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The fractal structure of real world objects is often analyzed using digital images.

In this context, the compression fractal dimension is put forward. It provides a sim-

ple method for the direct estimation of the dimension of fractals stored as digital

image files. The computational scheme can be implemented using readily available

free software. Its simplicity also makes it very interesting for introductory elabora-

tions of basic concepts of fractal geometry, complexity, and information theory. A

test of the computational scheme using limited-quality images of well-defined fractal

sets obtained from the Internet and free software has been performed. Also, a sys-

tematic evaluation of the proposed method using computer generated images of the

Weierstrass cosine function shows an accuracy comparable to those of the methods

most commonly used to estimate the dimension of fractal data sequences applied to

the same test problem.
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I. INTRODUCTION

One of the most common descriptions of a given case study in Science and Engineering

is through a graphical representation in an image. Fractal analysis of digital images is of

great value, for instance, in Medicine [1–5] or Botanics [6, 7] and for the characterization of

many other physical processes [8, 9].

The algorithms normally used for calculating the fractal dimension of images [9–11] are

rather involved and the absence of simple to use and freely distributed software tools can

limit the widespread use of fractal methods in digital image analysis. Furthermore, they

are typically based on the processing of the image data that should be extracted from the

picture file when this is the available source format. In this work, a simple approach is

proposed for estimating the information fractal dimension. The algorithm is oriented to its

direct application to image files working with ordinary software tools and it can be used

with no further prepossessing, no matter how the image is captured or generated.

The simplicity of the proposed computational scheme and its direct relation to basic

concepts in information theory and complexity theory makes it suitable for computer lab

experiments in fractal analysis [12]. The potential of introductory fractal analysis even in

high-school education was already highlighted in [13].

One major difference between the fractals found in empirical sciences and their mathe-

matical counterparts is the existence of a finite limit to the scaling property in any real-world

fractal. For fractal images, there are stringent restraints arising from the constrained image

resolution [14] and the effect of noise [15]. To test the scheme proposed in this work, im-

ages of well-known fractal objects available in the Internet have been used without paying

special attention to their resolution level. Therefore, the results show the potential of the

method for estimating the dimension of fractal images far from ideal conditions. In a second

systematic evaluation using computer synthesized fractals, the impact of the image resolu-

tion and other details of the implementation on the accuracy of the estimations is assessed.

The results of this study show that the performance of the proposed algorithm compares

favorably, in terms of accuracy, with methods normally used for estimating the dimension

of fractal sequences.
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II. THE COMPRESSION DIMENSION

A. Information fractal dimension

Hausdorff dimension provides a rigorous mathematical definition of dimension [16]. In an

intuitive way, this concept can be introduced through the exponent describing the variation

of the size of an object with the scale used to measure it [16, 17],

size ∼ scaledimension. (1)

For a segment, both its size and scale are given by its length and the dimension is one. A

circle is an example of a two-dimensional object since its size (area) scales with its diameter

as size = π × scale2. For a sphere the size (volume) is related with the scale (diameter)

as size = π/6 × scale3 and its dimension is three. A fractal object in the plane, like a

coastline, will have dimension larger than one (and smaller than two) as a consequence of

the space-filling properties of the graph and its infinite length.

Calculating fractal dimensions is the primary objective in the study of fractals and can be

a fairly complex task. One possibility for calculating fractal dimensions is the box-counting

approach. At each resolution r, one defines a grid covering the object that is being analyzed

(squares for the plane and cubes in space) and then counts the number n(r) of nonempty

grid boxes. The box-counting dimension is then defined as

DB = lim
r→0

− log n(r)

log r
= lim

s→∞

log n(s)

log s
, (2)

or n(r) ∼ (1/r)DB , i.e. n(s) ∼ sDB , where the scale s is the inverse of the resolution s = 1/r.

An alternative approach is given by the information dimension [17]. One determines how

many bits of information H(r) are needed to specify a point in the object with a accuracy

set by r. The information dimension is then given by

DI = lim
r→0

−H(r)

log r
= lim

s→∞

H(s)

log s
. (3)

H is the Shannon Entropy [18] of the fractal. If we partition the fractal in boxes of size r

we need

H = −
∑
i

Pi log2 Pi (4)

bits of information to specify one box or, equivalently, to specify the position of a point in

the fractal to an accuracy r. Pi in (4) is the probability measure (the size) of box i.
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Different indirect estimates for the entropy have been used to analyze data sequences

in complex dynamical systems, such as electroencephalograms [19]. Our approach, instead,

focuses on the direct estimation of the information dimension of geometrical objects based

on data compression.

B. Data compression

Data compression aims to produce an encoding that gives the shortest possible description

of the information content of the data. Shannon entropy is the fundamental lower bound

for compressing information[18]. For the commonly employed compression schemes, like

Lempel-Ziv (LZ) algorithm, it can be proved [18] that the compressed file size equals the

entropy of the data asymptotically in the number of symbols. From a practical point of

view, such assumption is reasonable for regular image file sizes. A second compression of an

efficiently compressed file should yield a negligible size reduction ratio, since the file size is

already very close to the entropy limit. This can be used as a check for the performance of

a file compression software. Also, the entropy limit can be approached in a two-step scheme

if the compression efficiency is poor for large files.

We will use freely available and very efficient data compression software to obtain ap-

proximate values of Shannon entropy in our calculations of the fractal dimension. Data

compression software is also routinely used, for instance, for estimating the Kolmogorov

complexity distance [20].

Note that we have to use lossless data compression algorithms that permit us to fully

recover the uncompressed data, and we have to be careful to avoid lossy compression algo-

rithms used, for instance, in JPEG image file files that achieve high compression rates at

the cost of loss of information.

C. Image files

There are two types of graphic formats for the computer representation of images. In

vector graphic formats the different elements that constitute the image are mathematically

specified as geometrical primitives (such as lines, circles, etc.). Therefore, the image file

contains indications for reconstructing the image at any required level of detail. Scaling
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an image stored in a vector graphics file is a reversible operation and it does not affect

the amount of information required to describe the image. In raster (or bitmap) graphics

formats, on the other hand, an image is stored as a matrix of pixels. As we decrease

the resolution of the raster image we disregard image pixels, there is a loss of information

with the result that the image cannot be recovered to the previous level of detail from the

reduced scale, and the amount of information required for describing the image decreases in

accordance to the reduction in the complexity.

There are many possible choices for the bitmap graphics format with different compression

options [21]. For instance, the Graphics Interchange Format (GIF) is widely used in the

Internet. The GIF format uses LZW data compression, whereas the also commonly employed

Portable Network Graphics (PNG) format is based on the DEFLATE compression algorithm.

Both compression methods are lossless and belong to the class of dictionary compression

methods of the LZ method that share the entropy property. This means that an efficient

implementation would give a compressed file size asymptotically approaching the entropy of

the data [21]. In the Tagged Image File Format (TIFF) one can choose among lossy JPEG

image compression, several types of lossless compression or no compression at all. All the

compression methods employed in this study: DEFLATE (in PNG image format, in ZIP

compressed TIFF format and in the gzip software for external compression of files) and

LZW (in TIFF format) belong to the class of lossless dictionary compression methods [21].

D. The compression dimension

Similarly to the definition of information dimension of a fractal object, we now consider

the scaling effect on compressed image files of its pictorial representation. If we use an image

with Ni = nx × ny pixels we need Ni symbols to store it, one per pixel. After compression,

the minimum file size S, expressed in bits, required to store this information is [18]

S = Nih, (5)

where h (bits/symbol) is the entropy rate of the data file. S is, by definition [18], the entropy

of the data file.

We now define a magnifying factor of the image (or scale) s such as the total number of
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pixels used to represent the image is

Ni(s) = nx × ny = (sn0x)× (sn0y) = N0s
2, (6)

with N0 = n0x × n0y an arbitrary reference value of the number of pixels.

The optimal compressed file size used for storing the image is, using (5) and (6),

S(s) = N0s
2h(s). (7)

In our former definitions (3), (5), H applies strictly to the fractal set and S and h to the

image file. Now, we develop the relationship that exists between the entropy of the fractal

and that of its image representation. At a scale s, H(s) is the number of bits required to

specify a point of the fractal. Therefore, the total number of points required to specify the

fractal at scale s, Nf (s), according to (3), is

Nf = 2H(s) = N1s
D, (8)

where N1 is an unknown integer, since s has been arbitrarily referenced to N0.

We consider a black and white image of the fractal where an image pixel is coded with the

bit 1 if it corresponds to a fractal point and bit 0 otherwise. For a faithful representation, we

need that the number of available image pixels exceeds largely the number of pixels required

for the description of the fractal at a given resolution level Nf (s) << Ni(s). A lossless

compression of this image can be obtained using the run-length encoding algorithm [21].

First, the image can be represented as a binary sequence obtained by the concatenation of

the image rows. Then, the information in the image can be encoded as the positions of the

1 bits within that sequence. The list of the stored position values of the black pixels can

then be further compressed using a conventional Huffman encoding [21]. In the conditions

specified above, the entropy of the image file obeys the scaling asymptotics

S(s) ∼ 2H(s) ∼ sD. (9)

The above equation serves as a definition of the compression dimension of a fractal DC

as

DC ≡ lim
s→∞

logS(s)

log s
, (10)

and we expect that DC permits to estimate the value of D.
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(a) (b)

(c) (d)

FIG. 1. A small portion of the boundary of the Dragon curve shown in Figure 4 corresponding to

the original image (a) and at s = 7 (b) s = 4 (c) and s = 2 (d).

.

III. COMPUTATIONAL PROCEDURE

The computational procedure used in this work is now described. Of course, this recipe

can be conveniently adapted to any particular scenario. We will use compressed image file

representations of an object at different scales in order to estimate its fractal dimension.

Any lossless type of data compression, either included in the coded bitmap image file or

external to it can be used for this purpose. For our first test experiment, we start with an

uncompressed TIFF image at each scale and we compress it using gzip. We have checked

that using PNG graphics format without further compression produces very similar results.
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In the first test experiment, the computational procedure used for estimating the fractal

dimension is as follows:

• STEP 0: Generate an initial uncompressed TIFF version of the downloaded image.

Since the source image for which the fractal dimension is estimated can have any

type of image format encoding, this step has the specific purpose of uniforming the

estimation procedure.

• STEP 1: Generate nine versions of the fractal image as TIFF files with no compression

at different scales s = 1, 2, . . . 9. This corresponds to reducing the image size to

10%, 20%, · · · , 90% of the original file size.

• STEP 2: Compress all the tiff files.

• STEP 3: Measure the file sizes S(s) and plot log(S) versus log(s) and determine the

physical scaling range.

• STEP 4: Determine, using linear regression, the slope of the log-log plot. This is the

estimated value of the fractal dimension D since

S ∼ sD.

The free software image processing suit imagemagick [23] has been used for step 1. For

instance, the command

convert -resize 10% -monochrome -compress None Image.tiff image_s_1.tiff

permits one to obtain the smallest s = 1 representation of the original image in file

Image.tiff in the file image_s_1.tiff by resizing the image to a 10% of its original

size keeping the image as a black and white (monochrome) image and using no compression.

For step 2, the free compression software GNU zip (gzip)[24] has been used.

In the second experiment, different image formats and compression types have been

studied. For this reason, STEPs 1 and 2 have been merged in a single operation using

ImageMagick software. Also, a second compression of the files has been performed using

gzip. This has permitted to identify situations where the efficiency of the compression was

poor and improve the accuracy of the results in these cases.
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(a) (b)

(c) (d)

FIG. 2. A small portion of the boundary of the Dragon curve shown in Figure 4 corresponding to

the original image (a) and at s = 7 (b) s = 4 (c) and s = 2 (d) for gray level representations.

.

Figure 1 displays a small portion of the Dragon fractal curve ?? at the original and three

different scaling levels. We can see how changing the pixel size is, in some sense, related

with the change of the box resolution r in a box counting experiment, but with one notable

difference: when the scale is reduced, a given pixel (box) is determined to be filled or not

by sampling the former image, which produces an additional loss of information. The use

of gray images in the scaling of the original image, as illustrated in figure 2 for the same

case, can solve this issue. Now, each pixel is not only either black or white, but it can have

any in a large number of intermediate gray values. The particular gray value is related to

the number of black and white pixels in the area of the original image that is collapsed
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to this particular pixel in the scale reduction process. Therefore, grayscale images can

actually be advantageous for calculating the fractal dimension since the loss of information

due to sampling in the rescaling process is avoided. This difference between the amount of

information given by BW or gray images is also related with one of the main limitations

of the box-counting algorithm in practical applications that has led to the definition of a

generalized box-counting dimension [17]. In this scheme, boxes are not simply occupied or

not by the object, but the number of occupied points in a box are considered, much like in

a grayscale image.

The -resize command in ImageMagick has many options that affect how the downscaled

images are calculated differently depending on the image format [23]. For this reason, a

simplified version provided by the command -scale as a fixed pixel averaging procedure

[23], has been used in the second test experiment for changing the scale of the images

consistently among the various image formats.

IV. RESULTS AND DISCUSSION

The proposed method has been applied to two different case studies. First, various images

of fractal sets downloaded from the Internet have been analyzed. Then, a systematic survey

based on the Weierstrass fractal has been used to draw more general conclusions regarding

the properties of the method.

A. Downloaded image files

Even though the underlying objects in the first part of the study are precisely defined

mathematical fractals, the image files we work with are real world fractals and the level

of detail in the original image permits only a finite depth in the scaling procedure. For

instance, the image analyzed in figure 1, at s = 1 is completely blank. Therefore, STEP 3

includes the study of the scaling plot to determine the scaling range of interest. This can

typically be identified from a change of the slope in the graph.

The fractals used for the analysis are displayed in figures 3 to 10. All the image files

of the fractals that are analyzed have been downloaded from the Internet [22]. The actual

Hausdorff dimension listed in this web page has also been collected for comparison.
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FIG. 3. (a) Asymmetric Cantor set and (b) its fractal dimension analysis.
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FIG. 4. (a) Boundary of the Dragon curve and (b) its fractal dimension analysis.

In figures from 3 to 10, each fractal to be analyzed is plotted at the left (a) panel and

the result of the fractal dimension calculation is displayed in the right (b) panel. In Table

I, the name of the fractal and the name of the file downloaded are listed, together with the

actual Hausdorff dimension of the set analyzed and the dimensions computed following the

algorithm described in this work both for grayscale Dg and monochrome Dbw scaled replicas

of the original image.

For almost all cases, the dimension calculated using the grayscale scaled images Dg pro-
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FIG. 5. (a) Fibonacci word fractal 60o and (b) its fractal dimension analysis.

(a) (b)

−1 0 1 2 3 4
13

14

15

16

17

18

19

20

log
2
(s)

lo
g

2
(S

)

D=1.6686

FIG. 6. (a) Ikeda map attractor and (b) its fractal dimension analysis.

vides either equal or better accuracy than that given by the dimension calculated using

the black and white scaled images Dbw. It is noteworthy how our algorithm provides in

most cases good approximation to the exact dimension of the ideal object working with a,

necessarily imprecise, representation of the mathematical object in an image file.

The worst result is obtained for the Fibonacci fractal displayed in figure 5. A detailed
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FIG. 7. (a) Julia set and (b) its fractal dimension analysis.
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FIG. 8. (a) Julia set z2 − 1 and (b) its fractal dimension analysis.

analysis shows that the image used in this case provides a rather poor representation for this

fractal and the files corresponding to values of s from 1 to 3 are actually blank. This result

could have been observed directly from the fractal dimension analysis shown in Fig. 5 (b),

where no change in the file size S is obtained for these values of s. Once these meaningless

data points are eliminated from the analysis, the accuracy estimating the dimension im-

proves, but is still far from the actual value. A poor representation of the fractal complexity

in the original image file can be inferred from this result.
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FIG. 9. (a) Boundary of the Lévy C curve and (b) its fractal dimension analysis.
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FIG. 10. (a) Sierpinski triangle and (b) its fractal dimension analysis.

Another interesting example is provided by the Julia set z2 − 1 displayed in figure 8

(a). The analysis shows that the s = 1 scaled version of the original image still has some

information content, but the scaling analysis of figure 8 (b) displays a change in slope for the

four data points corresponding to the lowest scales as compared with the tendency shown by

the other points. If these points are neglected, the estimate of the fractal dimension changes

from D = 0.9590 to D = 1.2123, which is a significant improvement of the accuracy when
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Fractal name File name DH Dg Dbw

Asymmetric Cantor

set

AsymmCantor.png 0.6942 0.8320 0.8754

Boundary of the

Dragon curve

Boundary dragon curve.png 1.5236 1.5946 1.5225

Fibonacci word

fractal 60o

Fibo 60deg F18.png 1.2083 0.7985 0.7985

Ikeda map

attractor

Ikeda map a=1 b=0.9 k=0.4 p=6.jpg 1.7 1.6687 0.8681

Julia set Juliadim2.png 2 1.8105 1.7353

Julia set z2 − 1 Julia z2-1.png 1.2683 1.2123 1.7495

Boundary of the

Lévy C curve

LevyFractal.png 1.9340 1.9353 1.9353

Sierpinski triangle Sierpinski8.svg 1.5849 1.6555 1.3032

TABLE I. The five columns of the table correspond (from left to right) to the name of the fractal,

the name of the file used[22], the Hausdorff fractal dimension[22], the computed fractal dimension

obtained using black and white images at all scales and the computed fractal dimension obtained

using grayscale images.

compared with the actual value DH = 1.2123.

B. A systematic study based on the Weierstrass cosine function

In this second analysis, a series of computer generated images has been used in order

to perform a systematic evaluation of the proposed computational procedure. The fractals

have been generated using the Weierstrass cosine function [25]

Wα(t) =
M∑
n=0

γ−nα cos (2πγnt) , (11)

with γ > 1 and 0 < α < 1. For M →∞ the fractal dimension is D = 2− α [25]. γ and M

have been set to γ = 5 and M = 26, respectively, and values of α ranging from 0.2 to 0.8

have been used.
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(a) (b)

(c) (d)

FIG. 11. Four of the Wα fractal sets used in the study. (a) α = 0.2, (b) α = 0.4, (c) α = 0.6 and

(d) α = 0.8. The corresponding fractal dimensions are (a) D = 1.8, (b) D = 1.6, (c) D = 1.4 and

(d) D = 1.2.

There follows the details of each evaluation performed. First, for a given value of α,

Wα(t) is plotted with N data points in the interval t ∈ [0, 1.5] using Matlab. This plot is

then printed to an uncompressed TIFF image file. Four examples of the images used are

displayed in Figure 11. We stress that N is the number of points in the Matlab plot and

not the number of pixels corresponding to the fractal in the image file. The assignment of

the values of the image pixels from the plotted data is internal to Matlab. The initial image

generated with Matlab contains Ni = 4800× 36701 = 17284800 pixels. The blank margins

of the image are then removed using the ImageMagick command mogrify -trim.

A sequence of downscaled versions resized with percentages read from the vector

Vs = [5 6 7 8 9 10 12 14 16 20 30 40 50 60 70 80 90] (12)

is generated from the initial image using ImageMagick’s convert program. The values in

(12) have been arbitrarily chosen to produce a more or less regular spacing in the logarithmic

plot. As commented above, the scaling factor is set with the simplified version -scale that
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FIG. 12. (a) Unsigned mean error of the seven values of the fractal dimension (as α is varied from

0.2 to 1.8) calculated for each value of N and ns. (b) Mean value of the norm of the residuals

in the linear fit for the seven values of α at each N and ns. PNG images have been used in the

calculations.

reduces the processing in the downscaling to a pixel averaging [23] instead of the -resize

option.

The study has been repeated using sequences of downscaled images with PNG and TIFF

image file formats. In the case of TIFF images, two different types of compression have been

used: LZW and ZIP. The dimension calculations have also been repeated after externally

compressing the sequences of image files using gzip to check the existence of inefficiencies

in the compression.

The calculation of the compression dimension has been systematically repeated for differ-

ent values of α and N . In the analysis, it was frequently observed a deviation from linearity

at the larger values of s in the fit of the log2(S) vs log2(s) data. In order to quantify this

effect, the fractal dimension has been calculated for different values of ns, which is the num-

ber of elements of Vs used, always starting from the smallest scale. For instance, ns = 8

means that only the first eight values of s in Vs (s = 5, 6, 7, 8, 9, 10, 12, 14) and the cor-

responding S(s) data are used in the linear fit of the log-log plot for the calculation of the

fractal dimension.

For each value of N and ns, the compression fractal dimension has been calculated for
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FIG. 13. (a) Unsigned mean error in the values of the fractal dimension computed using TIFF image

format with LZW compression. (b) UME after a second compression using gzip. (c) Unsigned

mean error in the fractal dimension computed using TIFF image format with ZIP compression.

(d) UME after a second compression using gzip.

seven values of α in the range between 0.2 and 0.8. The unsigned mean error (UME) of

these seven estimations is defined as

UME =
1

7

7∑
l=1

|Dc(l)−D(l)| , (13)

where α(l) = 0.2 + (l − 1)0.1, Dc(l) is the calculated compression dimension and D(l) =

2− α(l) is the theoretical dimension.
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FIG. 14. Estimated dimensions at the minimum UME using (a) PNG format, (b) TIFF format

with LZW compression, (c) TIFF format with ZIP compression and (d) PNG format with the

-resize ImageMagick option instead of -scale. Asterisks correspond to the theoretical value of the

fractal dimension, circles to the estimated dimension and squares to the dimensions estimated after

a second compression using gzip.

The results obtained using PNG format images are plotted in Figure 12 (a). The estima-

tion error displays a characteristic dependence with the number data points in the Matlab

plot, with optimal performance at a given N . These results exhibit the expected relation

between the image resolution given by the number of image pixels Ni, the amount of infor-

mation required to represent the fractal a given resolution level Nf = 2H , and the number
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of data points initially used to plot the fractal N . For small N , the error of the estimation

decreases as we increase N . If we assume a direct relation between N and the number of

pixels corresponding to the fractal for the lowest values of N , an optimum should be ob-

tained as N ∼ Nf . At the same time, we need Nf << Ni for a faithful representation of the

fractal and using an excessive number of data points saturates the image without adding

more detail. Therefore, the UME grows with N after the optimum value is exceeded. Other

tests performed with a reduced resolution of the initial image Ni show the same qualitative

behavior but with a corresponding reduction in the optimum value of N . It is also notewor-

thy that the sensitivity of the error to the value of N decreases when smaller values of ns

are used and the data for the highest scales are neglected in the calculations. This can be

attributed to the incorporation of the fractal information in the grayscale coding along with

the pixel averaging in successive downscaling stages, as discussed in Section III.

Figure 12 (b) shows the average (over each set of seven values of α) of the norm of the

residuals in the linear fit used to determine the values of the fractal dimension. Large errors

in the calculation of the fractal dimension in Figure 12 (a) are correlated with poor linear fits

in the log2(S) vs log2(s) in Figure 12 (b). This reinforces the consistency of the proposed

method, since good fits (with small norm of residuals) to poor estimates seem not to be

expected.

The values of UME in the dimension calculation using TIFF images are shown in Figure

13. Figure 13 (a) shows the results obtained using LZW compression. In general, the UME

is substantial, specially for large values of ns. A second compression of the image files

using gzip produces significant size reduction factors when the image files are large. This

must be linked to a low efficiency of the LZW compressor for large file sizes [21]. It can

be corrected for with an external compression using gzip prior to the computation of the

fractal dimension, as shown in Figure 13(b). Figure 13(c) shows the values of UME obtained

using TIFF image format with ZIP compression. These are comparable to those obtained

with the PNG format and TIFF with LZW compression plus a second compression using

gzip. Also, an external gzip pass to the TIFF files with ZIP compression does not produce

an improvement of the estimation error in Figure 13 (d).

For each file format, the dimensions calculated with the best UME are shown in Figure

14, together with the theoretical values and the estimations obtained after a second external

compression using gzip. The results using PNG images are very good except for the smallest
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dimension considered. A second compression shows no effect on the results. When TIFF

images with LZW compression are used, very large errors are obtained when D < 1.5, but

these are due to the aforementioned poor performance of the LZW compressor when the

image files are large and are corrected for using a second compression. The accuracy is then

excellent except for D = 1.8. Using TIFF images with ZIP compression yields reasonable

estimates except for D = 1.2. The details of the downscaling of the image file also affect the

estimation of the fractal dimension. This is illustrated in Figure 14 (d) where PNG images

are used but the ImageMagick -resize option is used instead of -scale. In this case, nearly

exact values of the fractal dimension are obtained except for D = 1.2.

It is interesting to note that worst estimation results tend to show up either at the extreme

values of D, closest to D = 2 (the space filling plot) and D = 1 (the case of an ordinary

curve in Euclidean space) where the fractal complexity is probably most difficult to capture

in an image file.

A comparison between the performance of different algorithms commonly used to cal-

culate the dimension of fractal waveforms tested with the Weierstrass cosine function was

presented in [25]. Even though the methods studied in [25] are applied to fractal data se-

quences and, therefore, are completely different to the computational scheme of this work,

which acts of image files, it is interesting to note that the results from the method presented

here are comparable, in terms of accuracy, to the most accurate of the methods analyzed in

[25], namely, Highuchi method.

V. CONCLUSION

A method to calculate the information dimension of a fractal based on data compression

has been presented. An experiment has been set-up using images of fractal sets downloaded

from the Internet and freely available software. The results show good agreement in the

estimated dimension and the exact values when the image file reproduces enough detail

of the geometrical object under study. The proposed scheme is particularly simple and it

is even suitable for a hands-on introductory approach to concepts in information theory,

fractal geometry and complexity. In a more extensive analysis of the algorithm applied to

the Weierstrass cosine function, the accuracy of the calculated dimension is found to be

comparable to that of the methods normally employed in the estimation of the dimension
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of fractal sequences.
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