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Abstract. The global attractor of a skew product semiflow for a non-autonomous differential

equation describes the asymptotic behaviour of the model. This attractor is usually character-

ized as the union, for all the parameters in the base space, of the associated pullback cocycle

attractors in the product space. The continuity of the cocycle attractor in the parameter is

usually a difficult question. In this paper we develop in detail a 1D non-autonomous linear

differential equation and show the richness of non-autonomous dynamics by focusing on the

continuity, characterization and chaotic dynamics of the cocycle attractors. In particular, we

analyze the sets of continuity and discontinuity for the parameter of the attractors, and relate

them with the eventually forwards behaviour of the processes. We will also find chaotic be-

haviour on the attractors in the Li-Yorke and Auslander-Yorke senses. Note that they hold for

linear 1D equations, which shows a crucial difference with respect to the presence of chaotic

dynamics in autonomous systems.

1. Introduction

We are interested in the asymptotic dynamics of initial value problems of the form






ẋ = f(t, x), t > s

x(s) = x0 ∈ X,
(1.1)

f : R × D ⊂ R × X → X is a map belonging to some metric space C, and X a Banach space.

Assume that, for each f ∈ C, x0 ∈ X, the solution of (1.1) is defined for all t ≥ s; that is, for
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each x0 ∈ X, there is a unique continuous function [s,∞) ∋ t 7→ x(t, s, f, x0) ∈ X satisfying

(1.1). For each t, f(t, ·) is the vector field that drives the solution at time t. Hence, the path

described by the solution in X between s and s + τ will depend on both the initial time s and

elapsed time τ .

In this framework, two asymptotics give rise to completely different scenarios. We may study

the asymptotics with respect to the elapsed time t − s (uniformly or not in s) or with respect

to s (when s → −∞ and t is arbitrary but fixed). These are called, respectively, forwards and

pullback dynamics and are in general unrelated.

During the last twenty years two main approaches have been developed in order to study

attractors for (1.1): on the one hand the pullback attractor ([12, 29]), an invariant set for the

evolution process which is pullback (but, in general, not forwards) attracting; on the other hand

the global attractor for the associated skew-product flow, an invariant compact set attracting

forwards in time ([45, 29]).

There is a general method to consider the family of non-linearities as a base flow driven

by the time shift applied to the non-linearity f(t, ·) of the original equation. We consider

f ∈ Cb(R, X), the set of bounded uniformly continuous functions from R into X with the

metric ρ of the uniform convergence. Denote by P0 the set of all translates of f ,

P0(f) = {f(s + ·) : s ∈ R},

and define the shift operator θt : Cb(R, X) → Cb(R, X) by

θtf(·) = f(· + t).

For autonomous and periodic time dependence this construction yields a closed base space

P0. However, for more general almost-periodic terms it is convenient to consider the closure of

P0 with respect to ρ:

P := Pρ(f) = closure of P0(f) in Cb(R, X) with respect to ρ,

known as the hull of the function f in the space (Cb(R, X); ρ), see [15, 44]. Continuity of θt on

P0 then extends to continuity of θt on P .

In this paper we consider the 1D linear and dissipative differential equation

x′ = h(θtp)x + g(x), p ∈ P, x ∈ R
n, (1.2)
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with h a real almost-periodic function with null mean value and unbounded primitive and

P = {θth, t ∈ R}

the hull of h. Nete that (P, θ) is a continuous flow in a compact metric space. g : R → R

is a smooth negative function with limt→∞ g(x) = −∞. We denote by C(P ) the set of real

continuous functions on P and thus C0(P ) will denote the subset of C(P ) with null mean

value. B(P ) will represent the subset of C0(P ) with continuous primitive, and by U(P ) its

complemetary, i.e., the subset of C0(P ) of functions with unbounded primitive (see Section 3).

The pullback cocycle attractor A(p) (see Definition 2.3) for (1.2) is described by an interval

[a(p), b(p)], for all p ∈ P. The aim of this paper is to study in detail the structure and internal

dynamics on this family of attractors.

An important result in Cheban et al. [13] proves that, if the function p → A(p) is upper and

lower semicontinuous, then, uniformly, pullback and forwards attraction are equivalent. The

results this paper will confirm that the property of continuity of this set-valued map cannot

be weakened. Indeed, in Section 3 we study, for a particular h ∈ U(P ), the set Ps ⊂ P of

continuity and not continuity Pf ⊂ P of function p → A(p), showing that our attractor is a

pinched set (see Definition 2.1), described as A(p) = 0 for all p ∈ Ps and A(p) = [−b(p), b(p)]

with b(p) > 0 for all p ∈ Pf .

For a residual set in Ps, we prove (see Proposition 4.8 and Corollary 4.10) that the is no

forwards attraction to A(p), i.e., we lose forwards attraction specifically in the continuity points

of the cocycle attractor. In some cases this residual set is all Ps. In Section 5 we find that,

generically, this is the situation we find, i.e., if we define

Rs(h) = {h ∈ C0(P ) : ν(Ps(h)) = 1}

and

Rf(h) = {h ∈ C0(P ) : ν(Pf(h)) = 1}

we get (see Theorem 5.2) that Rs(P ) is a residual set in C0(P ). Although topologically more

unusual, in section 5.2 we concentrate in the case when Rf 6= ∅, so that, we can deal with

h ∈ U(P ), with ν(Pf (h)) = 1. Theorem 5.4 proves that we get forwards attraction in Pf ,, i.e.,
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we get forwards attraction in full measure precisely in the set of not continuity of the map

p → A(p).

In Section 6 we find chaos inside the pullback cocycle attractor. We think this is the first

time in the literature where chaos is studied related to this kind of attractors. Indeed, Theorem

6.4 shows that, in the previous case with h ∈ U(P ) and ν(Pf (h)) = 1 the sets [−b(p), b(p)]

are scrambled (see Definition 6.1), leading to Li-Yorke chaotic dynamics (see [8]). Finally, in

Section 6.2 we can also find sensitive dependence on the set A0 = ∪p∈P{p}× 0 , so that we also

find chaotic dynamics in the Auslander-Yorke sense (see [5]).

2. Basic notions

We start with some preliminary concepts and results on topological dynamics and ergodic

theory that can be found in Ellis [17], Nemytskii and Stepanov [37] and Shen and Yi [46].

We introduce two types of almost-periodic functions that will play a relevant role in all

what follows. Let α = (α1, . . . , αm) ∈ Rm a vector with rational independent components. The

Kronecker flow of vector α is defined on the m−dimensional torus Tm by the map θα : R×Tm →

T
m, (t, x1, . . . , xm) → (x1 + tα1, . . . , xm + tαm), which is almost periodic and minimal.

We say that a function f ∈ C(R, R) is quasi-periodic if there exists a Kronecker flow (Tm, θα)

and a function h ∈ C(Tm) with f(t) = h(α1t, . . . , αmt) for every t ∈ R. Under this condition

the hull of h is isomorphic to (Tm, θα).

We say that a function h ∈ C(R, R) is limit-periodic if it is the uniform limit of a sequence of

continuous and periodic functions. In this case the hull of h has frequently a amore complicated

structure: in some cases it provides a solenoid. Many relevant examples in the literature

considered in this paper have been developed by quasi-periodic or limit-periodic functions.

Let (P, dP ) a compact metric space and θ = {θt}t∈R a real continuous flow on P. Given p ∈ P

the set {θtp}t∈R is called the orbit of p. We say that a subset P1 ⊂ P is θ-invariant if θt(P1) = P1

for all t ∈ R. A subset P1 is minimal if it is compact invariant and it does not contain properly

any other compact invariant set. We say that the continuous flow (P, θ) is recurrent or mininal

if P is minimal.

Definition 2.1. (i) A minimal set K ⊂ P × X is said an automorphic extension of the base

P if, for some p ∈ P , K ∩ Π−1(p) is singleton.
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(ii) A compact invariant set K ⊂ P × X is called a pinched set if there exists a residual set

P0 ⊂ P such that K ∩ Π−1(p) is a singleton for all p ∈ P0 and K ∩ Π−1(p) is not a singleton

for all p /∈ P0. An invariant compact set K ⊂ P ×X is almost automorphic if it is pinched and

minimal.

A normalized regular measure ν defined on the Borel sets of P is invariant if ν(θt(P1)) = ν(P1)

for every Borel subset P1 ⊂ P and every t ∈ R. It is ergodic if, in addition, ν(P1) = 1 or

ν(P1) = 0 for every invariant subset P1. The set of normalized invariant measures is not void.

We say that (P, dP ) is uniquely ergodic if it has a unique normalized invariant measure which

is necessarily ergodic.

We say that the flow (P, dP ) is almost-periodic if the family {θt}t∈R of section maps is

equicontinuous, i.e., for every ε > 0 there exists δ > 0 such that if p1, p2 ∈ P and dP (p1, p2) < δ

then dP (θtp1, θtp2) < ε for every t ∈ R.

A subset L ⊂ R is said to be relatively dense if there exists a number l > 0 such that every

interval [r, r + l] contains at least a point of L. We say that f ∈ Cb(R, R) is almost periodic if

for every ε > 0 there exists a relatively dense subset Lε(f) such that supt∈R |f(t+r)−f(t)| ≤ ε

for every r ∈ Lε(f). If f ∈ Cb(R, R) is almost-periodic then the hull P = P (f) of f is a compact

metric space and if {θt}t∈R denotes the shift operator, then the flow (P, θ) is almost-periodic,

minimal and ergodic. In fact P is an abelian topological group and the Haar measure is its

only invariant measure.

We can try to analyse non-autonomous differential equations as the combination of a base

flow {θt}t∈R on P and, for each p ∈ P , the semiflow R+ × X ∋ (t, x0) 7→ ϕ(t, p)x0 ∈ X where,

for each x0 ∈ X, R+ ∋ t 7→ ϕ(t, p)x0 ∈ X is the solution of the initial value problem







ẋ = p(t, x), t > 0,

x(0) = x0 ∈ X.
(2.1)

Then, the family of mappings

(t, p) ∈ R
+ × p 7→ ϕ(t, p) ∈ C(X),

satisfies

• ϕ(0, p) = IdX for all p ∈ P ,
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• x 7→ ϕ(t, p)x ∈ X is continuous, and

• for all t ≥ s, s ∈ R, and p ∈ P ,

ϕ(t + s, p) = ϕ(t, θsp)ϕ(s, p),

the ‘cocycle property’.

One interprets ϕ(t, p)x as the solution at time t that has started in the state x at time zero

subjected to the non-autonomous driving term p ∈ P .

The pair (ϕ, θ)(X,P ) will be called a non-autonomous dynamical system on (X, P ). Now,

given a non-autonomous dynamical system (ϕ, θ) on (X, P ). One can also define an asso-

ciated autonomous dynamical system (see [44, 45]) Π(·) on X = P × X (with the metric

dX((x, p), (x̄, p̄)) = d(x, x̄) + ρ(p, p̄)) by setting

Π(t)(p, x) = (θtp, ϕ(t, p)x)), t ≥ 0.

The semigroup property of θt and the cocycle property of ϕ ensure that Π(·) satisfies the

semigroup property.

Thus, given a non-autonomous differential equation such as (1.1), we need to deal with four

different dynamical systems:

(a) The driving semigroup {θt : t ≥ 0} on p associated to the dynamics of the time-

dependent nonlinearities appearing in the equation.

(b) the skew-product semiflow {Π(t) : t ≥ 0} defined on the product space P × X,

(c) the associated non-autonomous dynamical system (ϕ, θ)(X,P ) with ϕ(t, θsf)x0 = x(t +

s, f, x0),

(d) and the evolution process S(t, s)x0 = u(t − s, θsf)x0.

Observe that these dynamical systems can possess an associated attractor:

(i) A global attractor A for the skew-product semiflow Π(t),

(ii) a cocycle attractor {A(p)}p∈p for the cocycle semiflow ϕ,

(iii) a pullback attractor {A(t)}t∈R for the evolution process S(t, s).

We next introduce and compare some concepts of the topological and random theory of

dynamical systems. Given a NDS (ϕ, θ)(X,P ), suppose that the associated skew product semiflow
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semigroup {Π(t) : t > 0} possesses a global attractor A on P ×X. We know that {Π(t) : t > 0}

has a global attractor if and only if there exists a compact set K ⊂ P × X such that

lim
t→∞

dist(Π(t)B, K) = 0, (2.2)

for any bounded subset B of P × X, where dist denotes the Hausdorff semidistance between

sets defined as

dist(A, B) = sup
a∈A

inf
b∈b

d(a, b).

Definition 2.2. (i) A non-autonomous set is a family {D(p)}p∈P of subsets of X indexed in

p. We say that {D(p)}p∈P is an open (closed, compact) non-autonomous set if each fiber D(p)

is an open (closed, compact) subset of X.

(ii) A non-autonomous set {D(p)}p∈P is invariant under the NDS (ϕ, θ)(X,P ) if

ϕ(t, p)D(p) = D(θtp),

for all t > 0 and each p ∈ P .

It is immediate that a non-autonomous set {D(p)}p∈P is invariant for (ϕ, θ)(X,P ) if and only

if the corresponding subset D of P × X, given by

D =
⋃

p∈P

{p} × D(p),

is invariant for the semigroup {Π(t) : t > 0}.

Given a subset E of P × X we denote by E(p) = {x ∈ X : (x, p) ∈ E} the p−section of E;

hence

E =
⋃

p∈p

{p} × E(p) (2.3)

Given a non-autonomous set {E(p)}p∈P we denote by E the set defined by (2.3).

Note that
⋃

p∈p

E(p) = ΠXE.

We can now relate the concept of cocycle attractors (ϕ, θ)(X,P ) with the global attractor for

the associated skew product semiflow {Π(t) : t > 0}.
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Definition 2.3. Suppose P is compact and invariant and that {θt : t > 0} is a group over P

and θ−1
t = θ−t, for all t > 0. A compact non-autonomous set {A(p)}p∈P is called a cocycle

attractor of (ϕ, θ)(X,P ) if

(i) {A(p)}p∈P is invariant under the NDS (ϕ, θ)(X,P ); i.e., ϕ(t, p)A(p) = A(θtp), for all

t > 0.

(ii) {A(p)}p∈P pullback attracts all bounded subsets B ⊂ X, i.e.

lim
t→+∞

dist(ϕ(t, θ−tp)B, A(p)) = 0.

The following result can be found, for instance, in Propositions 3.30 and 3.31 in Kloeden and

Rasmussen [29], or Theorem 3.4 in Caraballo et al. [11].

Theorem 2.4. Let (ϕ, θ)(X,P ) be a non-autonomous dynamical system, where P is compact,

and let {Π(t) : t > 0} be the associated skew product semiflow on P ×X with a global attractor

A. Then {A(p)}p∈Ξ with A(p) = {x ∈ X : (x, p) ∈ A} is the cocycle attractor of (ϕ, θ)(X,P ).

.

The following result offers a converse (see Proposition 3.32 in [29], or Theorem 3.4 in [11])

Theorem 2.5. Suppose that {A(p)}p∈P is the cocycle attractor of (ϕ, θ)(X,P ), {Π(t) : t > 0} is

the associated skew product semiflow. Assume that {A(p)}p∈P is uniformly attracting, i.e.,

lim
t→+∞

sup
p∈P

dist(ϕ(t, θ−tp)D, A(p)) = 0,

and that
⋃

p∈P A(p) is precompact in X. Then the set A associated with {A(p)}p∈P , given by

A =
⋃

p∈P

{p} × A(p),

is the global attractor of the semigroup {Π(t) : t > 0}.

3. Non-uniform pullback cocycle attractors

Let (P, ν, R) a minimal flow on a compact metric space P. For X a Banach space we consider a

skew-product semiflow {Π(t)}t∈R+ on P×X. Suppose Π(t) admits a global attractor A described

by

A =
⋃

p∈P

{p} × A(p).
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In Cheban et al. [13] it is proved that the continuity of the set-function p → A(p) implies

the uniform pullback and forwards attraction to the cocycle attractor.

The aim of the following sections is to develop some non-trivial models in which the above

function is not continuous in all P, and, by a careful study of its sets of continuity, to give a

detailed description on the dynamics and the structure and of the attractors.

3.1. Attractors for order preserving non-autonomous systems. In what follows we su-

posse X is a partially ordered Banach space, i.e. there exists a closed convex positive cone

X+ ⊂ X, vectorial subspace of X such that X+ ∩ (−X+) = {0}.

This define a partial order relation on X in the way x ≤ y if y − x ∈ X+; we write x < y if

x ≤ y and x 6= y. If in addition int(X+) 6= ∅ we say that X is strongly ordered.

We introduce the concepts of sub, super and equilibrium given by Arnold and Chueshov [3]

in the stochastic (see also Chueshov [16]) and by Novo et al. [36] in the topological setting.

Definition 3.1. A Borel map a : P → X such that ϕ(t, p)a(p) is defined for any t ≥ 0 is

a) an equilibrium if a(θtp) = ϕ(t, p)a(p), for any p ∈ P and t ≥ 0,

b) a super-equilibrium if a(θtp) ≥ ϕ(t, p)a(p), for any p ∈ P and t ≥ 0,

c) a sub-equilibrium if a(θtp) ≤ ϕ(t, p)a(p), for any p ∈ P and t ≥ 0.

Definition 3.2. A super-equilibrium (resp. sub-equilibrium) a : P → X is semi-continuous is

the following holds

i Γa = closureX{a(p) : p ∈ P} is a compact subset in X

ii) Ca = {(p, x) : x ≤ a(p)} (resp. Ca = {(p, x) : x ≥ a(p)}) is a closed subset of P × X.

Definition 3.3. Let (ϕ, θ)(X,P ) be a non-autonomous dynamical system. We say that ϕ is

order-preserving if there exists an order relation ‘≤’ in X such that, if u0 ≤ v0, then ϕ(t, p)u0 ≤

ϕ(t, p)v0, for all p ∈ P.

An equilibrium is semicontinuous in any os these cases. We name a semi-equilibrium to a

sub-equilibrium or a super-equilibrium.

The following result, that will be relevant in the topological version of the semi-equilibria,

was proved in Proposition 3.4 of Novo et al. [36], following classical arguments from Aubin and

Frankowska [4].
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Proposition 3.4. Let assume that a : P → X is a semi-continuous semi-equilibrium. Then it

has a residual invariant set Pc of continuity points.

We assume that ϕ admits a cocycle attractor. The following result gives sufficient conditions

for the existence of upper and lower asymptotically stable semi-equilibria, giving some useful

information on the structure of this invariant set. The proof was given by Arnold and Chueshov

[3] in the random context and generalized to the topological formulation in Novo et al. [36].

Theorem 3.5. Let ϕ be an order-preserving process and A(p) its associated (pullback) cocycle

attractor. Suppose there exist Borel α, β : P → X such that the cocycle attractor is in the

“interval” [α(p), β(p)], i.e.

A(p) ⊂ Iβ
α(p) = [α(p), β(p)] = {x ∈ X : α(p) ≤ x ≤ β(p)}.

Then, there exist two equilibria a, b : P → X with a(p), b(p) ∈ A(p) such that

i)

α(p) ≤ a(p) ≤ b(p) ≤ β(p), and A(p) ⊂ Ib
a(p), for all p ∈ P.

ii) a is minimal (b is maximal) in the sense that it does not exist any complete trajectory

in the interval Ia
α(Iβ

b ).

iii) a(p) is pullback asymptotically stable from below, that is, for all v(·) with α(p) ≤ v(p) ≤

a(p), for all p ∈ P, we have that

lim
t→+∞

d(ϕ(p, θ−tp)v(θ−tp), a(p)) = 0.

b(p) is pullback asymptotically stable from above, that is, for all v(·) with β(p) ≥

v(p) ≥ b(p), for all p ∈ P, we have that

lim
t→+∞

d(ϕ(p, θ−tp)v(θ−tp), b(p)) = 0.

iv) If A =
⋃

p∈P{p}×A(p) is compact and the maps α, β are continuous, then the functions

p → a(p), p → b(p) are upper semicontinuous and admits a residual set Pc ⊂ P of

continuity.

v) Assume condition in iv), and take p0 ∈ Pc. Then the sets

Ka = {(θtp0, a(θtp0), t ∈ R}
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and

Kb = {(θtp0, b(θtp0), t ∈ R}

define minimal semiflows in P × X, with Ka, Kb ⊂ A. Moreover

card(Ka ∩ Π−1(p)) = card(Kb ∩ Π−1(p)) = 1,

for all p ∈ Pc, i.e., Ka, Kb are almost automorphic extensions of (P, θ).

Proof. Items i),ii) and iii) can be found in Arnold and Chueshov [3]

Items iv) and v) are proved in Theorem 3.6 at Novo et al. [36]. We repeat the argument

here, for completeness. Note that Γa = closureX{a(p) : p ∈ P}, Γb = closureX{b(p) : p ∈ P}

⊂ ΠxA are compact sets in X.

From aT (p) = ϕ(T, θ−T p)α(p), bT (p) = ϕ(T, θ−T p)β(p), we deduce that these functions are

continuous semi-equilibria. If T1 < T2 then aT2
≤ aT1

, bT1
≤ bT2

, and a(p) = limT→∞ aT (p),

b(p) = limT→∞ bT (p) for every p ∈ P, showing that these functions are equilibria. Thus,

{(p, x) : x ≤ a(p)} =
⋃

T≥0

{(p, x) : x ≤ aT (p)}

{(p, x) : x ≥ b(p)} =
⋃

T≥0

{(p, x) : x ≥ bT (p)}

are closed. In consequence, the equilibria a, b are semi-continuous, so that, by Proposition 3.4

they admit a residual invariant set Pc ⊂ P of continuity points.

For v), let p0 ∈ P and pn → p0. It is clear that there exists a0 ∈ X such that (pn, a(pn)) →

(p0, a0) ∈ A and so a0 ≥ a(p). Similarly we get it for b(p). Thus, from Aubin and Frankowska

[4], we conclude the existence of a residual set Pc ⊂ P of continuity points of a and b.

For v), suppose p0 ∈ P and p1 ∈ Pc. Let tn such that θtnp0 → p1. Then, by continuity, we

also have that a(θtnp0) → a(p1) and b(θtnp0) → b(p1). Thus, Ka ∩ Π−1(p1) = {(p1, a(p1))} and

Kb ∩ Π−1(p1) = {(p1, b(p1))}. This implies that Ka, Kb are minimal semiflows and sections (in

p) are singleton if p ∈ Pc, so that they are almost automorphic extension of (P, θ). �

Remark 3.6. We want to study the continuity of the cocycle attractor A(p). Note that, in this

framework, the continuity of A(p) requires continuity of functions a(·), b(·).
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3.2. Oscillatory functions on an almost periodic base. In the following we consider (P, θ)

minimal and almost periodic. Then, P is ergodic with a unique invariant measure ν given by

Haar measure . Let

C0(P) = {h ∈ C(P) :

∫

hdν = 0}.

From now on, and for a more clear writing, we will write pt = θtp, for any p ∈ P.

The following result is classical and can be found in Gottschalk and Hedlund [20]

Proposition 3.7. Let h ∈ C0(P ). The following items are equivalent

i) There exists k ∈ C(P ) satisfying

k(pt) − k(p) =

∫ t

0

h(ps)ds (3.1)

for all p ∈ P, t ∈ R.

ii) For all p ∈ P it holds

sup{|

∫ t

0

h(ps)ds|, t ∈ R} < ∞.

iii) There exists p0 ∈ P such that

sup{|

∫ t

0

h(p0s)ds|, t ∈ R} < ∞.

iv) There exists p0 ∈ P such that

sup
t≥0

{|

∫ t

0

h(p0s)ds|} < ∞.

We denote by B(P ) = {h ∈ C0(P ) satisfying (3.1)}, i.e., the set of functions in C0(P ) with

bounded primitive. It is known that if P is almost-periodic but no periodic it holds that

C0(P ) \ B(P ) 6= ∅. Moreover, it is easy to see that

i) B(P ) is dense in C0(P ).

ii) U(P ) = C0(P ) \ B(P ) is residual in C0(P ).

The following theorem comes from Johnson [24] (see also Jorba et al. [28]):

Theorem 3.8. Let h ∈ U(P ). Then there exists a residual invariant set Po ⊂ P such that for

all p0 ∈ Po there exist sequences {tin}n∈N, i = 1, . . . , 4 with

lim
n→∞

tin = ∞, i = 1, 2, lim
n→∞

tin = −∞, i = 3, 4,
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and

lim
n→∞

∫ ti
n

0

h(p0s)ds = ∞, i = 1, 3,

lim
n→∞

∫ tin

0

h(p0s)ds = −∞, i = 2, 4.

3.3. A 1-D linear model for h ∈ U(P ). Consider the linear equation

y′(t) = h(pt)y(t), p ∈ P, t, y ∈ R. (3.2)

with h ∈ U(P ). For each p ∈ P and y0 ∈ R we denote by y(t) the solution through p with

initial value y0, i.e, y(0, p; y0) = y0. It is easy to check that Equation (3.2) has no exponential

dichotomy in C0(P ) (see, for instance, Sacker and Sell [42]). Thus, there exists a nontrivial

bounded solution (Selgrade [43]), i.e., there exists p0 ∈ P \ Pc, y0 ∈ R with

y(t, p0; y0) = y0e

∫ t

0

h(p0s)ds
bounded, (3.3)

so that for c1 ∈ R
∫ t

0

h(p0s)ds ≤ c1, for all t ∈ R.

For p0 satisfying (3.3), we define

M0 = {(p0t,±y(t, p0; y0)), t ∈ R}
P×X

It is clear that M0 is an invariant compact set in P × X.

Lemma 3.9. It holds that

a) If (p, x) ∈ M0 then (p,−x) ∈ M0.

b) (p0,±1) ∈ M0.

c) {p} × {0} ∈ M0 for all p ∈ P.

d) M0 ∩ Π−1(p) = {p} × {0} for all p ∈ Po, where Po comes from Theorem 3.5.

Proof. We only need to prove d). If d) is not true, let p1 ∈ Po and y1 ∈ R+ \ {0} with

(p1, y1) ∈ M0. Then {(p1t, y(t, p1; y1), t ∈ R} ⊂ M0, as it is a compact invariant set, but

y(t, p1; y1) = y1e
R

t

0
h(p1s)ds is unbounded in t, which is a contradiction. �

Remark 3.10. Note that, if p0 ∈ Po, then b(p0) = 0 implies b(p0t) = 0 for all t ≥ 0. Moreover,

we also have that if b(p) = 0 then p ∈ Pc, i.e., it is a continuity point of function b(·).
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The above lemma is showing that the set M0 is pinched, since is the singleton p × {0}

for p ∈ P0 and strictly bigger (containing (p0,±1)) outside P0. In what follows we will take

advantage of this fact.

3.4. A 1-D nonlinear equation for h ∈ U(P ). Let

r0 = 2 sup{x ∈ R : such that (p, x) ∈ M0}. (3.4)

In the following model we will find a pullback attractor which is a pinched set by containing

M0. We define the family of linear-dissipative differential equations given by

x′ = h(pt)x + g(x), (3.5)

where g : R → R is a continuous function with g(x) = 0 if x ∈ [−r0, r0], −xg(x) ≤ 0 for all

x ∈ R, limx→∞ g(x) = −∞ and limx→−∞ g(x) = ∞. For simplicity we take in what follows

g(x) =



















−(x − r0)
2 x ≥ r0

0 −r0 ≤ x ≤ r0

(x + r0)
2 x ≤ −r0

(3.6)

An alternative study of the structure of the set of bounded solutions for a convex or concave

scalar ODE was given in Alonso and Obaya [1]. For each p ∈ P and x0 ∈ R we denote by y(t)

the solution through p with initial value x0, i.e, x(0, p; x0) = x0. Note that if r >> r0 it holds

that h(p)r + g(r) < 0 and −h(p)r + g(−r) > 0, i.e., the functions β(p) = r and α(p) = −r are

continuous super and sub-equilibria respectively, i.e, if x(t, p; x0) is solution of (3.5)

x(t, p; r) ≤ r, for all t ≥ 0, p ∈ P,

x(t, p; r) ≥ −r, for all t ≥ 0, p ∈ P.

We define, for T > 0,

bT (p) = x(T, p(−T ); r)

and

aT (p) = x(T, p(−T );−r).

Then bT , aT are respectively super and sub-equilibria satisfying

0 ≤ bT1
(p) ≤ bT2

≤ r,
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−r ≤ aT2
(p) ≤ aT1

≤ 0,

for all p ∈ P, 0 < T2 < T1.

From now on we fix r, bT and aT . Define

b(p) = lim
T→∞

bT (p); a(p) = lim
T→∞

aT (p). (3.7)

Proposition 3.11. The following items hold:

a) a, b : P → [−r, r] are equilibria for (3.5), i.e., for all p ∈ P and t ∈ R

x(t, p; a(p)) = a(pt), x(t, p; b(p)) = b(pt).

b) a(p) = −b(p), for all p ∈ P.

c) M0 ⊂
⋃

p∈P{p} × [a(p), b(p)]. In particular, a(p0) < 0, b(p0) > 0.

d) There exists a residual set Ps such that, for all p ∈ Ps it holds a(p) = 0 = b(p).

e) For all p ∈ P, supt∈R b(pt) ≥ r0.

Proof. a) is a consequence of Theorem 3.5. Note that aT (p) = −bT (p) for all T > 0, p ∈ P,

which implies b).

For c), define

b0(p) = sup{x ∈ X : (p, x) ∈ M0}; a0(p) = inf{x ∈ X : (p, x) ∈ M0}.

It is clear that b0(p) = −a0(p). Since x(T, p(−T ), b0(p(−T )) = b0(p), we have that

b(p) = lim
T→∞

bT ((p) = lim
T→∞

x(T, p(−T ), r) ≥ b0(p),

and, similarly,

a(p) = lim
T→∞

aT ((p) = lim
T→∞

x(T, p(−T ), r) ≥ a0(p).

In particular, b(p0) > 0 and a(p0) < 0.

For d), it follows from Theorem 3.4 that a, b possess a subset Ps of points of continuity. We will

prove that a(p) = b(p) = 0 for all p ∈ Ps. Indeed, if there exists p1 ∈ Ps with b(p1) = 2δ > 0 for

some δ > 0 there exists r̃ > 0 such that, for all p ∈ P with d(p, p1) ≤ r̃ we have b(p) > δ. From

the minimality of (P, θ) there exists T > 0 such that if p ∈ P we can find 0 ≤ t ≤ t(p) ≤ T
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with pt ∈ B(p1, r̃). Moreover, b(p) = x(−t, pt; b(pt)).

Thus, the application

x : [−T, 0] × B(p1, r̃) × [δ, r] −→ R+

(t, p; x0) −→ x(t, p; x0) > 0

is continuous and strictly positive on a compact set, so that there exists δ1 > 0 with x(t, p; x0) >

δ1 for all (t, p; x0) ∈ [−T, 0]×B(p1, r̃)× [δ, r]. In particular, as for all p ∈ P there exists t ∈ [0, T ]

with b(p) = x(−t, pt; b(pt)), d(pt, p1) ≤ r̃, then b(p) ≥ δ1 > 0, for all p ∈ P. Moreover,

b′(tp) = h(tp)b(pt) + g(b(pt)) ≤ h(tp)b(pt),

Thus, an standard argument of comparison provides

y(t, p; b(p)) ≥ b(pt) ≥ δ1 for all p ∈ P, t ≥ 0.

But, if p0 ∈ P0 (P0 from Theorem 3.5) there exists a sequence {tn}n∈N with tn → ∞ and

lim
n→∞

y(tn, p0; b(p0)) = lim
n→∞

b(p0)e
R

tn

0
h(p0s)ds = 0,

which implies limn→∞ b(p0tn) = 0, a contradiction. As a consequence, b(p) = 0 for all p ∈ Ps.

For the proof of e) we again argue by contradiction. Suppose p ∈ P with supt∈R b(pt) ≤ δ < r0.

This means that the function t → r0

δ
b(pt) is a bounded solution of the linear equation (3.2).

The same argument in c) leads to e) �

We can now prove the main result for the attractor associated to (3.5).

Theorem 3.12. In the above conditions,

a) {A(p) = [a(p), b(p)]}p∈P is the pullback cocycle attractor for (3.5).

b) The maps

P −→ R

p −→ b(p)

p −→ −b(p) = a(p)

are continuous in the residual set Ps = {p ∈ P : b(p) = 0} and discontinuous in P \ Ps.

c) A = ∪p∈P{p} × [a(p), b(p)] is the global attractor for (3.5) with respect to the associated

skew-product semiflow Π.

Proof. a) and b) follows directly from Proposition 3.11, and c) from Theorem 2.5. �
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4. Recurrent and asymptotic points. Forwards versus pullback attraction

Let consider h ∈ U(P ) and the function H(t, p) =

∫ t

0

h(ps)ds, p ∈ P, t ∈ R. We next

introduce different possible properties of H with important dynamical consequences on the

corresponding cocycle attractors. Precise examples of all these situations appear in the work

of Poincaré (see [39]) and the references therein; such examples have been constructed in the

quasi-periodic and limit-periodic cases.

Definition 4.1. a) A point p ∈ P is said (Poincaré) recurrent at ∞ for h if there exists

a sequence tn → ∞ with

∫ tn

0

h(ps)ds → 0. Anagously, a point p ∈ P is said (Poincaré)

recurrent at −∞ for h if there exists a sequence tn → −∞ with

∫ tn

0

h(ps)ds → 0.

b) A point p ∈ P is said asymptotic for h if

∫ t

0

h(ps)ds → −∞ as t → ∞.

Note that if h ∈ B(P ) all p ∈ P is recurrent. We will denote by P+
r the set of recurrent

points at ∞, by P−
r the set of recurrent points at −∞, and by Pr = P+

r ∩ P−
r .

The following result comes from Shneiberg [47].

Theorem 4.2. Let h ∈ C0(P ). The set Pr ⊂ P of recurrent points is invariant and of full

measure, i.e. ν(Pr) = 1.

It is immediate that the set of oscillatory points Po satisfies P0 ⊂ Pr. . As a consequence, Pr

is residual and has full measure. The argument of Steinberg [47] proves that the set Pr has full

measure. The invariance in the present conditions is a simple application of Fubbini’s theorem.

Moreover, for the n-dimensional torus, we have that all the points are recurrent in the quasi

periodic case if enough regularity is required (Kozlov [31], Konyagin [30], Moschevitin [34]):

Theorem 4.3. Let n ≥ 1. Then there exists kn ∈ N such that, if h ∈ Ck(Tn) ∩ C0(T
n) then

every p ∈ Tn is recurrent for h.

This result was deduced by Kozlov [31] for n = 2 and conjetures for the general case. It has

been proved by Konyagin [30] for n odd and by Moshchevitin [34] for general n ≥ 1. Last result

leads us to the following definition

Definition 4.4. A function h ∈ C0(P ) is Kozlov if every p ∈ P is recurrent for h.
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We consider h ∈ C0(p) and the above framework for (3.5). Then there exists Pf , invariant and

of first category, and its complementary, the residual set Ps, such that the pullback attractor

A(p) = [−b(p), b(p)] with b(p) > 0 if p ∈ Pf and b(p) = 0 if p ∈ Ps. Let Pr be the recurrent

points and Pa the asymptotic points. Recall that we denote by Po the oscillatory points in P.

We firstly have the following result

Proposition 4.5. Let p0 ∈ P.

i)

sup
t≤0

∫ t

0

h(p0s)ds = ∞ if and only if b(p0) = 0, i.e., p0 ∈ Ps,

and

ii)

sup
t≤0

∫ t

0

h(p0s)ds < ∞ if and only if b(p0) > 0, i.e., p0 ∈ Pf .

iii) If

lim sup
t→−∞

∫ t

0

h(p0s)ds < sup
t∈R

∫ t

0

h(p0s)ds

then p0 ∈ Ps and there exists t ∈ R with b(p0t) > r0.

Proof. i) Let yp0
(t) = e

∫ t

0

h(p0s)ds
. Note that yp0

(t) = y(t, p0; 1), yp0
(0) = 1, with y(t) the

solution of (3.2). Then there exists tn → ∞ with lim
n→∞

∫ −tn

0

h(p0s)ds → ∞. Suppose n big

enough. For T > 0 bT (p0) ≤ y(T, p0(−T ), r), and b(p0) = lim T → ∞bT (p0). We have

y(tn, p0(−tn), r) =
r

yp0
(−tn)

y(tn, p0(−tn), yp0
(−tn)) =

r

yp0
(−tn)

converges to zero as n → ∞, which implies the equivalence with b(p0) = 0, for all p0 ∈ Ps.

For ii), let ρ > 0 with

sup
t≤0

ρ

∫ t

0

h(p0s)ds ≤ r0.

Then, if x(t; p0; ρ) is the solution of (3.5) with x(0) = ρ it holds

x(t, p0; ρ) = ρ

∫ t

0

h(p0s)ds for all t ≤ 0.

On the other hand, since {x(t, p0; ρ) : t ∈ R} is bounded, it is on the pullback attractor, i.e.

[0, ρ] ⊂ [0, b(p0)] and then b(p0) > 0.
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For iii), there are t1 < t2 with

∫ t

0

h(p0s)ds <

∫ t2

0

h(p0s)ds = ρ for every t ≤ t1. Let

y(t) = y(t, p0;
r0

ρ
) = r0

ρ

∫ t

0

h(p0s)ds solution of (3.2). Let t3 ∈ (−∞, t2] be the first point with

y(t3) = r0. There exists γ > 1 with γy(t1, p0;
r0

ρ
) = y(t1, p0;

γr0

ρ
) = γr0. Hence the solution of

the nonlinear equation (3.5) satisfies

x(t3, p0;
γr0

ρ
) > x(t3, p0;

r0

ρ
) = r0,

which implies that b(p0t3) ≥ x(t3, p0;
γr0

ρ
) > r0. �

By this last result we get

Corollary 4.6. It holds that P0 ⊂ Ps.

The following result characterizes the forwards attraction in the pullback attractor.

Proposition 4.7. Let p0 ∈ P and x0 ∈ R. Then it holds

lim
t→∞

x(t, p0; x0) = 0 if and only if p0 ∈ Pa.

Proof. Suppose there exists t0 such that if t ≥ t0 then x(t, p0; x0) ≤ r0. Then

x(t, p0; x0) = x(t − t0, p0t0; x(t0, p0; x0)) = x(t0, p0; x0)e

∫ t−t0

0

h(p0(t0 + s))ds
,

which implies

lim
t→∞

∫ t

0

h(p0s)ds = −∞,

so that p0 ∈ Pa.

On the other hand,

0 < x(t, p0; x0) ≤ x0e

∫ t

0

h(p0(s))ds

which tends to zero if p0 ∈ Pa. �

Proposition 4.8. Let p0 ∈ P.

i) If p0 ∈ Pa, the process ϕ(t, p0) has a forwards attractor defined by {0}.

ii) If p0 ∈ Ps ∩ P+
r , the process ϕ(t, p0) has no forwards attractor.
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Proof. i) and ii) are clear from Proposition 4.7. Indeed, if we have forwards attraction to zero

we have that p0 ∈ Pa. �

Remark 4.9. Note that if p0 ∈ Pa ∩ Pf we have proved that b(p0) > 0 and limt→∞ b(p0t) = 0.

Thus, a proper definition of a forwards attractor {A(p)}p∈P for the cocycle should consider

minimality for the family A(p), in the sense that there is no proper invariant forwards attracting

family included in A(p). Thus, for p0 ∈ Pa ∩ Pf the forwards attractor should be defined as the

constant family A(p) = 0.

The following results are immediate consequences of Proposition 4.8.

Corollary 4.10. If h is Kozlov then there is no forwards attractor in Ps.

Corollary 4.11. If h ∈ U(P ) and ν(Ps(h)) = 1 then there exists a residual set of full measure,

P ∗
s such that, if p0 ∈ P ∗

s the process ϕ(t, p0) has no forwards attractor.

5. The sets Rs(P ), Rf(P ). Genericity of ν(Ps) = 1.

We define the sets

Rs(P ) = {h ∈ C0(P ) : ν(Ps(h)) = 1}

and

Rf(P ) = {h ∈ C0(P ) : ν(Pf(h)) = 1}

It is clear that B(P ) ⊂ Rs(P ) and that Rs(P )∪Rf(P ) = C0(P ). In this section we analyze the

topological size of these sets in C0(P ).

5.1. Rs(P ) is residual in C0(P ). We consider the time reversed flow σ̂ on R × P defined as

σ̂(t, p) = p(−t).

If y(t) is a solution of (3.2) then ŷ(t) = y(−t) satisfies ŷ′(t) = −h(p0(−t))ŷ(t). For simplicity

we denote by P̂ the base space with time reversed flow, i.e. P̂ = (P, σ̂, R). Note that the reverse

of the flow σ̂ is again σ.

Proposition 5.1. It holds

i) For any h ∈ C0(P ), either h ∈ Rs(P ) or −h ∈ Rs(P ).



CONTINUITY AND CHARACTERIZATION OF COCYCLE ATTRACTORS 21

ii) For the time-reversed flow, Rs(P ) = Rs(P̂ ), Rf (P ) = Rf (P̂ ).

Proof. Let h ∈ U(p) and fix p0 ∈ P.

If supt≤0

∫ t

0

h(p0s)ds ≤ ∞ then it follows from Proposition 3.7 that inft≤0

∫ t

0

h(p0s)ds = −∞,

so that supt≤0

∫ t

0

−h(p0s)ds = ∞ and p0 ∈ Ps(−h). As a consequence of the ergodicity of ν we

conclude that at least either ν(Ps(h)) = 1 or ν(Ps(−h)) = 1.

For ii), suppose that we are in the case with ν(Ps(h)) = 1 and take p0 ∈ Ps(h), so that

sup
t≤0

∫ t

0

h(p0s)ds = ∞.

Then there exist a sequence t1n → −∞ with

∫ t1
n

0

h(p0s)ds = ∞.

As ν(Pr) = 1 we can suppose that all the points of the sets {p0t : t ∈ R} are recurrent points.

For each n ∈ N there exists t2n > 0 such that the sequence

∫ t2
n

t1n

h(p0s)ds =

∫ t2
n
−t1

n

0

h(p0(t
1
n + s))ds → 0,

this last property by the recurrence of path. But note that

∫ t2n

t1
n

h(p0(s))ds = −

∫ t1n

0

h(p0(s))ds +

∫ t2n

0

h(p0(s))ds

so that, as

∫ t1n

0

h(p0(t
1
n + s))ds → −∞, it holds that supt≥0

∫ t

0
h(p0s)ds = ∞.

We consider the time reversed flow σ̂ on R × P. Since, for t > 0

∫ t

0

h(p0s)ds =

∫ −t

0

−h(p0(−s))ds,

it holds

sup
t≤0

∫ −t

0

−h(p0(−s))ds = sup
t≥0

∫ t

0

h(p0s)ds∞

hence p0 ∈ P̂s(−h) and then we have that ν(P̂s(−h)) = 1. As a consequence Rs(P ) ⊂ Rs(P̂ ).

A symmetric argument proves that Rs(P̂ ) ⊂ Rs(P ) and thus equality. �
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Observe that this last result shows how big Rs(P ) is on C0(P ), since shows that C0(P ) =

Rs(p)
⋃

(−Rs(P )).

The references Johnson [27] and Novo and Obaya [35] provide examples of functions h ∈ U(P )

and L : P → R measurable with L(pt)−L(p) =
∫ t

0
h(ps)ds for almost every p ∈ P and t ∈ R. We

say that L is a measurable primitive along the flow on h. The condition h ∈ Rf(P ) requires in

addition that eL ∈ L∞(P ). The example 3.2.1 in Johnson [27] uses methods, already suggested

in Anosov [2], to construct quasi period flows in the 2D torus T2 and a function h ∈ C0(T
2)

with

L(p) = sup
t∈R

∫ t

0

h(ps)ds ≤ L0 < ∞ a.s.

In this case h ∈ Rf (P ) and, moreover, for a.a. p ∈ P

L(pt) − L(p) =

∫ t

0

h(ps)ds for all t ∈ R.

This method was improved in the Appendix of Ortega and Tarallo [38], which in particular

implies that this kind of function h exists for every quasi-periodic flow.

Theorem 5.2. i) Rs(P ) is a residual set in C0(P ).

ii) The set R0(P ) = {h ∈ C0(P ) : ν(Po(h) = 1)} is also residual in C0(P ).

Proof. For h ∈ C0(P ), k ∈ N, k ≥ 1 we define

Nk(h) = {p ∈ P : lim sup
T→∞

1

2T
l({t ∈ [−T, T ] : |

∫ t

0

h(ps)ds| ≤ k}) = 0},

with l the Lebesgue measure in R. It is clear that Nk+1(h) ⊂ Nk(h) for all k ∈ N. In Johnson

[26] it is proved that the set

D0 = {h ∈ C0(P ) : ν(Nk(h) = 1 for all k ∈ N}

is residual in C0(P ). If h ∈ Rf (P ) then ν(Pf (h)) = ν(P̂f (h) = 1, i.e.

L(p) = sup
t∈R

∫ t

0

h(ps)ds < ∞ a.e.

and hence for a.e. p ∈ P and all t ∈ R

L(pt) − L(p) =

∫ t

0

h(ps)ds.
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Thus, for k big enough

lim sup
T→∞

1

2T
l({t ∈ [−T, T ] : |

∫ t

0

h(ps)ds| ≤ k}) > 0

for a.a. p ∈ P. Thus, for k big enough, ν(Nk(h)) = 0, so that h ∈ C0(P ) \ N, i.e., D0 ⊂ Rs(P )

and this set is residual.

For ii), Let R∗ the set of functions h ∈ U(P ) satisfying

sup
t≤0

∫ t

0

h(p0s)ds = sup
t≥0

∫ t

0

h(p0s)ds = ∞ for a.a. p ∈ P,

inf
t≤0

∫ t

0

h(p0s)ds = inf
t≥0

∫ t

0

h(p0s)ds = −∞ for a.a. p ∈ P.

Then R∗ = Rs(P )
⋂

(−Rs(P )) is residual, which implies that

R0(P ) = {h ∈ U(P ) : ν(P0(h)) = 1} is a residual set in C0(P ).

�

5.2. The case Rf (h)) 6= ∅. In this section suppose there exists h ∈ U(P ) with ν(Pf (h)) = 1.

Then it holds

Proposition 5.3. Rf(P ) is a dense first category set in C0(P ).

Proof. From the last result, it is clear that Rf (P ) is of first category. Fix h∗ ∈ Rf(P ). Then

{h + ρh∗ : h ∈ B(P ), ρ > 0} ⊂ Rf (P ).

Fix h ∈ C0(P ) and ε > 0. There exist h0 ∈ B(P ), ρ0 > 0 with ||h − h0|| < ε/2, and

ρ0||h
∗|| < ε/2. Then h0 + ρ0h

∗ ∈ Rf (P ) and ||h − h0 − ρ0h
∗|| < ε. �

In Section 3.4 we have shown the existence of a pullback cocycle attractor which contains a

pinched set, which is continuous in parameter p if p ∈ Ps and which is not forward attracting

in the residual set Ps.

The following result gives a forward attraction to the pullback cocycle attractor in a set of no

continuity and of full measure. Note that, from the result in Cheban et al [13] one could tend

to think that the forwards attraction in a pullback attractor is related to the continuity in the

parameter for the cocycle attractor. The following result shows that the uniformity condition

for the continuity in [13] is necessary.
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Theorem 5.4. Let h ∈ C0(P ) \ B(P ), with ν(Ps(h)) = 0. Then there exists an invariant set

∆ ⊂ Pf(h) with ν(∆) = 1 such that if p ∈ ∆ then A(p) is the forwards attractor of the process

ϕ(t, θsp)x0 = x(t − s, ps; x0) associated to (3.5).

Proof. For p ∈ Pf (h) we have that A(p) = [a(p), b(p)] with a(p) < 0 < b(p). Moreover, for r big

enough,

b(p) = lim
T→∞

bT (p) = lim
T→∞

x(T, p(−T ); r); a(p) = lim
T→∞

aT (p) = lim
T→∞

x(T, p(−T );−r).

By Egorov theorem (Rudin [41]) there exists a compact set ∆0 ⊂ Pf(h) with ν(∆0) > 0 (as

close to one as desired) such that

b(p) = lim
T→∞

bT (p) uniformly in ∆0.

Thus, b is continuous in the compact set ∆0 and then there exists δ > 0 with b|∆0
≥ δ > 0.

Let λ ≥ 1. We now prove that λg(b(p)) ≥ g(λb(p)). Indeed, if g(b(p)) = 0 is clear. If g(b(p)) =

−(b(p) − r0)
2 then g(λb(p)) = −(λb(p) − r0)

2 ≤ −λ2(b(p) − r0)
2 ≤ −λ(b(p) − r0)

2 = λg(b(p)).

Thus,

(λb(p))′ = λb(p)h(p) + λg(b(p)) ≥ h(p)λb(p) + g(λb(p)),

which means that λb(p) is a super-equlibrium for (3.5). Thus, if λ > 1 and p ∈ P

b(pt) ≤ x(t, p; λb(p)) ≤ λb(pt), for all t ≥ 0.

By Birkhoff’s Ergodic Theorem (Nemytskii and Stepanov [37]) there exists an invariant set

∆ with ν(∆) = 1 such that for all p ∈ ∆ there exists a sequence {t∗n}n∈N with t∗n → ∞ and

pt∗n ∈ ∆0. We will prove that for p ∈ ∆ and r > r0 big enough we have that

lim
t→∞

x(t, p; r) − b(pt) = 0.

Let ε > 0 and λ > 1 with b(p)(λ − 1) ≤ ε for all p ∈ P. For p ∈ ∆, there exists a t∗n with

pt∗n ∈ ∆0 satisfying bt∗
n
(pt∗n) ≤ λb(pt∗n) by the uniform convergence in ∆0, hence

0 ≤ bt∗
n
(pt∗n) − b(pt∗n) ≤ (λ − 1)b(pt∗n) ≤ ε.
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Then, if t ≥ t∗n it holds that

x(t, p; r) = x(t − t∗n, pt
∗
n; x(t∗n, p; r)) = x(t − t∗n, pt∗n; bt∗

n
(pt∗n))

≤ x(t − t∗n, pt
∗
n; λb(pt∗n))

≤ λb(t − t∗n, pt∗n; b(pt∗n)) = λb(pt).

Then, for all t ≥ t∗n,

0 ≤ x(t, p; r) − b(pt) ≤ (λ − 1)b(pt) ≤ ε,

which implies the forwards convergence in ∆.

�

Remark 5.5. Note that in this case we have obtained that the cocycle attractor A(p) 6= {0}

with full measure (as ν(∆) = 1 in a subset of no continuity points for the cocycle attractor,

in which we also find forwards attraction. We see that is a natural fact not to get forwards

convergence where the cocycle attractor is continuous.

6. Chaotic dynamics on the attractor

In this last section we study in detail the dynamical complexity of cocycle attractors. We

show the presence of different types of chaotic behaviour in our cocycle attractor. In particular,

we prove that the attractor possesses chaotic dynamics in the Li-Yorke sense, and that there

exists sensitive dependence on initial conditions.

6.1. Chaotic cocycle attractors in the Li-Yorke sense. In this final section we will study

chaotic dynamics in the Li-Yorke sense on our cocycle attractors.

Definition 6.1. Given (K, σ, d) a continuous flow in a compact metric space, a pair {x, y} ∈ K

is said a Li-Yorke pair if it holds

lim sup
t→∞

d(σ(t; x), σ(t; y) > 0, lim inf
t→∞

d(σ(t; x), σ(t; y) = 0.

A set S ⊂ K is said scrambled if every {x, y} ∈ S is a Li-Yorke pair. Finally, we say that the

flow (K, σ, d) is chaotic in the Li-Yorke sense if there exists an uncountable scrambled S ⊂ K.

We will now consider our cocycle attractor A(p) = [a(p), b(p)] associated to (3.5) and consider

K = A =
⋃

p∈P

{p} × [a(p), b(p)].
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Since our flow on the base (Ω, σ, R) is almost-periodic it is obvious that if (ξ1, x1) ∈ Ω × R,

(ξ2, x2) ∈ Ω× R are a Li-Yorke pair then ξ1 = ξ2. Thus, if S0 ⊂ Ω× R is a scrambled set there

exists P0 ⊂ P such that S0 ⊂ A(p0). This motivates the following definition:

Definition 6.2. We say that A is fiber-chaotic in measure in the Li-Yorke sense if there exists

an invariant set Pch ⊂ P with ν(Pch) = 1 such that A(p) is scrambled for all p ∈ Pc.

Note that Pch ⊂ Pf and it is a set of first category. Thus, our set is different from the residually

Li-Yorke chaotic sets analyzed in Bjerklov [7] and Huand and Yi [23]. The arguments of this

papr also shows that our fiber-chaotic compact set have zero topological entropy.

6.1.1. Chaotic dynamics with full measure. We consider the framework of the previous Section,

that is, we have ν(Pf ) = 1 being b(p) > 0 for all p ∈ Pf .

We first need the following important result which guaranties that, with full measure, the

pullback attractor is described from complete bounded trajectories of the linear system (3.2).

Proposition 6.3. There exists Pl ⊂ Pf invariant and with ν(Pl) = 1 such that 0 < b(p) ≤ r0

for all p ∈ Pl.

Proof. Let us define C0 = {p ∈ P : there exists t ∈ R with b(pt) > r0}. It is clear that C0 is

measurable and invariant. We argue by contradiction and assume that ν(C0) = 1. Take m ∈ N

and Cm = {p ∈ P : there exists t ∈ R with b(pt) > r0 + 1
m
}. Note that C0 =

⋃∞
m=1 Cm. Then

there exists m0 ∈ N with ν(Cm0
) > 0. Define

C+
m = {p ∈ P : there exists t > 0 with b(pt) > r0 +

1

m
}.

Let E0 ⊂ Cm0
compact with ν(E0) > 0, b|E0

. Then there exists a compact set E1 ⊂ E0

with 0 < ν(E1) < ν(E0) such that for all p ∈ E1 there exist sequences s1
n → ∞, s2

n → −∞

(depending on p) such that ps1
n, ps

2
n ∈ E0 for all n ∈ N. Note that for all p ∈ E0 there exists

t(p) with b(pt(p)) > r0 + 1
m0

. Since b(pt) = x(t, p; b(p)) for every p ∈ P and b is continuous on

E0, it holds that b(p1t(p)) > r0 + 1
m0

for all p1 ∈ B(p, δ(p)) ∩ E0.

Finally, E0 ⊂ ∪p∈E0
B(p, δ(p)) admits a finite recovering, so that there exists T0 > 0 such

that, for all p ∈ E0 we find t(p) with |t(p)| ≤ T0 satisfying b(pt(p)) > r0 + 1
m0

.
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If we now denote by x(t, p; x0) the solution of the linear equation (3.2), we will prove that,

if we take and fix p ∈ E1, then limn→∞ x(s1
n, p; b(p)) = ∞. Denote sn = s1

n. We can suppose

that sn+1 − sn ≥ T0 + 1 for every n ∈ N. Suppose also that psn ∈ E0 tends to p∗ ∈ E0 and

limn→∞ x(sn, p; b(p) = γ0b(p
∗) < ∞. For all n ∈ N there exists |tn| ≤ T0 with b(p(tn + sn)) >

r0 + 1
m0

and p(tn + sn) = p(sn−1 + (sn − sn−1 + tn)), implying that psn, p ∈ C+
m0

, and then

E1 ⊂ C+
m0

.

Note that if λ ≥ 0

(λb(pt))′ = h(pt)λb(pt) + λg(b(pt)) ≤ h(pt)λb(pt), for all t ∈ R,

i.e., γ0b(p) is a super-equilibrium for (3.5) and, for all t ≥ 0, p ∈ P

x(t, p; γ0b(p)) ≥ γ0b(pt).

Moreover, γ0g(b(pt(p))) > 0 and

then
d

dt
(γ0b(pt))|t=t(p) ≤ h(pt)γ0b(pt)|t=t(p),

implying that the super-equilibrium is strong.

Then there exist γ2 > γ1 > γ0 and t0 > 0 with

x(t, p∗; γ0b(p
∗)) ≥ γ2b(p

∗t)

for every t ≥ t0. Moreover

b(p∗t0) = lim
n→∞

b(p∗(sn + t0))

hence there exists n0 ∈ N such that

x(sn0
+ t0, p; b(p)) ≥ γ1b(p(sn0

+ t0))

and thus

x(sn, p; b(p)) ≥ γ1b(p(sn))

if sn ≥ sn0
+ t0, so that

lim
n→∞

x(sn, p; b(p)) ≥ γ1b(p
∗),

which contradicts the definition of γ0 and finishes the proof.

�
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Let ∆ ⊂ Pl a compact set such that ν(∆) > 0 and

∆∞ = {p ∈ Pl : there exists tn → ∞ with ptn ∈ ∆}.

We know that ν(∆∞) = 1. We will prove that

Theorem 6.4. For all p ∈ ∆∞, the sets [−b(p), b(p)] are scrambled.

Proof. Note that it is enough to prove it for [0, b(p)]. Take p ∈ ∆∞. Then there exist sequences

t1n, t2n with pt1n ∈ ∆ for all n ∈ N and pt2n → p0 ∈ Ps. Then, if x1, x2 ∈ (0, b(p)] there exist

γ1, 6= γ2 ∈ (0, 1) such that x1 = γ1b(p) and x2 = γ2b(p). It holds that

|x(t1n, p; γ1b(p)) − x(t1n, p; γ2b(p))| = |γ1 − γ2|b(p)e

∫ t1
n

0

h(ps)ds
= |γ1 − γ2|b(pt

1
n)

which is between δ|γ1−γ2| and γ|γ1−γ2| for some δ, γ > 0 by the continuity of b on the compact

set ∆.

In the same way

|x(t2n, p; γ1b(p)) − x(t2n, p; γ2b(p))| ≤ b(pt2n) → 0.

Note that the result is also true if γ1 = 0.

�

6.1.2. Chaotic dynamics in a fiber. In this final section we prove the existence of chaotic dy-

namics in the Li-Yorke sense in the case of ν(Pf) = 0.

Theorem 6.5. Let h ∈ C0(P ) a Kozlov function. Then the pullback attractor associated to

(3.5) is chaotic in the Li-Yorke sense.

Proof. There exists p0 ∈ Pf with

sup
t∈R

∫ t

0

h(p0s)ds = ρ < ∞.

If 0 ≤ x0 ≤
r0

ρ
then

x(t, p0; x0) = x0e

∫ t

0

h(p0s)ds
.



CONTINUITY AND CHARACTERIZATION OF COCYCLE ATTRACTORS 29

It then holds that [0, r0

ρ
] ⊂ [0, b(p0)]. We see that [0, r0

ρ
] is scrambled. Let 0 < λ < ν < r0

ρ
. We

have that

x(t, p0; ν) − x(t, p0; λ) = (ν − λ)e

∫ t

0

h(p0s)ds
.

As p0 is recurrent, there exists a sequence t1n → ∞ with

∫ t1
n

0

b(p0s)ds → 0. Then

lim
n→∞

(x(t1n, p0; ν) − x(t1n, p0; λ)) = (ν − λ) > 0.

On the other hand, as P is minimal and Ps dense, given p1 ∈ Ps there exists t2n → ∞ such that
∫ t2

n

0

b(p0s)ds → −∞ and

lim
n→∞

(x(t2n, p0; ν) − x(t2n, p0; λ)) = 0.

�

Remark 6.6. Observe that if h is a Kozlov function, we had proved the non-existence of

forwards attractor with full measure. Now we have proved the Li-Yorke chaotic motion in this

framework.

6.2. Sensitive dependence on initial conditions. Let (K, d) a compact metric space with

continuous flow σ and M ⊂ K compact and invariant.

Definition 6.7. We say that M is sensitive with respect to initial conditions (sensitive for

brevity) in K if there exists ρ > 0 such that for all x ∈ M, δ > 0 there exists y ∈ K and t > 0

with

d(x, y) ≤ δ and d(σ(t, x), σ(t, y)) ≥ ρ.

If M = K we say that K is sensitive with respect to initial conditions.

Definition 6.8. A dynamical system (K, σ) is called transitive if there exists a point x ∈ K

with dense orbit in K. Any such point is called transitive point.

Definition 6.9. We call dynamical system (K, σ) chaotic in the Auslander-Yorke sense if it is

both sensitive and transitive.

Now we consider the pullback cocycle attractor for (3.5).

Proposition 6.10. The minimal A0 = ∪p∈P{p} × 0 is sensitive in A.
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Proof. Let p0 ∈ P and p1 ∈ Pf with b(p1) = r0. Fix δ > 0. Then there exists p2 ∈ Ps with

d(p0, p2) < δ/2 and a sequence tn → −∞ such that limn→∞(p1tn, b(p1tn)) = (p2, 0).

We consider the distance d̃((p1, x1), (p2, x2)) = d(p1, p2)+ |x1−x2|. Then there exists n0 with

d̃((p1tn, b(p1tn)), (p2, 0)) ≤ δ/2 for all n ≥ n0. Thus,

d̃((p1tn, b(p1tn)), (p0, 0)) ≤ δ

and

d̃((p1, b(p1)), (p0(−tn), 0)) ≥ r0,

which completes the proof. �

We now consider the case in which ν(Pf ) = 1.

We know that A(p) = [−b(p), b(p)] with b(p) > 0 if p ∈ Pf . For each λ ∈ [0, 1] we define the

measure µλ on A by Riesz theorem by

∫

A

fdµλ =

∫

P

f(p, λb(p))dν, for all f ∈ C0(A).

By Proposition 6.3 we can suppose that b(p) ≤ r0 for all p ∈ Pf . Then, since x(t, p; λb(p)) =

λb(pt) for all p ∈ Pf , t ∈ R then for each t ∈ R and f ∈ C0(A)

∫

A

Π(t)fdµ =

∫

P

f(pt, λb(pt))dµ =

∫

P

f(p, λb(p))dµ =

∫

A

fdµ

so that µ is an invariant measure on A with µ(A) = 1, which is also ergodic. We now denote

by supµλ the support of A, which is a compact invariant set in A. For each λ ∈ [0, 1] we denote

by Aλ = supµλ ⊂ A. It is clear that Aλ = {(p, λx) : (p, x) ∈ A1}.

Theorem 6.11. Suppose ν(Pf) = 1. Then the compact invariant set Aλ is sensitive and chaotic

in the Auslander-Yorke sense.

Proof. Since µλ is ergodic there exists an invariant set Kλ ⊂ A of transitive points with

µλ(Kλ) = 1. Thus, Aλ is topologically transitive. Clearly, (p, λb(p)) ∈ Aλ for a.a. p ∈ Pf

and A0subsetAλ. Then, the flow Π(t) on Aλ is not equicontinuous. Thus, by Theorem 1.3 in

Glasner and Weiss [18] v is sensitive, which finishes the proof. �
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