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Abstract. We present two different algorithms to compute the Weier-
strass semigroup at a point P together with functions for each value in
this semigroup from a plane model of the curve. The first one works in a
quite general situation and it is founded on the Brill-Noether algorithm.
The second method works in the case of P being the only point at infin-
ity of the plane model, what is very usual in practice, and it is based on
the Abhyankar-Moh theorem, the theory of approximate roots and an
integral basis for the affine algebra of the curve. This last way is simpler
and has an additional advantage: one can easily compute the Feng-Rao
distances for the corresponding array of one-point algebraic geometry
codes, this thing be done by means of the Apéry set of the Weierstrass
semigroup. Everything can be applied to the problem of decoding such
codes by using the majority scheme of Feng and Rao.
Key words – algebraic curves, singular plane models, Brill-Noether al-
gorithm, integral basis algorithm, Weierstrass semigroups, Apéry set,
approximate roots, Abhyankar-Moh theorem, algebraic geometry codes
and Feng-Rao distance.

1 Introduction

Feng and Rao introduced in [8] a majority scheme for the so called one-point
algebraic geometry codes, what gives nowadays the most efficient decoding algo-
rithm for algebraic geometry codes. Moreover, this procedure corrects up to half
the so called Feng-Rao designed minimum distance, that is a lower bound for
the minimum distance of these codes which is better that the Goppa designed
minimum distance.

However, this idea is not new, since Goppa himself suggested in [10] that one
can use the Weierstrass semigroup at the point P in order to obtain a lower bound
of the Goppa distance for the one-point code CΩ(D,mP ). This was explicitly
stated for example in [9]. Since, by definition, the Feng-Rao distance is closely
related to the Weierstrass semigroup, one can look for lower bounds for such
distance by using properties of this semigroup. In addition, and from “decoding
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reasons”, the knowledge of the corresponding rational functions associated to
the semigroup is also desirable.

More precisely, let χ̃ be a non-singular projective algebraic curve defined over
a finite field IF such that χ̃ is irreducible over IF. In order to define the so called
algebraic geometry codes (AG codes in short), take IF-rational points P1, . . . , Pn

on the curve and a IF-rational divisor G having disjoint support with the divisor
D

.= P1 + . . . + Pn , and then consider the linear well-defined maps

evD : L(G) −→ IFn

f #→ (f(P1), . . . , f(Pn))

resD : Ω(G − D) −→ IFn

ω #→ (resP1(ω), . . . , resPn(ω))

where the IF-vector spaces of finite dimension

L(H) .= {f ∈ IF(χ̃) | (f) + H ≥ 0} ∪ {0}

Ω(H) .= {ω ∈ Ω(χ̃) | (ω) ≥ H} ∪ {0}

are defined for any IF-rational divisor H on χ̃ . Thus one defines the linear codes

CL ≡ CL(D,G) .= Im(evD)

CΩ ≡ CΩ(D,G) .= Im(resD)

The above constructed codes have asymptotically excellent parameters, na-
mely they are the only known family of codes whose parameters are asymptoti-
cally better than the Varshamov-Gilbert bound, provided that q is a square and
q ≥ 49 (see [19]), and this is the main reason to study such codes. The length of
both codes is obviously n, and one has (CΩ) = C⊥

L by the residues theorem. On
the other hand, given D and G as above there exists a differential form ω such
that CL(D,G) = CΩ(D,D−G+(ω)) and thus it suffices to deal with the codes
of type CΩ .

Thus, denote by k = k(C) and d = d(C) respectively the dimension over IF
and the minimum distance of the linear code C = CΩ(D,G), d(C) being the
minimum value of non-zero entries of a non-zero vector of C. If 2g−2 < deg G <
n, the Riemann-Roch formula gives the estimates

{
k = n − deg G + g − 1
d ≥ deg G + 2 − 2g

.= d∗

where d∗ is called Goppa distance of C (see [20] for further details).
The above estimates only depend on the degree of G, assumed that χ̃ and

n are fixed. This leads us to consider the special case G = mP , P being a IF-
rational point of the curve which is not in the support of the divisor D. In this
case, the so called one-point AG codes Cm

.= CΩ(D,mP ) can be decoded by the
majority scheme of Feng and Rao, which yields so far the most efficient decoding
algorithm for this kind of codes (see [8]).



In order to implement this decoding method, one has to fix for every non-
negative integer i a function fi in IF(χ̃) with an only pole at P of order i for
those values of i for which it is possible, i.e. for i in the Weierstrass semigroup
Γ = ΓP of χ̃ at P . For a received word y = c + e, where c ∈ Cm, one can
consider the unidimensional and bidimensional syndromes respectively given by

si(y) .=
n∑

k=1

ek fi(Pk)

si,j(y) .=
n∑

k=1

ek fi(Pk) fj(Pk)

Notice that the set {fi | i ≤ m, i ∈ Γ} is actually a basis for L(mP ) and hence

Cm = {y ∈ IFn | si(y) = 0 for i ≤ m}

Thus we can calculate si(y) for i ≤ m from the received word y as si(y) =
n∑

k=1

yk fi(Pk), and such syndromes are called known.

In fact, it is well-known that if one had a high enough number of syndromes
si,j(y) for i + j > m we could know the emitted word c, and all the above syn-
dromes can be computed by a majority voting (see [8] and [17]). The complexity
of this algorithm is lower than the usual algorithms for general AG codes, and
moreover the Weierstrass semigroup at P gives an estimate for d(C) which is
better than the Goppa bound. Such bound is the so called Feng-Rao distance,
defined by

δFR(m) .= min{ns | s ∈ Γ and s ≥ m}

where ns
.= ♯{(i, j) ∈ Γ × Γ | i + j = s} for every s ∈ Γ .

Apart from finding all the closed singular points and all the IF-rational points
of χ, what can be done by means of Gröbner bases computation, and also apart
from computing the order of a rational function at a rational point and evaluating
such function at this point if possible, what can be done for instance from the
resolution tree of a plane model of the curve at such point by successive blowing-
ups (see [12]), the main problem in practice is the computation of Γ and the
functions fi achieving the values of the semigroup Γ in order to carry out the
Feng-Rao procedure.

Our aim is just to solve this last problem from the knowledge of a (possibly
singular) plane model for the smooth curve by using geometric techniques, that
is, from a geometric point of view. More precisely, in section 2 we study a method
based on the Brill-Noether algorithm, which works in a quite general situation,
and in section 3 we study an alternative method for the case of P being the only
point at infinity of the plane model, which is founded on the Abhyankar-Moh
theorem. This second method is not so general but it is more simple, and has the
advantage of computing the Feng-Rao distance in an effective way. We conclude
the paper giving in section 4 two examples where we compare both methods.



2 Weierstrass semigroups and adjoints

For a given plane curve χ, the computation of a basis for L(G), G being a
rational divisor over χ̃, is reduced, by the Brill-Noether theorem, to compute
bases for spaces of adjoints of a suitable degree n. In fact, Goppa himself already
mentioned in [10] the Brill-Noether theory as a way to construct AG codes in
general. This theory can be done effective from the desingularization of χ, lazy
parametrizations of the rational branches at all the singular points of the plane
curve and testing virtual passing conditions (see [6], or [11] for an alternative
method).

Now, in order to compute the Weierstrass semigroup ΓP at P and a rational
function fl with a unique pole at P of order l for any fixed l ∈ ΓP , we need not
actually carry out the whole mentioned algorithm until we get a basis of L(mP )
for a suitable m, but we can determine such semigroup and those functions by
using only a part of the steps of the algorithm, as you can see in [7]. However,
since the explicit description of all the steps of this algorithm and their effective
solution would take long, we will give a procedure which assumes such a basis
has been previously computed.

First of all, we need a bound l̃ for the values in ΓP which will be used in
the Feng and Rao procedure (see [8]). Then, assume that a basis {h1, . . . , hs}
of L(l̃P ) over IF has been already computed, and that l̃ is not a gap. We give a
triangulation method which works by induction on the dimension s as follows:

(1) Compute the pole orders {−υP (hi)} at P , and assume that the functions
{hi} are ordered so that these pole orders are increasing in i.

(2) At least the function hs satisfies −υP (hs) = l̃ and we set fl̃
.= hs . If any

other hj satisfies the same condition, there exists a non-zero constant λj

in IF such that −υP (hj − λjhs) < l̃; then we change such functions hj by
gj

.= hj −λjhs and set gk
.= hk for all the others. The result now is obviously

another basis {g1, . . . , gs} of L(l̃P ) over IF but with only one function gs = fl̃

whose pole at P has maximum order l̃.
(3) Since the functions gi are linear independent over IF and −υP (gi) < l̃ for

i < s, one has obtained a basis {g1, . . . , gs−1} of L(l′P ) over IF, where l′

denotes the largest non-gap such that l′ < l̃. But now the dimension is s− 1
and we can continue by induction.

The result of the above procedure is a function fl for each non-gap l ≤ l̃, and
in fact it can be used to compute the Weierstrass semigroup up to an integer l̃,
since the maximum gap l′ such that l′ ≤ l̃ is just max {−υP (h1), . . . ,−υP (hs)},
in the above notations, and so on by induction.

The limitation of this general method is just the computation of the Feng-Rao
distance, what is in general a complex problem of arithmetic semigroups. If we
compute an arbitrary generator system (for example, the set of all the primitive
elements of ΓP , which is always contained in the set of the fist g + 2 non-gaps,
as you can see in [16]), the problem is the effective description of the elements
of ΓP in terms of such generators, which is not even unique in general. As we



will see later, this problem becomes easier by considering special generators, but
then we do not have in general a reasonable bound for the largest element in
such system, unless the semigroup is a special one. This leads us to consider an
alternative way to compute Weierstrass semigroups, when P is the only branch
at infinity of a plane model, and where the Abhyankar-Moh theorem together
with the theory of Apéry systems allows us to compute easily the Feng-Rao
distance.

3 Weierstrass semigroups and approximate roots

Let χ̃ be again a non-singular projective algebraic curve defined over a finite
field IF and which is absolutely irreducible. Let χ be now a plane model for χ̃,
and assume that the hypothesis

(H1) χ has a unique branch at infinity

is satisfied, i.e. there exist a birational morphism

n : χ̃ → χ ⊆ IP2

and a line L ⊂ IP2 defined over IF such that L ∩ χ consists of only one point P
and χ̃ has only one branch at P . Notice that both P and the branch at P are
defined over the underlying finite field IF, since χ does. Thus there is only one
point of χ̃ over P , which will be denoted by P .

Set Υ̃ = χ̃ \ {P} and Υ = χ \ {P}. One has the two following additive
subsemigroups of IN:

ΓP
.= {−υP (f) | f ∈ Oχ̃(Υ̃ )}

SP
.= {−υP (f) | f ∈ Oχ(Υ )}

Notice that ΓP is just the Weierstrass semigroup of χ̃ at P and it contains
SP , but they are different unless the curve χ is non-singular in the affine part.
Moreover, IN \ ΓP has g elements, g being the genus of χ̃, and ΓP \ SP , which
is also finite, will be computed below.

The first question to solve is the description of the semigroup SP . In order
to do that, we state the Abhyankar-Moh theorem, where the hypothesis

(H2) char IF does not divide either deg χ or eP (χ)

is assumed. This result provides us with a set of generators for SP with nice
arithmetic properties (see [1] or [15]).

Theorem 3.1 (Abhyankar-Moh) Assumed that (H1) and (H2) are satisfied
by χ, then there exist an integer h and a sequence of integers δ0, . . . , δh ∈ SP

which generate SP such that:

(I) dh+1 = 1 and ni > 1 for 2 ≤ i ≤ h, where di
.= g c d (δ0, . . . , δi−1) for

1 ≤ i ≤ h + 1 and ni
.= di/di+1 for 1 ≤ i ≤ h.



(II) niδi is in the semigroup generated by δ0, . . . , δi−1 for 1 ≤ i ≤ h.
(III) niδi > δi+1 for 1 ≤ i ≤ h − 1.

Such semigroups are a particular case of telescopic semigroups, and their
main arithmetic property is that every n ∈ SP can be easily written in an
unique way in the form

n =
h∑

i=0

λiδi [⋆]

with λ0 ≥ 0 and 0 ≤ λi < ni for 1 ≤ i ≤ h (see [14] or [15]). Apéry in [4]
and Angermüller in [3] worked with a slightly different semigroup, that is the
semigroup of values of a branch. The type of semigroup in this case is very similar
to the given by the Abhyankar-Moh theorem, but with the property

(III)∗ niδi < δi+1 for 1 ≤ i ≤ h − 1

instead of (III).
Now we will say how to obtain these generators of SP in a constructive way

together with functions in B
.= Oχ(Υ ) having poles of order equal to those

generators (and hence one will have functions in B with poles of order any
element in SP by using the arithmetic properties of such generators). For it, we
need first the concept of approximate root.

Definition 3.2 Let S be a ring, G ∈ S[Y] a monic polynomial of degree e
and F ∈ S[Y] a monic polynomial of degree n with e|n. Then G will be called an
approximate b-th root of F if deg (F − Gb) < n − e = e (b − 1).

Now the main remark is that for every monic polynomial F ∈ S[Y] of degree n
and for every b divisor of n which is a unit in S, there exists a unique approximate
b-th root of F , and it can be computed very efficiently (see [7]).

Thus, let the affine plane model of the curve given by the equation

F = F (X,Y) = Ym + a1(X)Ym−1 + . . . + am(X)

and suppose that char IF satisfies the assumption of the Abhyankar-Moh the-
orem. Up to a change of variables in the form X′ = X + Yn, Y′ = Y, we can
actually assume that char IF does not divide the total degree m of χ. On the
other hand, denote the approximate d-th root of F with respect to the coefficient
ring S = IF[X] by app(d, F ). Thus, the so called algorithm of approximate roots
computes the generators given by the Abhyankar-Moh theorem as follows:

F0 = X , δ0 = d1 = m, F1 = Y , δ1 = degXResY(F, F1)

n > 1 ⇒

⎡

⎣
dn = g c d (δ0, δ1, . . . , δn−1)
Fn = app(dn, F )
δn = degXResY(F, Fn)



The procedure stops at the first h ≥ 1 with dh+1 = dh+2 , what happens just
when dh+1 = 1, since the point at infinity is unibranch (see [2] and [7]).

As a consequence, the generators of SP given by the Abhyankar-Moh theorem
and the corresponding functions can be easily computed in terms of approximate
roots of F and resultants of polynomials. In particular, we can compute a rational
function with an only pole at P of order n for every n ∈ SP . In fact, if n =
∑h

i=0 λiδi with λ0 ≥ 0 and 0 ≤ λi < ni for 1 ≤ i ≤ h, then fn =
h∏

i=0

Fλi
i is

the searched function, where Fi are the polynomials which are obtained in the
algorithm of approximate roots. In particular, this also allows us to compute a
basis of the space L(lP ) for every l ∈ ΓP .

Now the remaining part of the method is the computation of ΓP \SP with the
corresponding functions, what can be done effective by means of the following

Lemma 3.3 Let A and B be the respective affine coordinate IF-algebras of Υ̃
and Υ , i.e. A = Oχ̃(Υ̃ ) and B = Oχ(Υ ); then one has:

♯(ΓP \ SP ) = dimIF(A/B)

Proof :

Take a basis {h1, . . . , hl} of A/B over IF, which can be calculated either in
algebraic terms with the aid of the integral basis algorithm (see [13] or [18]) or
in geometric terms from the desingularization of the affine part of the curve χ.
Now we will show a triangulation procedure to find the values in ΓP \SP as well
as functions which provide these values.

Set Bi .= B +IFh1 + . . .+IFhi, for 0 ≤ i ≤ l; we will proceed by induction, so
let 0 ≤ i < l and suppose we have found functions g1, . . . , gi which are linearly
independent over IF with

Γ i
P

.= SP ∪ {−υP (g1), . . . ,−υP (gi)} ⊆ ΓP

−υP (gj) /∈ Γ i−1
P

B + IFg1 + . . . + IFgi = Bi

Now look at hi+1; if −υP (hi+1) /∈ Γ i
P , then set gi+1 = hi+1 and go on.

Otherwise, there exists f ∈ Bi with

υP (hi+1) = υP (f)
−υP (hi+1 − f) < −υP (hi+1)

Thus we can repeat the process with hi+1−f replacing to hi+1 ; since hi+1 /∈
Bi, one obtains in a finite number of steps a function gi+1 such that

gi+1 ≡ hi+1 (mod Bi) and − υP (gi+1) /∈ Γ i
P

At the end of the procedure l different elements in ΓP \ SP will be added,
and then ♯(ΓP \ SP ) ≥ dimIF(A/B). The equality follows immediately from the
formula A = Bl = B + IFg1 + . . . + IFgl .

✷



In order to complete this section, we show how to calculate the Feng-Rao
distance from the above computations. First we have to present some basic tools
for arbitrary semigroups.

Definition 3.4 Let S ⊆ IN a semigroup with ♯(IN \ S) < ∞ and 0 ∈ S; for
m ∈ S define

δFR(m) .= min{Ns | s ≥ m, s ∈ S}

where Ns
.= ♯{(a, b) ∈ S2 | a + b = s} for every s ∈ S.

Definition 3.5 Let S ⊆ IN a semigroup with the same hypothesis as in the
previous definition; for n ∈ S \ {0} define the Apéry set of S related to n as the
set whose elements are the numbers

ai
.= min{m ∈ S | m ≡ i (mod n)}

for 0 ≤ i ≤ n − 1 2.

In the sequel, the index i will be considered as an element in ZZ/(n). Thus,
one has a disjoint union

S =
n−1⋃

i=0

(ai + nIN)

and therefore the set {a1, . . . , an−1, n} is a generator system for the semigroup
S, which is called the Apéry (generator) system of S related to n.

Moreover, if i, j ∈ ZZ/(n) ≡ ZZn then ai + aj = ai+j + αi,jn with αi,j ≥ 0, by
definition of the Apéry set. With this notation, every m ∈ S can be written in
a unique way as m = ai + ln, with i ∈ ZZn and l ≥ 0; so we can associate to m
two coordinates (i, l) ∈ ZZn × IN.

Apéry relations are very useful to compute Nm . In fact, for 0 ≤ i ≤ n − 1
and h ≥ 0 one can define B(h)

i
.= ♯{αk,i−k ≤ h | k ∈ ZZn} and then one has the

following result.

Proposition 3.6 Nm = B(0)
i + B(1)

i + . . . + B(l)
i

Proof :

If αk,i−k = h ≤ l, it has been considered l − h + 1 times in the sets defining
B(h)

i , B(h+1)
i , . . . , B(l)

i , but also the equality l1 + l2 = l−αk,i−k holds for l−h+1
possible pairs l1, l2 .

✷

Thus, Nm is increasing in l, and it suffices to calculate the minimum in i in
order to obtain the corresponding Feng-Rao distance, according to the following
result.
2 We could actually remove a0 = 0 since it does not add any information about S.



Theorem 3.7 With the above notations, for each j ∈ ZZn take mj = aj + tjn,

where tj is the minimum integer such that tj ≥ max

(
ai − aj

n
+ l, 0

)
. Then one

has
δFR(m) = min{Nmj | j ∈ ZZn}

Proof :

The formula is quit clear if one realizes that mj is the minimum element of
S with first Apéry coordinate equal to j such that mj ≥ m, using the above
remark on the number Nm .

✷

Thus, computing the Feng-Rao distance is easy if we have the Apéry set
related to an element of an arbitrary semigroup. This gives an effective algorithm
to compute the Feng-Rao distance of a Weierstrass semigroup when computed
by the method given in this section, because of the two following remarks:

(i) The Apéry set of the semigroup SP related to m = δ0 = deg χ is just the

set of all the elements of the form
h∑

k=1

λkδk with 0 ≤ λk < nk = dk/dk+1 for

1 ≤ k ≤ h, since using the property [⋆] one has that all these elements are
different modulo m, minimum in S with this condition and the number of
such elements is exactly m.

(ii) Now the Apéry set related to m = deg χ for the Weierstrass semigroup
ΓP = SP +b1IN+ . . .+blIN where l = dimIF(A/B) and bi being computed as
in lemma 3.3 , and the corresponding Apéry relations, can be easily obtained
from those of SP in at most l steps, each of them involving only the elements
aj + λ bk with 0 ≤ j ≤ n − 1 and 0 ≤ λ ≤ n − 1.

4 Examples and conclusions

The choice of the method to use in order to compute a Weierstrass semigroup
depends on the situation. More precisely, the Brill-Noether method works in a
general situation, but the implementation is complicate and it does not give a
nice description of the semigroup (namely, an Apéry system in order to calculate
the Feng-Rao distance of certain one-point AG code). On the other hand, the
Abhyankar-Moh method gives such a description of ΓP and the algorithm works
in a very simple way, but it requires some additional hypothesis on the plane
model: it must have an only rational branch P at infinity which is defined over
the base field IF and the characteristic of IF must not divide at the same time
to the degree of the plane model and the multiplicity of P , what is not always
fulfilled. If moreover the plane model has no other singular points at the affine
part the curve, the algorithm of approximate roots directly yields the Weierstrass



semigroup, and then the algorithm can be very easily implemented (for instance,
such a programme takes a few lines in AXIOM code). Anyway, the complement
of this semigroup requires the previous computation of a certain integral basis,
what is equivalent to the desingularization of the affine part of the plane model,
but what follows from such basis by means of a simple triangulation procedure.
We will briefly illustrate these ideas with two examples.

Example 4.1 Consider the affine plane curve F (X,Y) = Y9 + Y8 + XY6 +
X2Y3 +Y2 +X3 defined over IF2, with only one branch at infinity P = (1 : 0 : 0).
The algorithm of approximate roots yields

F0 = X , δ0 = d1 = 9 , F1 = Y

δ1 = degXResY(F,Y) = 3 , d2 = g c d (9, 3) = 3

F2 = app(3, F ) = Y3 + Y2 + Y + X + 1

δ2 = degXResY(F, F2) = 8 , d3 = g c d (9, 3, 8) = 1

thus h = 2 and SP = ⟨9, 3, 8⟩.
On the other hand, according to the lemma 3.3 , take a IF2-basis for A/B

h1 =
Y(1 + Y6)
X + Y3

h2 =
Y(1 + Y6)

(X + Y3)(Y2 + Y + 1)

h3 =
X2 + Y6

Y2 + Y + 1
h4 =

Y2(1 + Y3)(Y2 + Y + 1)
X + Y3

The values at P of this functions are −υP (h1) = 13 /∈ SP , −υP (h2) = 7 /∈ Γ 1
P ,

−υP (h3) = 10 /∈ Γ 2
P and −υP (h4) = 13 ∈ Γ 3

P . Then change h4 by

g4 = h4 + h1 =
Y(1 + Y3)(Y2 + Y + 1)

X + Y3

and now −υP (g4) = 10 ∈ Γ 3
P , so still one has to take the function

g4 = h4 + h1 + h3 =
Y(1 + Y3)(Y4 + Y2 + 1) + (X + Y3)3

(X + Y3)(Y2 + Y + 1)

and now −υP (g4) = 4 /∈ Γ 3
P . Hence, the Weierstrass semigroup at P is

ΓP = {0, 3,4, 6,7, 8, 9,10, 11, 12,13, 14, . . .}

Unfortunately, there are examples where this method cannot be applied, and
then the Brill-Noether method helps to compute ΓP and the functions, even
though it cannot compute in general the Feng-Rao distance.



Example 4.2 Let χ be the Klein quartic over IF2 given by the equation

F (X,Y,Z) = X3Y + Y3Z + Z3X = 0

whose adjunction divisor is A = 0, since χ is non-singular. We are going to
compute now the Weierstrass semigroup at P = (0 : 0 : 1), which is not the
only one at infinity. Thus, by means of the Brill-Noether algorithm we compute
a IF2-basis of L(7P )

{h1 = 1, h2 =
Z
Y

, h3 =
Z(Y2 + YZ + Z2)

X2Y
, h4 =

Z2(Y + Z)
X2Y

, h5 =
Z3

X2Y
}

By using Hamburger-Noether expansions at P , one computes the pole order of
these functions at such point

−υP (h1) = 0,−υP (h2) = 3,−υP (h3) = −υP (h4) = −υP (h5) = 7

Thus, we take f7 = h5 and replace h4 = h4 + h5 =
Z2

X2
and h3 = h3 + h5 =

Z(Y + Z)
X2

. Now the pole orders are

−υP (h1) = 0,−υP (h2) = 3,−υP (h3) = −υP (h4) = 6

and then we take f6 = h4 . Thus, by replacing h3 = h3 + h4 =
YZ
X2

we obtain
now three different pole orders

−υP (h1) = 0,−υP (h2) = 3,−υP (h3) = 5

and we can stop. In particular, we have computed the Weierstrass semigroup,
since we know the three 3 Weierstrass gaps {1, 2, 4}.
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