ) in the potential, the Hamiltonian (5.25) defines a different/non-

equivalent curved oscillator to the previous γ = 2 case (5.22) which involved the term T2κ(2x) in the
potential.
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a b

c d

Fig. 2. Examples of trajectories for the Hamiltonian Hκ (5.1): (a) on the sphere for γ = 1/2, (b) on the sphere for γ = 2, (c)
on the hyperboloid for γ = 1, and (d) on the hyperboloid for γ = 2.

The additional integrals (5.18) for Hγ=1/2
κ read

Xκ = −
1

4
√
2


4

Sκ(x)py − C2

κ(
x
2 )Tκ(y)px


px + E2

κ S
2
κ(

x
2 )Tκ(y)


, (5.26)

Yκ =
1

2
√
2


4C2

κ(
x
2 )p

2
xpy − E2

κ


S2κ(

x
2 )py − Sκ(x)Tκ(y)px


. (5.27)

We finally remark that the above three anisotropic curved oscillators are the only ones within the
family (5.1) which are quadratic (in the momenta) superintegrable systems. All the remaining ones
with a rational γ , are also superintegrableHamiltonians but the additional integral is always of higher-
order in themomenta. Some trajectories on the sphere and on the hyperboloid for these three systems
are plotted in Fig. 2.

6. Quantum anisotropic curved oscillators

In order to construct the quantum analogue of the Hamiltonian Hκ (5.1), let us consider the
Laplace–Beltrami (LB) operator on a two-dimensional (curved) space

1LB =

2
i,j=1

1
√
g
∂i

√
gg ij∂j,

where g ij is the inverse of the metric tensor gij and g is the determinant. In terms of the geodesic
parallel and geodesic polar coordinates (see Eq. (A.4) in Appendix A)we obtain the following Laplacian
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operator on S2 and H2 with curvature parameter κ [21]:

1LB =
1

C2
κ(y)

∂2

∂x2
+

∂2

∂y2
− κTκ(y)

∂

∂y
=

∂2

∂r2
+

1
Tκ(r)

∂

∂r
+

1
S2κ(r)

∂2

∂φ2
.

Next, if we assume the so-called LB quantization prescription on curved spaces (see [37–40] and
references therein) the free quantum Hamiltonian of a unit mass particle will read

T̂κ = −
h̄2

2
1LB.

Now, we can define the quantum curved anisotropic oscillator Hamiltonian as Ĥκ = T̂κ + Ûγ
κ with

the potential (4.6), which in terms of geodesic parallel coordinates is given by

Ĥκ = −
h̄2

2


1

C2
κ(y)

∂2

∂x2
+

∂2

∂y2
− κTκ(y)

∂

∂y


+

ω2

2


T2κ(γ x)
C2

κ(y)
+ T2κ(y)


, (6.1)

where γ and ω are real positive parameters and the domains of x and y are shown in (5.3).
By applying the relation (5.4) to the terms T2κ(γ x) and T2κ(y) and after the change of variable ξ = γ x

with domain (5.2) and (5.3), the quantum Hamiltonian reads

Ĥκ = −
h̄2

2
∂2

∂y2
+

h̄2

2
κTκ(y)

∂

∂y
+

γ 2

C2
κ(y)


−

h̄2

2
∂2

∂ξ 2
+

ω2

2κγ 2C2
κ(ξ)


−

ω2

2κ
, κ ≠ 0. (6.2)

Thus, we can write Ĥκ in terms of a one-dimensional symmetry operator Ĥξ
κ such that [Ĥκ , Ĥξ

κ ] = 0,
namely

Ĥκ = −
h̄2

2
∂2

∂y2
+

h̄2

2
κTκ(y)

∂

∂y
+

γ 2Ĥξ
κ

C2
κ(y)

−
ω2

2κ
, κ ≠ 0, (6.3)

Ĥξ
κ = −

h̄2

2
∂2

∂ξ 2
+

ω2

2κγ 2C2
κ(ξ)

. (6.4)

Remark that Ĥξ
κ , which is the quantization of (5.7), is just the quantum Pöschl–Teller Hamiltonian

written simultaneously in its trigonometric (κ > 0) and hyperbolic (κ < 0) versions (see [41] and
references therein). Note that the Euclidean oscillator in ξ is obtained under the limit

lim
κ→0


Ĥξ

κ −
ω2

2κγ 2


= −

h̄2

2
∂2

∂ξ 2
+

ω2

2γ 2
ξ 2.

Now, the eigenvalue equation for Ĥκ that we want to solve is

ĤκΨκ(ξ , y) = EκΨκ(ξ , y), (6.5)
where we are looking for factorizable solutions in the form Ψκ(ξ , y) = Ξ ϵ

κ (ξ) Y γ ϵ
κ (y). If the function

Ξ ϵ
κ (ξ) fulfils the eigenvalue equation

Ĥξ
κ Ξ ϵ

κ (ξ) = Eξ
κ Ξ ϵ

κ (ξ), with ϵ =


2κEξ

κ , (6.6)

then, the second component Y γ ϵ
κ (y) of the solutions for (6.5) can be obtained as a one-dimensional

eigenvalue problem

ĤκY γ ϵ
κ (y) = EκY γ ϵ

κ (y) (6.7)
for the Hamiltonian

Ĥκ = −
h̄2

2
∂2

∂y2
+

h̄2

2
κTκ(y)

∂

∂y
+

(γ ϵ)2

2κC2
κ(y)

−
ω2

2κ
, κ ≠ 0. (6.8)

In particular, we shall deal separately with each of the two one-dimensional problems (6.6) and
(6.7) by means of the factorization approach [11,15]. In this way we will find ladder operators B̂±

κ for
Ĥξ

κ (6.4) and shift operators Â±
κ for Ĥκ (6.3) or (6.8). As in the classical case, we will be able to deduce

‘‘additional’’ quantum symmetries for Ĥκ (6.2) when γ be a rational number.
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6.1. Ladder operators for the Hamiltonian Ĥξ
κ

In order to find the ladder operators B̂±
κ for Ĥξ

κ (6.4), we express the corresponding eigenvalue
equation (6.6) as

−
h̄2

2
C2

κ(ξ)
∂2

∂ξ 2
− C2

κ(ξ) Eξ
κ


Ξ ϵ

κ (ξ) =


−

ω2

2κγ 2


Ξ ϵ

κ (ξ).

Now, we define the diagonal operator Êκ that acts on the space of eigenfunctions Ξ ϵ
κ (ξ) in the form

Êκ Ξ ϵ
κ (ξ) = ϵ Ξ ϵ

κ (ξ) (6.9)

where ϵ was defined in (6.6). Next we define the operator

ĥκ = −
h̄2

2
C2

κ(ξ)
∂2

∂ξ 2
− C2

κ(ξ)
(Êκ)

2

2κ
,

that can be factorized in terms of two first-order Êκ -dependent differential operators plus another
diagonal operator in the form

ĥκ = B̂−

κ B̂
+

κ + λ̂B
κ , (6.10)

where

B̂−

κ =
h̄

√
2
Cκ(ξ)

∂

∂ξ
+

1
√
2
Sκ(ξ) Êκ ,

B̂+

κ = −
h̄

√
2
Cκ(ξ)

∂

∂ξ
+

1
√
2
Sκ(ξ) Êκ ,

λ̂B
κ = −

Êκ

2κ
(Êκ + h̄κ).

These operators can be called pure-ladder ones in order to stress that they correspond to different
eigenvalues for Ĥξ

κ (see [42]) and their action on the eigenfunctions of Ĥξ
κ is straightforwardly shown

to be

B̂+

κ Ξ ϵ
κ ∝ Ξ ϵ+h̄κ

κ , B̂−

κ Ξ ϵ+h̄κ
κ ∝ Ξ ϵ

κ .

In this way, by acting on the subspace of eigenfunctions Ξ ϵ
κ we find that

Êκ , B̂±

κ


= ±h̄κ B̂±

κ ⇐⇒ B̂±

κ Êκ = (Êκ ∓ h̄κ)B̂±

κ . (6.11)

Therefore,
(Êκ)

2, B̂±

κ


= h̄κ


±2Êκ − h̄κ


B̂±

κ ,

that is,
Ĥξ

κ , B̂+

κ


= h̄


Êκ −

1
2
h̄κ

B̂+

κ ,

Ĥξ

κ , B̂−

κ


= −B̂−

κ h̄


Êκ −
1
2
h̄κ


. (6.12)

Likewise, we find that
B̂−

κ , B̂+

κ


= h̄ Êκ . (6.13)

Note that the Lie brackets (6.12) and (6.13) are just the quantum analogues of the Poisson algebra
(5.11) and that a pure quantum-curvature term h̄κ/2 arises, which is obviously negligible at both the
classical curved and quantum flat (Euclidean) frameworks.

Finally, the commutation rules between the operators B̂±
κ and the complete Hamiltonian Ĥκ (6.3)

are shown to be

[Ĥκ , B̂±

κ ] =
h̄γ 2

C2
κ(y)


±Êκ −

1
2
h̄κ

B̂±

κ ,

which can be compared with the Poisson algebra (5.12).
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6.2. Shift operators for the Hamiltonian Ĥκ

Bymaking use of the operator Êκ (6.9), the Hamiltonian Ĥκ (6.3), acting on the eigenfunctions (6.7)
can be rewritten as

Ĥκ(γ Êκ) = −
h̄2

2
∂2

∂y2
+

h̄2

2
κTκ(y)

∂

∂y
+

(γ Êκ)
2

2κC2
κ(y)

−
ω2

2κ
, (6.14)

where we have stressed its dependence on γ Êκ . Now, it can be proven that Ĥκ can be factorized in
terms of two first-order differential operators plus a diagonal one, namely

Ĥκ = Â+

κ Â
−

κ + λ̂A
κ , (6.15)

where

Â+

κ = −
h̄

√
2

∂

∂y
−

1
√
2
(γ Êκ − h̄κ)Tκ(y),

Â−

κ =
h̄

√
2

∂

∂y
−

γ Êκ
√
2
Tκ(y),

λ̂A
κ =

γ Êκ

2κ
(γ Êκ − h̄κ) −

ω2

2κ
.

These expressions are worth to be compared with (5.13) and (5.14). Then, the action of the shift
operators on the eigenfunctions Y γ ϵ

κ can be shown to be of the type

Â+

κ Y
γ ϵ−h̄κ
κ ∝ Y γ ϵ

κ , Â−

κ Y
γ ϵ
κ ∝ Y γ ϵ−h̄κ

κ .

Consequently, these operators change the parameter γ ϵ → γ ϵ ± h̄κ of the eigenfunctions, but
keep the energy Eκ constant. In this sense, they are called pure-shift operators, and the following
commutation relations can be derived

[Ĥκ , Â+

κ ] = −h̄ Â+

κ


2γ Êκ − h̄κ
2C2

κ(y)


, [Ĥκ , Â−

κ ] = h̄


2γ Êκ − h̄κ
2C2

κ(y)


Â−

κ ,

where a quantum-curvature contribution h̄κ appears again. These commutation relations are
straightforwardly proven to be equivalent to the following so-called ‘‘intertwining relations’’

Â−

κ Ĥκ(γ Êκ) = Ĥκ(γ Êκ − h̄κ)Â−

κ , Â+

κ Ĥκ(γ Êκ − h̄κ) = Ĥκ(γ Êκ)Â+

κ . (6.16)

6.3. Quantum symmetries

So far we have all the ingredients to construct the ‘‘additional’’ symmetry operators X̂±
κ for the

quantum Hamiltonian Ĥκ (6.2) in the rational γ = m/n case, that can be defined as

X̂±

κ = (Â±

κ )m(B̂±

κ )n, m, n ∈ N∗. (6.17)

The proof that [Ĥκ , X̂±
κ ] = 0 when γ = m/n can be obtained by direct computation through the

action on the subspace of eigenfunctions for Ĥκ (see Appendix B for details). The set of symmetries
(Ĥκ , Ĥξ

κ , X̂±
κ ) is not algebraically independent; due to the factorization properties (6.10) and (6.15),

the products X̂+
κ X̂−

κ and X̂−
κ X̂+

κ are functions of Ĥκ , Ĥξ
κ . Similarly to the classical cases (5.17) and (5.18),

we can define real polynomial quantum symmetries X̂κ and Ŷκ of orders (m+n) or (m+n−1) in the
momentumoperators. These sets of symmetries close a polynomial algebra (see [36] formore details).
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All the above results are summarized as follows.

Theorem 4. (i) The quantum Hamiltonian Ĥκ (6.1) defines an integrable quantum system for any value
of the parameter γ , since it commutes with the operator Ĥξ

κ (6.4).

(ii) When γ is a rational parameter, Ĥκ defines a superintegrable anisotropic quantum curved oscillator
with additional symmetry operators given by (6.17). The sets (Ĥκ , Ĥξ

κ , X̂+
κ ) and (Ĥκ , Ĥξ

κ , X̂−
κ ) are formed

by three algebraically independent operators.

Let us illustrate this result through some particular systems.

6.4. Symmetries of the 1 : 1 case

The simplest case of the quantum anisotropic curved oscillator corresponds to set γ = 1 which, in
fact, gives rise to the isotropic case. In this case we have the symmetry operators

X̂±

κ = (Â±

κ )(B̂±

κ ) = ±Ŷκ Êκ + X̂κ ,

where X̂κ is a polynomial symmetry of degree two, while Ŷκ has degree one in the momentum
operators. These symmetries take the explicit form

X̂κ =
h̄2

2
Cκ(ξ)∂ξ∂y −

1
2
Sκ(ξ)Tκ(y)(Êκ)

2,

Ŷκ = −
h̄
2


Sκ(ξ)∂y − Cκ(ξ)Tκ(y)∂ξ


,

where ξ = x. Recall that, according to (6.6) and (6.9), we can replace (Êκ)
2 by 2κĤξ

κ .
If we take the classical limit h̄ → 0 (so −ih̄∂ξ → pξ and Êκ → Eκ ), we recover the classical

symmetries on the curved spaces given in (5.20): X̂κ → Xκ and Ŷκ → iYκ . Furthermore, in the limit
κ → 0, they become the classical Euclidean expressions shown in (2.13).

6.5. Symmetries of the 2 : 1 case

When γ = 2 the symmetries come from the operators

X̂±

κ = (Â±

κ )2(B̂±

κ ) = X̂κ Êκ ± Ŷκ ,

where X̂κ is a polynomial symmetry of degree two, while Ŷκ has degree three in the momentum
operators. Explicitly, we have

X̂κ =
2

√
2
Sκ(ξ)T2κ(y)(Êκ)

2
+

h̄2 κ

2
√
2
Sκ(ξ)Tκ(y)∂y +

h̄2

2
√
2
Sκ(ξ)∂2

y

−
h̄2

√
2
Cκ(ξ)


1

C2
κ(y)

+ κT2κ(y)


∂ξ −
2 h̄2

√
2
Cκ(ξ)Tκ(y)∂ξ∂y,

Ŷκ =
2h̄
√
2


Sκ(ξ)


1

C2
κ(y)

−
1
2


+ Sκ(ξ)Tκ(y)∂y − Cκ(ξ)T2κ(y)∂ξ


(Êκ)

2

−
h̄3 κ

2
√
2
Cκ(ξ)Tκ(y)∂ξ∂y −

h̄3

2
√
2
Cκ(ξ)∂ξ∂

2
y .

In the limit h̄ → 0, these symmetries turn into the classical counterparts of (5.23) and (5.24):
X̂κ → Xκ and Ŷκ → iYκ ; recall that now ξ = 2x. If on this latter result we take the flat limit κ → 0
we recover the Euclidean constants of motion of (2.15).
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6.6. Symmetries of the 1 : 2 case

If we set γ = 1/2, the symmetries read

X̂±

κ = (Â±

κ )(B̂±

κ )2 = X̂κ Êκ ± Ŷκ ,

where, as in the previous case, X̂κ is a second-order symmetry while Ŷκ is a third-order one. These
operators take the following form

X̂κ = −
1

4
√
2
S2κ(ξ)Tκ(y)(Êκ)

2
−

h̄2

4
√
2
C2

κ(ξ)Tκ(y)∂2
ξ

+
h̄2

4
√
2


2Cκ(2ξ)∂y + Sκ(2ξ)(κTκ(y)∂ξ + 2∂ξ∂y)


,

Ŷκ =
h̄

4
√
2


Tκ(y)(Cκ(2ξ) + Sκ(2ξ)∂ξ ) − 2S2κ(ξ)∂y


(Êκ)

2

+
h̄3

2
√
2
Cκ(ξ)


2κSκ(ξ)∂ξ∂y − Cκ(ξ)∂2

ξ ∂y

.

Under the limit h̄ → 0, these symmetries give rise to the curved classical functions (5.26) and
(5.27) provided that ξ = x/2.

In the same manner, other m : n quantum oscillators can straightforwardly be worked out, and,
obviously, the expressions for their symmetries become rather cumbersome.

7. Spectrum of the anisotropic oscillator on the sphere

Due to the different properties of the spectra in the κ > 0 and the κ < 0 cases, both quantum
systems are worth to be analysed separately. Let us firstly consider the anisotropic oscillator on the
sphere S2 with arbitrary positive curvature κ > 0. Take the eigenfunctions Ψ E

κ = Ξ ϵ
κ Y γ ϵ

κ , given
in terms of the eigenfunctions of the one-dimensional Hamiltonians (6.6) and (6.7). The eigenvalue
equation (6.6) Ĥξ

κ Ξ ϵ
κ (ξ) = Eξ

κ Ξ ϵ
κ (ξ), for Ξ ϵ

κ , corresponds to the well-known trigonometric Pöschl–
Teller Hamiltonian [42,43] whose eigenvalues are given by

Eξ
κ ≡ Eµ

κ,χ =
1
2κ


χ + (µ + 1)h̄κ

2
=

h̄
4
(1 + 2µ)


h̄2 κ2 +

4ω2

γ 2
+

h̄2 κ

4


1 + 2µ + 2µ2

+
ω2

2κγ 2
, µ = 0, 1, 2, . . . (7.1)

where the positive parameter χ is given by

χ(χ + h̄κ) =
ω2

γ 2
, χ =

1
2


h̄2 κ2 + 4ω2/γ 2 − h̄κ


. (7.2)

Having in mind (6.6), we will also use the parameter ϵµ corresponding to such eigenvalues:

ϵµ =


2κEξ

κ = χ + (µ + 1)h̄κ. (7.3)

On the other hand, the eigenvalue equation for the Hamiltonian (6.8), ĤκY
γ ϵ
κ (y) = EκY

γ ϵ
κ (y),

satisfied by the second function Y γ ϵ
κ , also corresponds to a modified trigonometric Pöschl–Teller

Hamiltonian with eigenvalues

Eν
κ,γ ϵ =

1
2κ

(γ ϵ + νh̄κ)

γ ϵ + (ν + 1)h̄κ


−

ω2

2κ
, ν = 0, 1, 2, . . .
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Therefore, by replacing ϵ in this expression by the values ϵµ above obtained in (7.3), we get the
energy eigenvalues of the whole two-dimensional Hamiltonian (6.2), namely

Eκ ≡ Eµ,ν
κ =

1
2κ


γχ + [γ (µ + 1) + ν] h̄κ


γχ + [γ (µ + 1) + ν + 1] h̄κ


−

ω2

2κ

= γ 2

Eµ

κ,χ −
ω2

2κγ 2


+

h̄γ
2


χ + (µ + 1)h̄κ


(2ν + 1) +

h̄2 κ

2
ν(ν + 1). (7.4)

It is worth stressing that in this expression the role of the curvature is essential, since it gives rise to a
quadratic dependence in terms of the quantum numbers µ, ν instead of the linear Euclidean one. The
corresponding eigenfunctions (6.5) take the form

Ψ µ,ν
κ (ξ , y) = Ξ

ϵµ
κ (ξ)Y γ ϵµ

κ,ν (y).

According to (7.4), two of these eigenfunctions Ψ µ,ν
κ (ξ , y) and Ψ µ′,ν′

κ (ξ , y) will have the same energy
Eµ,ν

κ = Eµ′,ν′

κ if

γ (µ′
− µ) + ν ′

− ν = 0, (7.5)

which is only satisfied when γ = m/n with m, n ∈ N∗, and these states are connected by the
symmetry operators (6.17). Therefore, we can conclude that:

Theorem 5. (i) The spectrum of the quantum Hamiltonian Ĥκ (6.2) on the sphere with κ > 0 is given, for
any value of the parameter γ , by (7.4) where the parameter χ is written in (7.2).
(ii) When γ = m/n with m, n ∈ N∗, the spectrum (7.4) is degenerate, and the degeneracy is the same as
in the Euclidean case.

Some comments on the Euclidean limit of the above results seem to be pertinent. Althoughmost of
the computations have been carried out for κ ≠ 0, the flat limit κ → 0 can adequately be performed
on the final results. Explicitly, the limit κ → 0 of the parameters χ (7.2) and ϵµ (7.3) as well as of the
spectrum Eξ

κ ≡ Eµ
κ,χ (7.1) is achieved as

lim
κ→0

χ = lim
κ→0

ϵµ =
ω

γ
, lim

κ→0


Eµ

κ,χ −
ω2

2κγ 2


=

h̄ω
2γ

+ µ
h̄ω
γ

, (7.6)

such that the latter is just the spectrum Eξ,µ (3.5) of the one-dimensional quantum Euclidean
Hamiltonian Ĥξ (3.2). And the complete spectrum Eκ ≡ Eµ,ν

κ (7.4) directly reduces to Eµ,ν (3.6)
corresponding to the two-dimensional quantum Euclidean Hamiltonian Ĥ (3.1):

lim
κ→0

Eµ,ν
κ = h̄ω

 1
2 (γ + 1) + γµ + ν


≡ Eµ,ν . (7.7)

8. Spectrum of the anisotropic oscillator on the hyperboloid

Now, we consider the hyperbolic space H2 with arbitrary negative curvature κ = −|κ| and we
follow the same approach as in the sphere S2 with κ > 0. We anticipate that, although the same
algebraic method holds in both spaces, the solution to the eigenvalue problem is quite different.

Let us consider the Hamiltonian Ĥκ ≡ Ĥ−|κ| (6.14), where the factorized solutions take the form
Ψ E

−|κ|
= Ξ ϵ

−|κ|
Y γ ϵ

−|κ|
in the same way as in the previous section. Now, the eigenvalue equation (6.6)

Ĥξ

−|κ|
Ξ ϵ

−|κ|
(ξ) = Eξ

−|κ|
Ξ ϵ

−|κ|
(ξ), for Ξ ϵ

−|κ|
, corresponds to the hyperbolic Pöschl–Teller Hamilto-

nian [42,43] whose eigenvalues are

Eξ

−|κ|
≡ Eµ

κ,χ = −
1

2|κ|
(χ − (µ + 1)h̄|κ|)2

=
h̄
4
(1 + 2µ)


h̄2

|κ|2 +
4ω2

γ 2
−

h̄2
|κ|

4


1 + 2µ + 2µ2

−
ω2

2|κ|γ 2
, µ = 0, 1, 2, . . . , µmax,
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where the parameter χ > h̄|κ| is given by

χ(χ − h̄|κ|) =
ω2

γ 2
, χ =

1
2


h̄2

|κ|2 + 4ω2/γ 2 + h̄|κ|


. (8.1)

Therefore, there is only a finite number of bounded states. The value µmax is the maximum integer
such that

µmax <
χ

h̄|κ|
− 1. (8.2)

Again, instead of Eξ

−|κ|
we will use the parameter (6.6),

ϵµ =


−2|κ|Eξ

−|κ|
= χ − (µ + 1)h̄|κ|. (8.3)

The eigenvalue equation (6.7), Ĥ−|κ|Y
γ ϵ

−|κ|
(y) = E−|κ|Y

γ ϵ

−|κ|
(y), satisfied by the function Y γ ϵ

−|κ|
, is the

one of a modified hyperbolic Pöschl–Teller Hamiltonian with eigenvalues

Eν
−|κ|,γ ϵ = −

1
2|κ|

(γ ϵ − νh̄|κ|)

γ ϵ − (ν + 1)h̄|κ|


+

ω2

2|κ|
, ν = 0, 1, 2, . . . , νmax. (8.4)

Such a maximum value νmax of the quantum number ν is the maximum integer such that

νmax <
γϵ

h̄|κ|
− 1. (8.5)

Next, replacing ϵ in (8.4) by the values ϵµ obtained in (8.3), we obtain the energy eigenvalues of the
quantum Hamiltonian Ĥκ ≡ Ĥ−|κ| (6.2):

E−|κ| ≡ Eµ,ν

−|κ|
= −

1
2|κ|


γχ − [γ (µ + 1) + ν] h̄|κ|


γχ − [γ (µ + 1) + ν + 1] h̄|κ|


+

ω2

2|κ|

= γ 2

Eµ

κ,χ +
ω2

2|κ|γ 2


+

h̄γ
2


χ − (µ + 1)h̄|κ|


(2ν + 1) −

h̄2
|κ|

2
ν(ν + 1). (8.6)

Clearly, the number of eigenvalues is finite because of the constraints on µ and ν, that is, we have a
fixed value of χ (8.1), which determines µmax (8.2) and, then, for any allowed value of µ there is a
maximum value for ν, νmax(µ) determined by (8.5). Consequently, on H2 there is a finite number of
bound states in contradistinction with the S2 case. The corresponding eigenfunctions are written in
the form

Ψ
µ,ν

−|κ|
(ξ , y) = Ξ

ϵµ
−|κ|

(ξ) Y γ ϵµ
−|κ|,ν(y).

The degeneracy of the energy levels can be discussed in a similar way as on S2: Ψ
µ,ν

−|κ|
(ξ , y) and

Ψ
µ′,ν′

−|κ|
(ξ , y) will have the same energy Eµ,ν

−|κ|
whenever the constraint (7.5) is fulfilled. This means that

the degeneration can take place only when γ = m/n for m, n ∈ N∗.
Summing up, we have shown that:

Theorem 6. (i) The spectrum of the quantum Hamiltonian Ĥ−|κ| (6.2) on the hyperbolic space with
κ = −|κ| < 0 is given, for any value of the parameter γ , by a finite number of eigenvalues (8.6) where
the parameter χ is written in (8.1).
(ii) When γ = m/n with m, n ∈ N∗, the spectrum (8.6) is degenerate, and the degeneracy is the same as
in the Euclidean case.

The Euclidean limit of the above results can be easily obtained in the sameway as in (7.6) and (7.7).
Finally, we shouldmention that for negative curvature κ = −|κ|, there exist unbounded states which
may come from any of the one-dimensional hyperbolic Pöschl–Teller potentials which take part in
the total Hamiltonian. This feature, of course, is not present for the anisotropic oscillator on S2.
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9. Concluding remarks

In this workwe have identified the form of the generic classical and quantum anisotropic oscillator
system on the sphere and the hyperboloid, in such a way that this new Hamiltonian keeps the
integrability properties of the known Euclidean anisotropic oscillator for any value of the frequencies.
Moreover, when the frequencies are commensurate, superintegrability arises and, in particular, the
previously known curved anisotropic oscillators which correspond to the ratio 1 : 1 or 2 : 1 are
recovered.

There are two key points in the approach here presented. The first one consists in a formulation
depending on the curvature parameter κ , in such a way that the algebraic treatment is simultaneous
for both the sphere and the hyperboloid. At the same time, this viewpoint allows us to get the
Euclidean expressions in the limit κ → 0, thus showing explicitly that our systems are indeed
curved integrable deformations of the Euclidean anisotropic oscillator. Of course, there are also many
properties that depend on the sign of κ , and they have to be treated separately. For instance, the
spectrumof the quantumanisotropic oscillator on S2 is purely discrete (and has infinite values), whilst
a (finite) discrete spectrum plus a continuous one arises for the system onH2, as it has been explicitly
discussed.

The second key point is the choice of geodesic parallel coordinates on the curved surfaces in order
to get the simplest possible expression of the corresponding anisotropic oscillators. These coordinates
turn out to be the appropriate curved analogue of the Euclidean Cartesian coordinates, which are used
to write the planar anisotropic oscillator in a separable manner.

In order to get a unified approach to find the symmetries for both, the classical and quantum
systems, we have applied a factorization approach [15,18,36,44]. This method turns out to be helpful
in order to highlight the correspondence between the classical and quantum algebraic symmetries. In
this respect, it is worth to stress that in the quantum context we have kept the quantum constant h̄
in all the expressions. This is quite relevant when we compare quantum and classical results through
the limit h̄ → 0 (together with other considerations).

We also recall that other methods have also been designed to deal with the symmetries of
this kind of systems; for instance we can mention an action–angle (or Hamilton–Jacobi) based
procedure considered for the classical systems in [45] and the type of recurrence relation arguments
used in the quantum counterparts [46]. Similar approaches for a family of superintegrable models
were applied in [47], a coalgebra procedure has been developed in [48], while other different
viewpoints/approaches can be found in [49–53].

There are several open problems related to anisotropic curved oscillators, which are worth to be
investigated in the near future. For instance: (i) The construction of the anisotropic curved oscillators
in three (and N) dimensions. (ii) The formulation of anisotropic oscillators on (1 + 1) relativistic
spacetimes: AdS, dS and Minkowski [54] (see also [55,56] for the oscillator problem on the SO(2, 2)
hyperboloid). (iii) The generalization of the so-called caged anisotropic oscillator studied in [57] to
curved spaces by adding centrifugal terms [19,22,23].

Finally, we remark that in order to keep the length of this paper under reasonable limits, we have
not included the full study of the algebra generated by the symmetries in the generic case. However,
this structure can straightforwardly be derived by following the procedure shown in [36].
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Appendix A

The three Riemannian spaces S2, E2 and H2 can be simultaneously studied by considering that
their constant Gaussian curvature κ = ±1/R2 plays the role of a deformation/contraction parameter
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Fig. 3. Ambient (x0, x1, x2), geodesic parallel (x, y) and geodesic polar (r, φ) coordinates. The origin is O = (1, 0, 0). (a) On
the sphere S2 with κ = +1; O1 = (0, 1, 0) and O2 = (0, 0, 1). (b) On the hyperboloid with κ = −1 and x0 ≥ 1.

(see [6,20–23] and references therein). These three spaces can be embedded in the linear space R3

with ambient or Weierstrass coordinates (x0, x1, x2) subjected to the constraint

Σκ ≡ x20 + κ

x21 + x22


= 1, (A.1)

such that the origin corresponds to the point O = (1, 0, 0) ∈ R3. If κ = 1/R2 > 0, we recover the
sphere S2 and when κ = −1/R2 < 0, we find the two-sheeted hyperboloid. The null curvature case
can be understood as a flat contraction κ = 0 (i.e. the limit R → ∞), giving rise to two Euclidean
planes x0 = ±1 with Cartesian coordinates (x1, x2). We shall identify the hyperbolic space H2 with
the upper sheet of the hyperboloid with x0 ≥ 1 and the Euclidean space E2 with the plane x0 = +1.
Althoughκ ≠ 0 can always be scaled to±1, the explicit presence of the curvature parameterwillmake
evident all the deformation processes from the Euclidean systems to the curved ones and, conversely,
the contraction from the latter to the former ones.

In this approach, themetric on the curved spaces comes from the usual metric in R3 divided by the
curvature κ and restricted to Σκ (A.1):

ds2 =
1
κ


dx20 + κ


dx21 + dx22


Σκ

=
κ (x1dx1 + x2dx2)2

1 − κ

x21 + x22

 + dx21 + dx22. (A.2)

The ambient coordinates (x0, x1, x2) can be parametrized in terms of two intrinsic variables in
differentways (see, e.g., [20]). In particular,we can consider geodesic polar (r, φ) and geodesic parallel
coordinates (x, y) (see Fig. 1). The parametrization of the ambient coordinates in the variables (x, y)
and (r, φ), so fulfilling the constraint (A.1), reads [6,21–23]

x0 = Cκ(x)Cκ(y) = Cκ(r),
x1 = Sκ(x)Cκ(y) = Sκ(r) cosφ, (A.3)
x2 = Sκ(y) = Sκ(r) sinφ,

which on E2 with κ = 0 reduce to

x0 = 1, x1 = x = r cosφ, x2 = y = r sinφ.

In the three spaces, the coordinates x, y and r have dimensions of length, while φ ∈ [0, 2π) is
always an ordinary angle. However, on S2 with κ = 1/R2, the dimensionless variable r/R is usually
considered instead of r . All these coordinates are represented in Fig. 3.

By introducing (A.3) in the metric (A.2) we find the metrics

ds2 = C2
κ(y)dx

2
+ dy2 = dr2 + S2κ(r)dφ

2. (A.4)
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The kinetic energy Lagrangian for a free particle moving on these spaces can be straightforwardly
derived from (A.4). Explicitly, let (px, py) and (pr , pφ) be, in this order, the conjugate momenta for
(x, y) and (r, φ). Then, the free kinetic energy Hamiltonian Tκ that generates the geodesic dynamics
in the curved space is given by

Tκ =
1
2


p2x

C2
κ(y)

+ p2y


=

1
2


p2r +

p2φ
S2κ(r)


. (A.5)

Indeed, when κ = 0 we recover the Euclidean kinetic energy.

T0 =
1
2


p2x + p2y


=

1
2


p2r +

p2φ
r2


.

In order to guarantee that (A.5) is well defined, we find that the coordinates (x, y) and r have to be
defined in the following intervals:

S2 (κ > 0) : −
π

√
κ

< x ≤
π

√
κ

, −
π

2
√

κ
< y <

π

2
√

κ
, 0 < r <

π
√

κ
. (A.6)

H2 (κ < 0) : −∞ < x < ∞, −∞ < y < ∞, 0 < r < ∞. (A.7)

Appendix B

In order to check that X̂±
κ are a pair of symmetries of the Hamiltonian Ĥκ (6.2) when the coefficient

γ takes the rational value, let us use the following notation for the Hamiltonian (6.3)

Ĥκ = −
h̄2

2
∂2

∂y2
+

h̄2

2
κTκ(y)

∂

∂y
+

(γ Êκ)
2

2κC2
κ(y)

−
ω2

2κ
≡ Ĥκ


γ Êκ


,

where we recall the definition (6.9) of the operator Êκ . Let us consider, for instance, the product
X̂+

κ Ĥκ(γ Êκ) and let us move the operators X̂+
κ to the r.h.s. of the Hamiltonian. First, by making use

of (6.11) we move the B̂+
κ operators:

X̂+

κ Ĥκ(γ Êκ) = (Â+

κ )m(B̂+

κ )nĤκ(γ Êκ) = (Â+

κ )mĤκ


γ (Êκ − nh̄κ)


(B̂+

κ )n.

Next, we translate the Â+
κ operators to the r.h.s. by means of the intertwining (6.16) and require that

we should obtain Ĥκ(γ Êκ)X̂+
κ , that is,

X̂+

κ Ĥκ(γ Êκ) = Ĥκ


γ (Êκ − nh̄κ) + mh̄κ


(Â+

κ )m(B̂+

κ )n = Ĥκ(γ Êκ)X̂+

κ .

Therefore, we get the condition

γ Êκ = γ (Êκ − nh̄κ) + mh̄κ ⇐⇒ γ = m/n

and in that case X̂+
κ (and X̂−

κ as well) will be a symmetry operator of the Hamiltonian. Notice that the
operator products in (6.17) are written in terms of the operator Êκ . In order to write the computation
explicitly, we will use the following notation:

B̂+

κ → B̂+

κ (Êκ), Â+

κ → Â+

κ (γ Êκ).

Then, the symmetry operators read

X̂+

κ = Â+

κ


γ (Êκ − nh̄κ) + mh̄κ


. . . Â+

κ


γ (Êκ − nh̄κ) + h̄κ


B̂+

κ (Êκ) . . . B̂+

κ (Êκ),

X̂−

κ = Â−

κ


γ (Êκ + nh̄κ) − (m − 1)h̄κ


. . . Â−

κ


γ (Êκ + nh̄κ)


B̂−

κ (Êκ) . . . B̂−

κ (Êκ),

where these operators are always assumed to act on the space of eigenfunctions Ψκ(ξ , y) = Ξ ϵ
κ (ξ)

Y γ ϵ
κ (y) of Ĥξ

κ with eigenvalues given by (6.6) and (6.7).
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