Estima .c.. . .. althy and Fibrotic Tissue
Distril utio s ir DE-CMR Incorporating
CI.'E-/,. " 'in an EM Algorithm

Susana Merino-C' .iedes!, Li 'io Cordero-Grande?, M. Teresa Sevilla-Ruiz?,
Ana Revilla-Or| ea®, M. Tere: Pérez Rodriguez*, César Palencia de Lara?,
Marc  Martin-Fern/ .dez!, and Carlos Alberola-Lopez!

! Laboratorio de Prc 1o Lagen, Universidad de Valladolid, Valladolid, Spain*
2 Department of Biomedical Engineering, King’s College London, London, UK
3 Unidad de Tmagan Clardinea Haocpital Clinico Universitario de Valladolid, CIBER

ae enr¢ neaaa  cardiovasculares (CIBERCV)
4 Dpto. de Matematic. Aplica , Universidad de Valladolid, Valladolid, Spain

Abstract. | sciayed buaancement (DE) Cardiac Magnetic Resonance
(CMR) allows practitioners to identify fibrosis in the myocardium. It
is of impor rential diagnosis and therapy selection in
Hypertrophic Card myopa 1y (HCM). However, most clinical semiau-
tomatic scar quanti. ation 1 thods present high intra- and interobserver
variability in the ¢/ » of H M. Automatic methods relying on mixture
model estiny t. cardial intensity distribution are also subject
to variability due to inaccuracies of the myocardial mask. In this paper,
the CINE-C_ "™ image information is incorporated to the estimation of

the DE-CMR t1s “stributions, without assuming perfect alignment
between the two 1odaiie.  or the same label partitions in them. For
this purpose, we iron i1 expectation maximization algorithm that

P

estimates the _wR distribution parameters, as well as the condi-
tional probiuiities of the DE-CMR labels with respect to the labels of
CINE-CMR._ with the latter being an input of the algorithm. Our results
show that, ¢ wpaicu v apy /ing the EM using only the DE-CMR, data,
the propose algorithm is = ore accurate in estimating the myocardial
tissue parar ters and obta s higher likelihood of the fibrosis voxels, as
well as a hig. = Dice coeff ent of the subsequent segmentations.

Key words: Scar segmentation, EM algorithm, hypertrophic cardiomy-
opathy

1 Introduct on

Hypertrophic Carc. wwanat!'™ (HCM) is the most prevalent cardiomyopathy
of non-ischemic origin, witn mortality rates between 1% and 5% [1]. One of
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the clinical indicé o.o i) cCo. the volume of fibrosis in the myocardium. It
may be measurec using | ‘elaye Enhancement (DE) Cardiac Magnetic Reso-
nance (CMR), wt re fibr| is S ap]ars hyperenhanced with respect to myocardial

healthy tissue. Ct. ont< ;4 segmentation methods for DE-CMR employ a
prior mask of the myocardium, either obtained from CINE-CMR and aligned to
DE-CMR if needed. 2lly delineated on the image. A small remote my-

ocardium region ¢ .nterest (kv 7) is also chosen to compute a threshold above
which a voxel is ¢ isidered fibros . However, the presence of diffuse fibrosis com-
plicates selecting . threshold in' [CM. In [2], it was observed that both inter-
and intraobserver . riability of¢ anual and semiautomatic clinical methods were

significantly higher 1. .an in either acute or chronic infarction.
Several proposed automatic scar segmentation methods are based on estimat-
ing the probabilit, ‘ the healthy and scarred tissue [3,4] with the

expectation maximizatio (EM) lgorithm [5]. This approach is better suited to
the use of more complex sgmen tion methods for identifying the scar, but mis-
alignments in the myocs ‘ial p7 r mask may alter the estimated distributions.

Moreover, the fit ..o disv.- . .oon may be similar to the blood distribution.
In [6], a multivariate mixture model to segment the myocardial contours in DE-
CMR including C 11 as T2-weighted images was proposed, where

complementary modaliti : were sed to solve ambiguities in borders. However,
this method uses the sar @ label hartition for all the modalities and relies on an
atlas for its initializatio: Ther ore, its adaptation to fibrosis segmentation in
HCM is not strai; _..c. war .

Here, the variability of the tissue distribution estimations with respect to

displacements in .. iar myocardial mask is explored. We propose an EM
algorithm for the estin tio.. "1l tissue distributions in DE-CMR using CINE-
CMR and a prior myc ardia’ _sk. In the proposed algorithm, the label par-

titions of DE-CMR .2« _/NE-CMR do not need to be the same. Additionally,
small misalignme_.cs between both modalities are considered. The experimen-
tal results show that tha nranocad EM parameter estimations have lower error
with respect to th classic kvt al orithm on the DE-CMR myocardial mask. The
scar segmentatior obtained by ¢ plying the maximum likelihood (ML) criterion
with the paramet s estimated / r the proposed method achieved a higher Dice
coefficient than the 'assic EM ethod as well.

The rest of the docuwueut is structured as follows: in Section 2, the proposed
EM method is describ= " Mawed by Section 3, where the experimental setup
and results are sh< .. Finally, »me conclusions are drawn in Section 4.

2 Methods

Let Io(x,t) : £2 x [0, T} - R be a spatiotemporal CINE-CMR image, where T’
is the cardiac cy 7 C RP is the image spatial domain. Let I(x)
be a DE-CMR i 1mage ac( lired ¢ an instant t = tg € [0,7]. We define the label
sets £ = {L;}Y4 = {C,1 S,B} »r DE-CMR and A = {4;}Y4 = {C,M, B} for
CINE-CMR, where Ny, 4, N = 3, and the labels C, M, H, S and B stand
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respectively for t} U.ool iy nclosed by the endocardium, the myocardium,
the healthy tissuc the sc r and he background. Finally, let A(x) : 2 — A be
an anatomical seg 1entat n tha assigns to x its estimated CINE-CMR label at
time tR.

The Rice distribuvion is employed to model a single tissue intensity dis-
tribution in magnetis ~ce imaging. The Rayleigh and the Gaussian dis-
tributions, appror’ ate partic. r cases of the general Rice distribution, have
been used to mc el the health, tissue and the blood intensity distributions,
respectively [3,4] The intensity listribution of each particular tissue in DE-
CMR is assumed " »have invar’ at parameters with respect to the CINE-CMR

intensity Ic(x,tg) (i con, Io(x,tg) = Ic(x) for clarity) and anatom-
ical segmentation A(x); that is, if L;(x) is known for a given pixel x, then
P(Ir(x)/Ic(x), L, -, -=, —,, P(Ir(x)|Li(x)). However, both the labels L;

and the distribution pa; meter for each L; are unknown. For this reason, it
seems reasonable to use he Ex ectation Maximization (EM) algorithm [5] to
estimate these paramets  Let/ be the parameters required in order to charac-
terize all DE-CM { vissue Gioo.inutions. The image loglikelihood is:

Mp
log L(6) = = log :P(IR(xn),[c(xn),Lj;G)
x 2 -1
[ x 1)
L 2> PUgr(xn), Ic(xn), Lj, Ag; 0)
x, €2  j=1k=1
where the second 1ac. =.comes from applying the law of total probability us-
ing the CINE-CMR l¢ els. .. =der to estimate the 6§ that maximizes the log
likelihood, we modify = 1e 7" _.cthod so that it takes into account the CINE-
CMR label probabi®= _“1herefore, let @Q;i(x) be such that Q;x(x) > 0 and
S YA Qik(x) = 1. Then:
~ NI, INa
log L(0) = > 0g Y > P a(xn),Ic(xn), Lj, Ax; 0)
Xn €S j=1k=1
Y M P(Ir(xn), Ic(xn), L;, Ay; 0)
_ log Qk(xn) R\&n ), LC\&n )y Lvjy Ak, 9
2z Q) ®
e P(Ir(xn), Ic(xn), Lj, Ax; 0 ~
> 37503 Quel og PURL) ob0). 1y, Ai) _ )
Xn€ J=1k=1 ij(xn)

by the application  »leneo="" nequality®. The joint probabilities may be ex-
pressed as (dropping the x,, dependence for clarity):

P(Ig,Ic,Lj, igyoy = anps s Lj, Ag; 0)P(Lj|Ic, Ar)P(Ic|Ag)P(A)  (3)

® Jensen’s inequality state that if is a concave function and X is a random variable,
then E[f(X)] < f(E[X]
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The P(I¢(Xp) «njin =5 are estimated from A(x) and the CINE-CMR
intensity distribu ons as smoot ed normalized histograms. Regarding P(Ay),
it is modeled so | \at the¢ orobe ility decays when the distance to the consid-

ered CINE-CMR © OLi< ) Its computation uses a Gaussian filter g(x,0)
with ¢ = d/3, where « is a parameter for the maximum distance the myocar-
dial contours are ex be misaligned. Then, P(Ax) = (x(A(x), Ag) *

g(x,d/3))/( l]iAl A(x), Ay) x_‘x,d/3)), where x(z,4;) = 1if 2z = A; and 0
otherwise. Since  (L;|Ay) are ¢ so0 unknown, the method should also provide
their estimates, w ich will be ref red to as 7. Since they are conditional prob-
abilities, they obey . > (0 2 Zjv:Ll 7k = 1. Q;r(x) is chosen so that J(f) is

as close as possible to log L(¥), and it takes the expression:

Y ALy ,L‘,Akgé) _

Qit(xn) = =x 1 N o — = P(Lj, Ap[Ir(xn);0)  (4)

Z}il kilp R(Xn)?Lijfcag)

Regarding the maxi=' »tior' tep, a new value for 6 is chosen as the argument
that maximizes J\v), considering Q;;(xy,) as fixed.

20

1)

= ar gnéla:w oy

)

., Na
=argmax > 315" (x,) (log PLr(x0) Ly, Agi ) + log e ()

_ =1

+log P(A - log Qjk(xn))

In order to estimat: 9, tuc ot derivatives are set to zero. Given the assump-
tion P(Ir(xn), Lj, Ax; ) =7 .\Xxn),L;;0), problem (5) is equivalent to:

gzargmax Y YlogP (Ir(xn)|L;;0) ZQﬂk Xp) (6)

k=1

For the comp -ation of 7, 1 e method of the Lagrange multipliers is em-
ployed, so that th. augmented ; oblem is:

Ng, Na

Tk = arg max AW Y‘ Zle xp) log T — Z Tk — 1) (7)

Xn €8z L1=1

The solution | (7) has the fi lowing closed form:

— L DxeaQin(xn) .
4l a N

Lx,LEQ ZmLzl ka (Xn)
Since the EM 77 77" "5cal maxima, the choice of initial values for the

parameters greatly influc ces th output estimates. In our method, these initial
parameters are compute¢ using the CINE-CMR labels, sometimes combined
with heuristics based on' linical riteria.


BORRADOR


— The blood tiss <. worow . 7 a Gaussian distribution whose parameters are
estimated by 1e ma: mum kelihood (ML) criterion on the voxels labeled
as cavity in C NE-C1 R.

— The healthy 1. 2c27 1007 ue is modeled by a Rayleigh distribution. Its
parameter is estimnated from the mode of the histogram computed from the
voxels labeled as “nm in CINE-CMR [7].

— The scar inter’ vy distribuv n is assumed to be close enough to a Gaussian.
Its meanisin (alized at 5 stz dard deviations over the mean of the estimated
healthy myoc rdium, and it standard deviation is initialized to the same
initial standar deviation #° .he healthy tissue distribution. This makes use
of the findings in"|

— The background is composed of a number of different tissues. For this reason,
this distributi 'ed as a parametric model, but as a normalized
histogram, smoothec by a G ussian kernel with a standard deviation of 0.8,
of the voxels labeled s bacl round.

0.70.10.1
o . . 0.1040.1
— The m;; are iuitialized as the (4, j)-th element of the matrix
0.1040.1
0.10.10.7
Table AL .neters of the acquired CMR sequences.
Settin,, | SAx-C SAx-LE 2C-C 4C-C
Acquisition sequer e ' sBTFE BH PSIR_TFE BH sBTFE BH sBTFE BH
View ‘ SAx SAx 2C LAx 4C LAx
Temporal phase 30 1 30 30
FOV /Frequency E wing Steps|1.98-2.01 mm 1.98-2.01 mm 1.98-2.00 mm 1.98-2.00 mm
In-plane pixel spacing 0.93-1 mm  0.55-0.62 mm 1.18-1.25 mm 0.81-1 mm
Slice thickne 0 (0) mm 10 (0) mm 8 (0) mm 8 (0) mm
Number of lices 9-13 9-12 1 3
Echo ti e [.60-1.79 2.99 1.59-1.83 1.71-1.89
Repetition ime 3.18-3.57 6.09-6.14 3.18-3.66 3.41-3.79
Flip Ang: 45 25 45 45

BH: Breath Hold. FOV: Field of View.

3 Experime tal Resul |

For this work, 21 patients with hypertrophic cardiomyopathy (HCM) underwent
a cardiac MRI st * " " hich contained CINE sequences in short axis
(SAx), two chamber (2C and { ar chamber (4C) long axis (LAx), and a SAx
DE-CMR sequence. All { quenc  were acquired with a 3T Philips Achieva MR
scanner, and their main’ -quisi{ bn parameters are summarized in Table 1.
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Fig. 1. Boxplots/ che normali. 1absolute deviations of (a) the healthy tissue intensity
mode, (b) the fi -osis mean anc ¢) the fibrosis standard deviation computed by the
EM methods wi : respect to the espective ML estimates on ROI, and ROI;.

The epicardial and endocardial SAx-C contours at end-diastole were delin-
eated by cardic “em and SAx-C, the P(I¢|Ay) distributions were
estimated. In DE-CM , the brosis ROI (ROI) was defined by a manually
selected threshold, ap; ied on 1 myocardial ROI (ROI,,) conservatively drawn
to avoid including fal¢ positi 2s after thresholding and scars of other patholo-

gies. Additiona’  _aa. + (ROI,) of remote myocardium (healthy tissue far
away from the septum) was drawn, and a voxel whose brightness was considered
by the cardiolo imum fibrosis brightness Iﬁ’max.

In order to simulat the va ability in the myocardial contours of registration
methods and to study he effc¢ t of false positives due to contour misalignments
in the distributions es’ aatior a second set of myocardial masks were drawn on
the SAx-LE im .~ .or ec. patient and 30 realizations of in-plane translations

with random orientation uniformly distributed in the range [0, 27) and norm of 3
mm. were applie. . *he myocardial contours of each slice. The resulting masks

were our test set of nyo. 'ial masks. The SAx-C and SAx-LE volumes were
spatially aligned usii ; the£= ework described in [9], which also corrects breath
hold misalignmenta: .0 5Ax-C volume at ¢t was transformed to the SAx-LE

space and resol ..i0n.

For all patiente and tha tact set of myocardial masks, a Rayleigh-Gaussian
mixture (RGM| was estimate on the myocardium, and the proposed EM algo-
rithm (PROP) 7as run with | 1 expected maximum distance to misalignments
d =1,2,3,4. £ ditionally, t} intensity distribution parameters of ROI; and
ROI, were estin. 24 on e2° patient by the ML criterion. The absolute devia-
tion of the EM estimavcu parameters with respect to the parameters estimated
on ROI; and ROL lized by the latter, are visualized as boxplots in Fig. 1.
It may be obsers. . that the oposed method provides parameters more similar
to the ones cor Huted on RO. and ROI,. In addition, the estimations present
less error varia: ‘e with respect o the RGM method, and similar results for every
d employed.

The mean logli.. uLL) yielded by the estimated parameters was com-
puted on ROI; and ROI,.. Their mean and standard deviation are given in Ta-
ble 2. For each rosis mask was generated as the voxels contained

in ROI,, where P(L; Ig(x)! ) > P(Lu|Ir(x),0). This mask was compared
with the ROI,; by me: s of t| : Dice coefficient. Their means and standard de-


BORRADOR


Table 2. Mean lo : ) on ROIs; and ROI,, and Dice coefficient of the
ensuing segmentat: as. Me wures ¢ : given as mean =+ standard deviation.

Method | 2xtra/ . wutsl’ LL in ROI, mLL in ROI, Dice coefficient

RGM ~ |-5.551 % 0.851 -4.287 £ 0.671 0.473 £ 0.304
PROP(d—1) -5.603 + 1.270 -4.254 + 1.472 0.541 + 0.254
PROP(d=2)/  — 3.597 + 1.244 -4.220 + 1.402 0.545 + 0.257
PROP(d=3 — |- 502 £ 1.229-4.198 + 1.328 0.543 £ 0.258
PROP(d—4 — | 515 + 1.235-4.218 + 1.302 0.537 + 0.261

58D ROIL, | — — 0.482 + 0.254

FWHM |ac 0750 — — 0.589 + 0.287

viations are also includec in Tal : 2. Figure 2 shows an example of the averaged
segmentations with the { st myc ardial set with RGM and PROP(d = 3).

It may be observed/ at th' proposed method achieved higher mean mLL
in the fibrosis RC ., wuu lowce. wiean mLL in the remote myocardium ROI. With
respect to the Dice coefficient, the proposed method achieved higher Dice mean
values, as well as deviations than the RGM method. Kruskal-
Wallis tests at a 1% sig ificanc level on the mLL of each ROI and the Dice
coefficient rejected the n Il hyp hesis of having the same median for the mLL
of fibrosis and the Dice’ heffici 1t with p < 1072 and p < 10™° respectively,
and accepted it f(. v mLi O nealthy tissue with p = 0.81. Conducting paired
Mann-Whitney U tests at 5% significance level between the RGM and the PROP

method with all ¢ v = indicated that the median Dice coefficient with the
PROP method was hig er v... *he median Dice coefficient with the RGM, with
p < 1072 in all tests. rom<" _¢ values it may be inferred that the proposed

EM method is betta: .uentifying fibrosis than the classic RGM EM method
in the presence o. 1alse positives introduced by myocardial contour delineation
errors, even if thp mTT of haalthy tigsue is slightly decreased. In Table 2, the
Dice coefficient r ults ot two 1 :thods used in clinical practice, which require
additional user ir sraction, are | lso given. The 5 standard deviations over the
remote myocardit 1 mean meth 1 (5SD) behaves slightly better than the RGM,
but yields lower Dic oefficia® “values than the PROP method. The Full Width
at Half Maximum (FW nwi) method achieves the best results, at the expense of
requiring the cardiola" delineate ROI, and selecting a fibrosis voxel with
maximum DE-CM' ntensity . ™, which the proposed method does not need.

4 Conclusic s

In this work, an EM algorithm that takes into account the information of two
images from diffe 7 77 'R modalities (DE-CMR and CINE-CMR) has
been proposed. This algc ithm i designed so that the number of labels on each
modality do not need to ye the ame, and without assuming perfect alignment
between modalities. Cor hared, > the Rayleigh-Gaussian mixture model often
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Fig. 2. SAx-LE slice with over nped mean ¢ come of the ML segmentation using
(a) the RGM method and (a) the 2P~ ,d. (c) Manual delineations.

used in the literature, the prc oo coow. chieved lower normalized absolute
deviations in the parameter estimate as we as improved Dice coefficient of the
segmentations performed by the ML iteriol  Our future work includes studying
the partial volume effect influence < :he »° orithm.
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