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Resumen 

El presente TFM realiza una revisión de la aplicación de técnicas de 

aprendizaje automático en los sistemas y redes de comunicaciones ópticas. Además, 

estudia y compara las características de diversos métodos de aprendizaje 

automático, tales como: máquinas de vectores soporte, regresión logística, árboles 

de decisión y bosques aleatorios, para predecir la calidad de la transmisión al 

emplear circuitos ópticos en redes de comunicaciones ópticas con encaminamiento 

por longitud de onda. Los modelos desarrollados en el TFM obtienen mejores 

prestaciones que propuestas anteriores, fundamentalmente en términos de tiempo 

de cálculo, posibilitando su utilización en modo on-line incluso en redes altamente 

dinámicas, amén de ser más sencillos. 

Palabras clave 

Técnicas de aprendizaje automático, máquinas de vectores soporte, 

regresión logística, árboles de decisión, bosques aleatorios, calidad de transmisión, 

validación cruzada, circuitos ópticos. 
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Abstract 

This TFM reviews the application of machine learning techniques in optical 

communication systems and networks. In addition, it studies and compares the 

characteristics of various machine learning methods, such as: support vector 

machines, logistic regression, decision trees and random forests, to predict the 

quality of transmission when using optical circuits in wavelength routed optical 

communication networks. The models developed in this TFM offer better 

performance than previous proposals, mainly in terms of computing time, making 

possible its use in online mode even in highly dynamic networks, in addition to being 

simpler. 

Keywords 

Machine learning techniques, support vector machines, logistic regression, 

decision trees, random forests, quality of transmission, cross validation, optical 

circuits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

Table of contents 
Resumen ........................................................................................................................................ 2 

Palabras clave ................................................................................................................................ 2 

Abstract ......................................................................................................................................... 3 

Keywords ....................................................................................................................................... 3 

1. Introduction .......................................................................................................................... 5 

1.1. State of the Art: Machine Learning Techniques in Optical Communication Systems 

and Networks ............................................................................................................................ 5 

1.2. Problem Statement ..................................................................................................... 11 

2. Theory ................................................................................................................................. 13 

2.1. Support Vector Machine (SVM) .................................................................................. 13 

2.2. Logistic Regression ...................................................................................................... 14 

2.3. Classification and Regression Trees (CART) ................................................................ 15 

2.4. Random Forests........................................................................................................... 16 

3. Methodology ....................................................................................................................... 17 

3.1. Training Phase ............................................................................................................. 18 

3.1.1. Cross-Validation .................................................................................................. 18 

3.1.2. Training Scenarios ............................................................................................... 19 

3.2. Testing Phase............................................................................................................... 21 

3.2.1. Testing Scenarios ................................................................................................. 21 

4. Simulation Scenarios and Results ........................................................................................ 23 

4.1. MATLAB Scenario: Replication of the Reference Article ............................................. 23 

4.2. R Scenarios .................................................................................................................. 28 

4.2.1. Decision Maker + Machine Learning Model ........................................................ 28 

4.2.2. Removing the Decision Maker ............................................................................ 38 

5. Conclusions ......................................................................................................................... 50 

6. References ........................................................................................................................... 53 

A. Resumen en Español ........................................................................................................... 56 

 

 

 

 

 



 

5 

1. Introduction 
Over the last decade, machine learning techniques have spread rapidly 

throughout a remarkable number of massive and complex data-intensive fields such 

as astronomy, medicine, economics, commerce, security, biology, etc. These 

techniques are capable to perform relevant tasks by generalizing from examples, i.e. 

they can learn programs from data. It seems obvious, therefore, that the expansion 

of this discipline has not happened by chance. The fact that we are living an epoch 

in which colossal amount of data have been being constantly generated at 

unprecedented and ever increasing scales, allows machine learning algorithms to be 

fed with extensive amounts of examples, thereby enabling their effective training. 

On the other hand, this collection of data sets is so immense and complex that it is 

difficult to deal with it with other conventional methods. Machine learning 

algorithms provide, in this context, possible solutions to mine the information 

hidden in the data and can automatically adapt and/or optimize to their 

environment.  In addition they make it possible in a cost-effective form by avoiding 

unfeasible manual programming.  

1.1. State of the Art: Machine Learning 

Techniques in Optical Communication 

Systems and Networks 

The improvement of the performance of telecommunication networks by the 

application of machine learnings techniques is an area under extensive research. 

Optical communication networks and systems have not been kept apart, but have 

adopted this discipline to efficiently solve setbacks derived from the exponential 

growth in both capabilities and complexity these networks are experiencing during 

the last years. The aim of this section is to introduce some of the currently 

considered approaches to increase the performance of optical transport networks 

by the use of learning mechanisms, providing a brief overview of the current 

research within this area. 

Firstly, at the device level, machine learning techniques allow to statistically 

model different components of optical networks by including the underlying 

physics. In all these cases where a deterministic approach results in an impractical 

computational heavy load, learning mechanisms are becoming a promising and 

accurate performance improvement tool. Let’s take as an example laser 

characterization. With the advent of advanced modulation formats aiming to 

increase the spectral efficiency, ranging from 16 quadrature amplitude modulation 

(16 QAM) to 64 QAM and beyond, the need for robust carrier frequency and phase 

synchronization becomes crucial. At this point, a precise characterization of the 
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amplitude and phase noise of the lasers is essential. Conventional time-domain 

approaches perform coherent detection in combination with digital signal 

processing (DSP) to cope with this issue [1], [2], but as higher order modulation 

formats are implemented, the accuracy of the phase noise estimation is 

compromised in the presence of moderate measurement noise. Authors in [3] 

present a framework of Bayesian filtering in combination with expectation 

maximization to accurately characterize laser amplitude and phase noise that 

outperforms these conventional approaches. Results demonstrate an accurate 

estimation of the phase noise even in presence of large measurement noise.  

Erbium doped fiber amplifiers (EDFAs) are another optical network 

component on which these novel algorithms are being extensively applied. EDFAs 

are one of the key elements in which optical transport networks rely, due to their 

ability to extend the reach of the transmitted optical signal by performing a 

regeneration of dense wavelength division multiplexing (DWDM) channels in the 

optical domain. Notwithstanding, EDFA systems pose particular challenges in order 

to optimize the performance of a given link, playing a crucial role in the quality 

assurement of transmission. Machine learning techniques offer efficient solutions to 

a wide range of challenges inherent to the operation of these devices within fiber 

optic transmission.  

Specifically, in [4] the authors define a regression problem with supervised 

machine learning, kernel based, to statistically model the channel dependence of 

power excursions in multi-span EDFA networks. The model thus constructed with 

historical data - past channel states and standard deviations of the output power 

levels -, provides the system with accurate recommendations on channel add/drop 

strategies to minimize the power disparity among channels derived from the 

combination of the automatic gain control (AGC) process and the wavelength 

dependent gain of each channel. The main advantages of the machine learning 

engine proposed in this study in relation to previously proposed solutions [5], [6] - 

based on deterministic models of the gain profile - is the suitability of this model for 

live-network non-disruptive equipment and its generalization capability to EDFA 

networks of different designs. Furthermore, with the arrival of flexgrid networks in 

which dynamic defragmentation is crucial to improve the spectral efficiency, the 

previous study is extended in [7] to cope with the power excursion problem in 

dynamically changing spectral configurations. Machine learning methods –a ridge 

regression model to determine the magnitude of the impact of a given sub-channel 

and a logistic regression to specify whether the contribution will result on an 

increase or decrease to the discrepancy among post-EDFA powers - are therefore 

used to characterize the channel dependence of power excursions for different 

defragmentation methods of flexgrid superchannels. The machine learning models 

are then incorporated into an algorithm that determines the adaptive power 

adjustments, reducing the problem to a single final step adjustment based on the 

wavelength assignments of channels. Results show a mitigation of post-EDFA power 
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discrepancy among channels by over 62%. Finally, a novel method to autonomously 

adjust the operating point of amplifiers in an EDFA cascade by using a multilayer 

perceptron neural network is presented in [8]. The aim of this adjustment is to 

optimize the performance of the link by minimizing both the noise figure and the 

ripple of the frequency response of the transmission system while ensuring 

predefined input and output power levels. The incorporation of this restriction in 

the power levels to the adjustment process is precisely the main contribution of the 

use of machine learning techniques with respect to previous studies that also sought 

to optimize the operating point of EDFAs in a cascade for a dynamic optical link [9]. 

As a matter of fact, the study presents an error lower than 0.1 dB in their attempt to 

maintain input and output power levels around 3 dBm while defining the gain of 6 

amplifiers returning a link with a noise of figure and a frequency response ripple 

equal to 30.06 dB and 5.26 dB, respectively. 

Another widely extended trend examines the suitability of the application of 

machine learning techniques in monitoring and mitigating various degrading effects 

affecting the performance of optical links, such as chromatic dispersion (CD), optical 

signal to noise ratio (OSNR), polarization mode dispersion (PMD) or differential 

group delay (DGD). Tendency that is moving towards the introduction also of the 

inherent nonlinear nature of the transmission within the optical fiber, whose 

influence is becoming increasingly dramatic due to the use of higher transmission 

rates and more advanced modulation formats, within increasingly complex 

architectures and heterogeneous and dynamic transmission systems. 

A first approach related to the previous tendency deals with optical 

performance monitoring (OPM) – the estimation and acquisition of physical 

parameters of transmitted optical signals [10] – indispensable in ensuring robust 

and efficient network operation by allowing a diagnose of the network in order to 

take actions against malfunctions as repairing damages, driving 

compensators/equalizers or rerouting traffic around non-optimal links. As an 

example, the authors in [11] present an extensive study of the application of 

artificial neural networks in OPM. The study ranges from the simultaneous 

identification of linear impairments (OSNR, CD and PMD), to the addition of the 

accumulated nonlinearity to the previous impairments. Solid results are 

demonstrated for 40 Gb/s return-to-zero on-off keying (OOK) and RZ differential 

quadrature phase shift keying (RZ-DQPSK) systems.  However, techniques applied 

in this work and similar ones [12], [13], require prior knowledge about the type of 

signal (bit-rate and modulation format) which is not feasible in practical because the 

complexity of the nodes would increase beyond their limit. In that sense, a novel 

technique for simultaneous lineal impairments identification (OSNR, CD and DGD) 

that is independent from bitrate and modulation format (providing that this 

information belongs to a known set) is proposed in [14]. The study is performed 

using principal component analysis-based pattern recognition on asynchronous 

delay-tap plots. Results show a considerable accuracy in the simultaneous 
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monitoring of linear impairments, nonetheless, the mean estimation errors of this 

technique are obviously increased by introducing non-linear effects.  

Another recent work facing the limited scalability of the studies previously 

mentioned, which are based on the prior knowledge of a determined set of signals 

is presented in [15], where a deep neural network (DNN), trained with raw data 

asynchronously sampled by a coherent receiver in a 16 GBd dual-polarization QPSK, 

is proposed for OSNR monitoring. Results show that OSNR is accurately estimated 

within the range of 7.5 to 31 dB. Yet, this DNN needs to be configured with at least 5 

layers and needs to be trained with 400000 samples to achieve accurate results, 

requiring long training time. One step beyond, an OSNR estimator and a modulation 

format classifier for systems employing more advanced modulation formats (up to 

64 QAM) and direct detection are introduced in [16]. The former employs a neural 

network, while the latter uses a support vector machine (SVM), both in order to 

learn a continuous mapping function between input features extracted from the 

power eyediagram after the photodetector and the reference OSNR and modulation 

format, respectively. Results show that predictions from the modulation format 

classifier achieve an average classification accuracy of 94%, while the estimator 

obtains a total mean OSNR estimation error of 0.7 dB (worst case of 3.5 dB). 

However, results are demonstrated considering only white Gaussian noise, while 

ignoring for the moment linear and nonlinear optical fiber impairments. 

Following the same trend, but focusing on the mitigation of nonlinearities on 

the transmission over optical fibers, there has been also an extensive research 

during the last years. Among these nonlinearities, nonlinear phase noise (NLPN) is 

one of the prominent factors. So far this issue has been treated with electronic 

methods relying on the deterministic information of the fixed fiber link, like 

maximum likelihood estimation [17] and digital back propagation [18] which may 

be computationally too heavy for practical implementation.  Currently, machine 

learnings techniques are being incorporated to digital signal processing to mitigate 

nonlinearities in a more efficient way, allowing more accurate symbol detection. As 

an example, state-space models in combination with Bayesian filtering and 

expectation maximization are presented in [19] with the aim of taking into account 

the underlying physics of the channel and optical elements in the formulation of 

signal processing algorithms. As a result, an overall system improvement is 

achieved, including cross-polarization mitigation, carrier synchronization and 

optimal symbol detection. However, expectation maximization depends on the 

parameters of the transmission link and consequently it is not applicable to dynamic 

optical networks. Furthermore, authors in [20] propose a machine learning 

algorithm to mitigate NLPN affecting M-ary phase-shift keying (M-PSK) based 

coherent optical transmission systems. Specifically, the algorithm introduced is a 

nonlinear SVM classifier that learns the link properties from the training data 

without any prior information. This classifier is able to generate nonlinear decision 

boundaries that allows to bypass the errors induced by nonlinear impairments in 
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the constellations of M-PSK signals, resulting in improvements both in the maximum 

transmission distance (by 480 km) and launch power dynamic range (by 3.3 dB) for 

8-PSK. Notwithstanding, SVM is only a binary classifier, so to deal with higher order 

modulation formats, many SVMs would be necessary.  

With the objective of solving drawbacks derived from both previously 

mentioned studies, a k-nearest neighbors detector is described and demonstrated 

in [21]. This algorithm only needs a small set of labeled data in order to learn the 

link properties and generate the nonlinear decision boundaries but, unlike SVM, it 

performs a multi-class classification and, therefore, it is capable of classifying 

multiple kinds of data simultaneously. In this way, maximum transmission distance 

and nonlinear tolerance improvements are demonstrated in a 16 QAM coherent 

transmission system. Following the same line of study, a similar proposal is 

presented in [22]. It consists of a non-symmetric demodulation technique for 

receivers equipped with DSP based on clustering (using k-means algorithm), which 

allows to mitigate the effect of time-varying impairments such as IQ imbalance, bias 

drift and phase noise. The main advantages offered by the incorporation of this 

machine learning technique are its high computational efficiency and its 

transparency with respect to the nonlinearity source. The experimental results 

demonstrate a significant reduction of the symbol error rate in a 16QAM Nyquist 

system at 16 Gbaud in 250km links thanks to the creation of non-symmetric decision 

boundaries. Finally, a recent study [23] extends the previous proposals by 

introducing this type of techniques in more advanced systems, with greater spectral 

efficiency, such as coherent optical orthogonal frequency division multiplexing (CO-

OFDM) systems. Moreover, the low computational load and execution time of this 

approach allows its practical implementation as opposed to previous studies [24] 

that doesn´t allow its operation in real time. Specifically, the proposed algorithm is 

a non-linear equalizer SVM of reduced classifier complexity using the Newton-

method (N-SVM). Results show an effective handling of inter-subcarrier nonlinear 

crosstalk effects in 40 Gb/s 16 QAM CO-OFDM systems and an increase of the 

launched optical power. 

Last but not least, it is worth highlighting another different approach related 

to the use of learning mechanisms in improving the performance of optical 

networks: the application of cognition to the operation of optical networks. 

Cognitive dynamic optical networks [25] are capable by definition to identify 

current conditions, to modify their configuration according to these observations 

and, what is more interesting regarding the scope of this state of the art, to consider 

past experiences in decision-making. These functionalities make them an excellent 

candidate to face the increased levels of heterogeneity, both in types of services and 

transmission technologies, which have been mentioned throughout this section. 

 There are several examples of cognition worth mentioning at this point, most 

of them developed in the framework of the EU FP7 Cognitive Heterogeneous 
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Reconfigurable Optical Network (CHRON) project. In the interest of this state of the 

art, they will be grouped into two categories: reconfiguration of virtual topologies 

and quality of transmission estimation. 

The first category refers to the set of lightpaths established in a given optical 

network, which is not designed precisely randomly but trying to optimize different 

parameters or performance criteria such as reducing energy consumption, network 

congestion, end-to-end delay or blocking probability or trying to ensure quality of 

transmission (QoT), etc. This virtual topology doesn´t have to be statically 

configured but it could be dynamically reconfigured in order to better adapt to 

evolving traffic demands. For that purpose, a multiobjective genetic algorithm to 

design virtual topologies with the aim of reducing both the energy consumption and 

the network congestion is presented in [26]. Two different learning mechanisms, 

the possibility to remember both solutions successfully used in the past and 

connections with low QoT, are incorporated to the genetic algorithm resulting in an 

increase of the number of possible solutions and also in their performance. 

Furthermore, techno-economic studies of the introduction of cognitive techniques 

in virtual topology design exhibit also significant savings in terms of the total cost of 

ownership compared to conventional methods. As a matter of fact, savings up to 

20% and 25% in capital and operational expenditures via a genetic algorithm-based 

method are demonstrated in [27].  One step forward, authors in [28] use monitored 

data to produce estimations that can help to anticipate changes in the traffic and 

proactively reconfigure the virtual network topology. Finally, outside CHRON 

project, an algorithm to identify/locate failures in the virtual network topology that 

can lead to an unacceptable quality of service is proposed in [29]. It consists on a 

previous experimental characterization of several failure causes that are 

categorized by a clustering algorithm and then used to train a Bayesian network 

(BN). This trained BN is used to localize and identify the most probable cause of 

failure impacting a given service. Additionally, a different virtual network topology 

reconfiguration approach is introduced in [30]. It performs reconfigurations based 

on the traffic volume and direction predicted by an artificial neural network 

proposed for every origin-destination pair. Periodically, collected monitoring data 

are transformed into modelled data and the artificial neural networks are used to 

predict the next-period traffic. Results show savings both in capital and operational 

expenditures. 

The last topic to be mentioned in this section regards quality of transmission 

estimation, particularly relevant in impairment-aware optical network design and 

operation. As starting point, a quality of transmission estimator, QTool, has already 

been proposed in [31]. It computes the associated Q-factors of a set of lightpaths, 

given a reference topology. These Q-factors are indicators of the QoT as they are 

closely related to the bit error rate (BER) but, although the estimates of the QTool 

are relatively accurate, its use is impractical in scenarios where time constraints are 

important due to its high computing time. Several approaches propose cognitive 
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techniques to solve this serious drawback. As an example, authors in [32] present a 

QoT estimator capable of exploiting previous experience and thus, provide with fast 

and correct decisions on whether a lightpath fulfils QoT requirements or not. It is 

based on case-based reasoning (CBR) [33], an artificial intelligence mechanism 

which offers solutions to new problems by retrieving the most similar cases faced in 

the past whether by reusing them or after adapting them. Cases are retrieved from 

a knowledge base (KB) that can be updated to include new experiences. The 

estimator proposed is of a hybrid character, with an initial step in which only the 

length of the lightpath is taken into account and, if necessary, a second step is 

performed using the CBR system. The results show a percentage greater than 99% 

in correct classification of lightpaths into high/low QoT and more important, three 

orders of magnitude faster than the QTool mentioned above. Furthermore, this 

study is experimentally demonstrated in a WDM 80 Gb/s PDM-QPSK testbed [34], 

where, even with a very small KB, successful classifications are achieved in a 

percentage between 79% and 98.7%. Notwithstanding, the update of the KB 

previously described with new experiences (learning process) may have a great 

impact on the retrieval time as the size of the KB is increased unrestrainedly, putting 

at risk the benefits of storing the knowledge. For this reason, the study in [32] is 

enhanced with the introduction of learning and forgetting techniques in a 

maintenance phase of the KB [35]. As a result, cases that do not improve the 

performance of the system are eliminated, which entails a significant reduction of 

the KB size and consequently a reduction of the computing time without neglecting 

the percentage of successful assessments, which is similar to the previous situation. 

A last recent work, outside CHRON project, which also deals with the QoT estimation 

is presented in [36]. Unlike previously mentioned studies, authors apply a machine 

learning based classifier, specifically a random forest classifier, to predict the 

probability that the BER of a candidate lightpath will not exceed a given threshold. 

1.2. Problem Statement 

The starting point is the article [35] that has been exposed at the end of the 

section dedicated to the state of the art. The problem posed in it is a binary type 

classification in which lightpaths are classified into two categories: high QoT and 

low QoT. This kind of problems can be solved with machine learning techniques in 

a very efficient way and for this reason it is worth studying the benefits offered by 

these novel techniques in the scenario proposed in the article.  

It should not be forgotten that the prediction time for this scenario is a critical 

design point, especially when operating in on-line mode in highly dynamic 

networks. Machine learning techniques can be very efficient precisely for this 

requirement and could offer smaller prediction times with comparable or even 

better accuracy rates that might allow their practical use.  
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In addition, the article proposes a decision maker that is designed to address 

those lightpaths that are outside a certain uncertainty area, whose threshold lengths 

are artificially constructed by merely observing data, at guess. This point may be 

clearly improved by machine learning techniques, since they could learn by 

themselves to recognize those areas and their possible exceptions, making the use 

of this decision maker completely unnecessary.  

Finally, a network operator might be interested in implementing a system 

that predicts QoT by minimizing the existence of false positives (although this would 

lead to an increase in false negatives), since they can seriously impair the quality of 

service. This degree of design cannot be easily managed by the system proposed in 

the article of reference, while machine learning techniques do offer the possibility 

of optimizing specificity versus sensitivity.  
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2. Theory 
As the main objective of the master degree is to introduce the student to the 

research process, special emphasis has been placed on the sections corresponding 

to the state of the art and its references, the methodology, the exposure of the results 

of the investigation and the conclusions.  

This section, which includes theoretical aspects about machine learning 

techniques, does not pretend, however, to go deeply into the rigorous and detailed 

explanation of the models used, rather it intends to briefly outline their main 

characteristics.  

All methods used in this thesis perform supervised learning, i.e., they are 

trained with labelled data. 

2.1. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is mainly a classier method that performs 

classification tasks by constructing hyperplanes in a multidimensional space that 

separates cases of different class labels. SVM supports both regression and 

classification tasks and can handle multiple continuous and categorical variables. 

The optimization problem posed by this model for the training phase is the 

following: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    
𝛼     

1

2
𝛼𝑇𝑄𝛼 − 1𝑇𝛼                                          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑇𝛼 = 0                                                      

𝐶 ≥ 𝛼 ≥ 0                          

where 𝛼 is the so-called support vector, C acts as a regularization parameter 

(more regularization involves a lower C) and Q is a N by N matrix: 

𝑄𝑛𝑚 =  𝑦𝑛𝑦𝑚(𝑧𝑛
𝑇𝑧𝑚) 

where z represents the nonlinear transformation of x 

 The inner product ( 𝑧𝑇𝑧′) may be calculated without explicitly transforming 

x and x’ Z space with the help of a kernel function. 

Particularly, in this thesis a Gaussian kernel or Radial Basis Function (RBF) 

kernel is used: 

𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥′‖
2

             (𝛾 > 0) 
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As a result, two different parameters may be optimized during the training 

process. C, as explained above, acts as a regularization parameter avoiding 

overfitting of the model and 𝛾 (gamma, as mentioned later in the methodology 

section) determines the “width” of the Gaussian centred in the support vectors.  

2.2. Logistic Regression 

Logistic regression is a statistical method for analysing a dataset in which 

there are one or more independent variables or predictors that determine a 

dependent variable, an outcome. The outcome is measured with a dichotomous 

variable (in which there are only two possible outcomes). 

The goal of logistic regression is to find the best fitting model to describe the 

relationship between the outcome and the predictors. This is performed by 

minimizing the following cost function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐽(𝑤) = 
𝑤     

1

𝑁
∑ ln (1 +  𝑒−𝑦𝑛𝑤𝑇𝑥𝑛)

𝑁

𝑛=1

                                          

where 𝑦𝑛 are the outcomes, 𝑥𝑛 represents the predictors, and w are the 

weights. 

Two different variables can be optimized during the training phase for 

logistic regression in R: 

o Alpha (also known as mixing percentage in R programming 

environment): used to establish the kind of regularization performed 

during the training phase. For alpha=0, ridge regression is used as 

regularization method trying to avoid overfitting by penalizing large 

coefficients through the L2 Norm. For alpha = 1, lasso regression is 

used as regularization method, in this case trying to avoid overfitting 

by penalizing large coefficients through the L1 Norm.  

o Lambda: the regularization parameter (lambda = 0 implies no 

regularization). 

 

 

 

 



 

15 

2.3. Classification and Regression 

Trees (CART) 

CART refer to Decision Tree algorithms that can be used for classification or 

regression predictive modelling problems. A learned binary tree is actually a 

partitioning of the input space. New data is filtered through the tree and lands in one 

of the partitions and the output value for that partition is the prediction made by the 

model. 

In this way, creating a CART model involves selecting input variables and 

split points on those variables until a suitable tree is constructed. The selection of 

which input variable to use and the specific split or cut-point is chosen by applying 

a recursive binary splitting (a numerical procedure where all the values are lined up 

and different split points are tried and tested using a cost function, selecting the split 

with the best cost).  

For classification the Gini index function is used. This function provides an 

indication of how mixed the training data assigned to each node is: 

𝐺 = 1 − ∑ 𝑝𝑗
2

𝑗

 

The recursive binary splitting procedure needs to know when to stop 

splitting as it works its way down the tree with the training data. One way to do it is 

to use a minimum count on the number of training instances assigned to each leaf 

node. If the count is less than some minimum then the split is not accepted and the 

node is taken as a final leaf node. 

The count of training members is tuned to the dataset. It defines how specific 

to the training data the tree will be (if it is too specific, it will entail overfitting 

problems). 

The stopping criterion is important as it strongly influences the performance 

of a given tree. Pruning can be used to further lift performance after learning phase 

is completed.  

The complexity parameter (cp in R) is defined as the number of splits in the 

tree. This parameter can be optimized by R in the training phase. Simpler trees are 

preferred, since they are easy to understand and they are less likely to suffer from 

overfitting. 
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2.4. Random Forests 

Random Forests are another learning method for classification and 

regression. This algorithm operates by constructing a multitude of decision trees at 

training time and outputting the class that is the mode of the classes, for 

classification problems, or mean prediction, for regression tasks, of the individual 

trees. Its principal advantage with respect to CART is that it is more efficient in 

avoiding overfitting. 

The training algorithm for random forests applies the general technique of 

bootstrap aggregating, or bagging, to tree learners. Given a certain training set with 

the corresponding outcomes, bagging repeatedly selects a random sample with 

replacement of the training set and fits trees to these samples. After training, 

predictions for unseen samples can be made by averaging the predictions from all 

the individual regression trees on these unseen samples. This bootstrapping 

procedure leads to better model performance because it decreases the variance of 

the model, without increasing the bias. 

However, Random forests slightly differ from this general scheme: they use a 

modified tree learning algorithm that selects, at each candidate split in the learning 

process, a random subset of the features. This process is sometimes called "feature 

bagging". The reason for doing this is the correlation of the trees in an ordinary 

bootstrap sample: if one or a few features are very strong predictors for the 

response variable (target output), these features will be selected in many of the 

sampled trees, causing them to become correlated. 

The number of randomly selected predictors (mtry in R), variable 

optimizable during the training phase, refers to the previously mentioned random 

subset of features. 
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3. Methodology 
The main objective of the present study is to estimate the Quality of 

Transmission (QoT) in the context of wavelength routing optical communication 

networks (WRON) with the help of the machine learning techniques described 

previously and to exploit the advantages that these algorithms might offer. The 

starting point will be the work presented in [35], which describes and demonstrates 

the benefits of the employment of a cognitive QoT estimator of a hybrid nature. This 

estimator basically consists of two elements: a decision maker that only takes into 

account the length of the lightpath and a Case-Based Reasoning (CBR) module that 

classifies a given element according to the most similar case stored in its Knowledge 

Base (KB). The former is in charge of classifying all those lightpaths whose length is 

above or below the limits that identify a given uncertainty area in which, in principle, 

the QoT cannot be firmly predicted, while the latter will try to classify indeed those 

inside the uncertainty area. 

With this background, the approach applied in this research can be 

summarized in the following steps: 

1. Replicate the previous work recreating the exact conditions in which 

it was performed and replacing the CBR module with a machine 

learning based one, a Support Vector Machine (SVM). 

2. Prove, in these conditions, that the percentage of accuracy in QoT 

classification achieved is similar or better for this new technique and 

that it is capable of performing this classification in a shorter 

computation time per lightpath. 

3. Recreate the study again in a different programming environment (R), 

“friendlier” in terms of machine learning techniques comparisons 

(using the caret package [37]). 

4. Compare SVM performance with the performance of other machine 

learning algorithms (logistic regression, Classification and Regression 

Trees and Random Forests), within the new programming 

environment, with the aim to identify the one offering the best 

performance. 

5. Design a new scenario in which the decision maker (built a priori, by 

merely observing the data) is removed and the machine learning 

based modules learn to classify lightpaths QoT regardless of whether 

or not they belong to that artificial uncertainty area. 

To better characterize the previous process, two different phases are 

described below: training phase and testing phase. 
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3.1. Training Phase 

As an indispensable requirement to be able to carry out the training, it is 

necessary to provide the machine learning algorithm with a set of data. For the sake 

of a fair comparison, the set of data used is the same as the one used in the reference 

article, which corresponds to the different lightpaths established by running 

previous off-line simulations, with different loads, after solving the routing and 

wavelength assignment (RWA) problem, for the networks under study. The cases 

that compose this set of data consist of the description of each lighpath (i.e., a set of 

attributes) and its associated Q-factor (we are faced, as explained in previous 

sections, with supervised learning). The description of the lighpath contains the 

source and destination nodes, the set of links it traverses (represented by the 

percentage of its individual contribution to the total length of the lightpath), the 

corresponding wavelength, its total length, the sum of co-propagating lightpaths per 

link and the standard deviation of that number. In addition, the associated Q-factor 

was calculated off-line by means of the Q-Tool [31]. Finally, in order to classify the 

different cases into high and low QoT a threshold is set to 16.9 dB (which 

corresponds to a BER of 10-12), as in the reference article. 

3.1.1. Cross-Validation  

It is important to emphasize that the proposed training phase uses cross-

validation in order to characterize the model more precisely and thus facilitate its 

comparison with others. Specifically, 10-fold cross-validation is used, so that 

training data is divided into 10 folds and 10 iterations are performed. At each 

iteration a fold is removed and used to evaluate the model obtained after training 

with the remaining ones. In this way an average performance (e.g., accuracy) with 

greater statistical significance can be obtained. The creation of the random folds is 

controlled by a seed, ensuring a fair comparison between models. 

In addition, during the cross-validation process, the best tuning of 

parameters for each type of automatic learning algorithm is also sought. The model 

is evaluated, in terms of a certain performance variable, for each of the different 

values (or combination of values) of these tunable parameters. At the end of the 

cross-validation process, the average performance (eg, accuracy) of each of the 10 

iterations using the best tuning is obtained. The result is an optimized model with 

statistical significance. The following table (Table I) shows the different types of 

tunable parameters used in the optimization process, which were explained in the 

section on theoretical concepts. 
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ALGORITHM 
TUNABLE 

PARAMETER 
RANGE 

NUMBER OF 

ELEMENTS 

SVM 
C [2-5 , 215] 11 

gamma [2-15 , 23] 10 

LOGISTIC 

REGRESSION 

alpha Chosen by R 10 

lambda [0.1, 1] 10 

CART 
complexity 

parameter 
Chosen by R 8 

RANDOM 

FORESTS 
mtry 

Number of 

predictors 
8 

Table I. Tunable parameters for the Cross-Validation optimization process 

Caret package [37] has been used to carry out the cross validation process in 

the proposed scenarios in R. In particular, method “svmRadial” is applied for SVM 

training (i.e., using a (Gaussian) radial basis function kernel, or RBF kernel), method 

“glmnet” and family “binomial” for logistic regression, method “rpart” for CART and 

method “rf” for Random Forests. 

Finally, it is important to note that the performance of the proposed models 

may be evaluated during the cross-validation process not only in terms of accuracy. 

In fact, depending on the scenarios described below, the area under the ROC curve 

(AUC) is also taken into account as an optimization parameter. The ROC curve allows 

to visualize the trade-offs between sensitivitiy and specificity in binary classifiers. 

These metrics characterize the model ability of identifying true positives (TP), or 

true negatives (TN) as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 

where FN refers to false negatives and FP refers to false positives. An AUC of 1 would 

represent the ideal scenario in which every positive and negative instance is 

correctly identified. 

3.1.2. Training Scenarios 

When it comes to training it will be necessary to consider the type of scenario 

to emulate. In every situation, a testing data set is randomly selected and removed 
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from the data base so as to avoid “data snooping”, i.e. completely isolating it from 

the training phase. 

For the case where the reference article (points 1 and 2 of the summarized 

methodology) is replicated, the set of training data consists only of randomly 

selected cases within the uncertainty area (emulating the CBR module by the 

employment of the SVM). The training process is repeated 100 times (i.e., with 100 

different sets) to obtain results with great statistical significance. All this is also 

repeated for a different number of training cases.  

This study is performed in MATLAB, in order to establish a fair comparison 

with the article.  As output variables, besides the already trained and optimized 

model, the training time, which involves the whole process of cross-validation and 

the so-called "Accuracy In", which refers to the percentage of lightpaths correctly 

classified when evaluating the cases used for training, are calculated. 

For the next scenario (points 3 and 4), the joint action of the decision maker 

and the machine learning module is simulated for different algorithms, in a different 

programming environment (R). In this case, the set of training data consists again of 

randomly selected cases within the uncertainty area, but the models are trained only 

once, performing the cross-validation with a significant difference: not only the 

accuracy is considered as the optimization parameter but also an alternative 

scenario is proposed considering the AUC, which allows to optimize the trade-offs 

between sensitivitiy and specificity in these binary classifiers. A seed is used to 

ensure that the models are trained with the same random data sets in honour of a 

fair comparison of the algorithms (SVM, CART, logistic regression and Random 

Forests). As output variables of the training phase, the training time is again 

obtained and also the so-called “Accuracy-CV” (accuracy obtained in the cross-

validation process) or the AUC-CV, depending on the scenario. 

The last scenario (point 5) is trained with cases belonging both to the 

uncertainty area and outside of it. The models are trained once and the same seed 

as before is considered for fair comparisons. At the end, training data sets are the 

same as in previous scenario with the addition of cases not belonging to the 

uncertainty area and randomly selected, in such a number that the same proportion 

of cases within the uncertainty area and outside of it is kept as it appears in the 

whole data base. In addition, both the accuracy and the AUC are used as optimization 

parameters for the cross-validation process and same output variables as before are 

calculated.   
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3.2. Testing Phase 

For all the scenarios proposed above, except for the last one, low and high 

thresholds of the uncertainty area need to be established. Logically, they are 

considered to be the same as in the reference article (Table II). 

 

NETWORK 
NUMBER OF 

WAVELENGTHS 

LOW LENGTH 

LIMIT (KM) 

HIGH LENGTH 

LIMIT (KM) 

DT 
32 975 1875 

64 975 2050 

GÉANT2 
32 1250 4125 

64 1175 4225 

 

Table II. Low and High Thresholds of the Uncertainty Area 

3.2.1. Testing Scenarios 

For the testing phase, all the lightpaths may be considered for every scenario 

regardless whether they belong or not to the uncertainty area. As mentioned in the 

training phase, a testing dataset is randomly selected and removed from the 

database before training cases are selected. 

For the situation where the reference article (points 1 and 2 of the 

summarized methodology) is replicated, the test data set is randomly selected and 

then separated into two different sets: one corresponding to the uncertainty area, 

which is used to evaluate the performance of the optimized SVM model and another 

one containing the remaining cases, which feeds the decision maker (classifying a 

lightpath as low quality if its length is above the upper threshold of the uncertainty 

area or as high quality if it is below the lower limit). As in the corresponding training 

scenario, the process is repeated 100 times, generating statistically significant 

results. The study is carried out on the same machine as in the reference article (a 

Debian GNU / Linux 6.0 machine) and, obviously, implemented in MATLAB, in order 

to establish a fair comparison both in terms of accuracy and computing time per 

lighpath.  As output variables, the so-called "Accuracy Out", which refers to the 

percentage of testing lightpaths correctly classified by the whole system (decision 

maker and SVM model) and the computing time per lightpath (the time it takes the 

decision maker and the SVM model to classify their corresponding lightpaths 

divided by the total number of cases to be classified) are calculated. 
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The next scenario (points 3 and 4) proposes a similar analysis to the previous 

one, but in a different programming environment (R). In this case, ten different test 

data set are randomly selected to evaluate the whole system performance, dividing 

these data in two different sets as previously described. A seed ensures these test 

datasets are the same for every trained model (SVM, CART, logistic regression and 

Random Forests). Same output variables as in the previous scenario are obtained 

with the addition of the AUC (in this case, area under the ROC curve derived from 

the result of the classification of testing lightpaths corresponding to the uncertainty 

area carried out by the different trained models). 

Finally, in the last scenario (point 5), the evaluation of the machine learning 

module takes place with the whole test data sets (no elements are separated in order 

to be classified by a decision maker).  A seed ensures test datasets are the same for 

every algorithm as in the previous scenario. The Accuracy Out, the AUC and the 

computing time per lightpath are obtained as output variables. 
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4. Simulation Scenarios and 

Results 
To evaluate the performance of the different machine learning algorithms 

proposed, simulations have been carried out in two different networks (depending 

on the scenario, both may be compared or just one is studied, as explained along this 

chapter): a long haul network, the 14-node Deutsche Telekom (DT) network [31], 

and an ultra-long haul network, the 34-node GÉANT2 network [38]. 32 and 64 

wavelenghts per link have been considered for both networks with the same 

assumptions regarding spans or transceivers as in the article of reference [35]. 

4.1. MATLAB Scenario: Replication of 

the Reference Article 

Figure 1 shows the successful classification of lightpaths carried out by the 

joint action of the decision maker (classifying lightpaths outside the uncertainty 

area) and the SVM module (classifying lightpaths inside the uncertainty area) for DT 

network, comparing it with the different implementations of the CBR proposed in 

the reference article. The number of training cases is set from 500 to 5000 in line 

with the number of cases of the Knowledge Base (KB) of the CBR. Like in the study 

of reference, the number of testing cases is set to 6000.  

Figure 1. Successful classification of QoT when comparing R-CBR, FixE-CBR and SVM 
methods for DT network 
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R-CBR refers to the situation where the KB of the CBR is completely static, 

and so it is not updated with new cases nor optimized (cases are classified by 

retrieving the most similar case in the KB), while FixE-CBR refers to the situation 

where an optimization phase for the KB is performed by the employment of learning 

and forgetting techniques with the aim to store only the most significant cases [35]. 

It is worth mentioning that, unlike in this article, FixE-CBR method is represented 

taking into account the initial size of the KB in order to offer a clearer visualization 

of the results, although its final size after the optimization phase would be smaller. 

Results have been obtained after repeating the corresponding training and testing 

phases 100 times, as mentioned in the methodology chapter. Average results are 

represented together with 95% confidence intervals (although in some cases the 

size of the symbols are bigger than the confidence interval). 

As shown in the figure, SVM method is able to improve the performance of 

the R-CBR method regardless the number of training cases. When compared to the 

optimized CBR, SVM seems to offer a lower performance for smaller sizes of the 

training set, but the comparison is not completely fair. FixE-CBR KB is randomly 

populated with cases belonging to the uncertainty area at a first stage, but this 

method performs an off-line KB optimization process on a second stage by 

classifying 6000 new lightpaths belonging to the uncertainty area (the optimization 

process is run after every 500 classifications). As a result a number of redundant 

cases are removed and a number of significant new ones are stored. Once the 

optimization process has finished, the performance is analysed by classifying a new 

set of 6000 lightpaths. In consequence, CBR is somehow “trained” during the 

optimization process with a significantly higher additional number of cases than the 

ones used for SVM training. The proportional difference in the number of cases 

between the ones involved in the optimization process of the FixE-CBR method and 

the SVM module is reduced as the training dataset size is increased. As a result, SVM 

achieves a comparable performance to FixE-CBR with 2500 training cases and 

outperforms it from 3500 onwards. As shown in the figure, SVM configuration 

achieves up to more than 99.9% of successful classifications of lightpaths. 

At this point, the reader may be wondering whether this behaviour is similar 

for the GÉANT2 network or if it suffers from scalability problems. The truth is that, 

unlike in the reference article, simulations were run for GÉANT2 network for 

training cases ranging from 500 to 5000 (5000 to 50000 in the study of reference). 

The reason for this restriction can be noticed in Figure 2, where the training time 

(including all the cross-validation optimization process) for the SVM algorithm is 

presented for both DT and GÉANT2 networks. Average results are shown as in the 

previous figure together with the 95% confidence level. 

As depicted in the figure, training time is increased exponentially with the 

size of the training dataset. Furthermore, as GÉANT2 network contains a 

significantly greater number of links and nodes, the number of predictors used in 
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the SVM training phase increases dramatically, and so does the training time 

(becoming prohibitive for a 50000 training dataset size, not to mention the situation 

in which the training phase is repeated 100 times).  

Notwithstanding, the performance of the SVM module for the GÉANT2 

network can be compared with the CBR based modules in Figure 3, where the 

percentage of successful classification of lightpaths in the uncertainty area is 

presented. In this case, the training dataset ranges from 500 to 5000 cases. This 

figure compares R-CBR and SVM performance for both networks, together with the 

performance obtained by betting for the most likelihood category (emulating a 

decision maker within the uncertainty area). 

As depicted in Figure 3, for a 5000 size of the training dataset for the SVM 

module, the percentage of successful classifications reaches up to 98.73% for DT 

network and 91.79% for GÉANT2 network, outperforming R-CBR in more than one 

percentage point (97.5% and 90.56% for R-CBR, respectively).  While for the DT 

network a saturation point seems to be being reached with 5000 training cases, for 

the GÉANT2 network the improvement offered by SVM over R-CBR increases as the 

number of cases grows. Since the decision maker is implemented in the same way 

in this study and in the reference article, there is no reason to suspect that in the 

scenario in which GÉANT2 is trained with up to 50,000 cases, SVM would not behave 

better than CBR (although training time would be prohibitive). Finally, the fact that 

GÉANT2 is offering a significant lower percentage of successful classifications is 

related to both the significantly bigger size of the network and the more complex 

structure of the data as explained in [35] (only 8% of the cases belong to the 

uncertainty area and thus are not solved by the simple decision maker for DT 

network, while this percentage rises up to more than 50% for GÉANT2 network).  

Figure 2. Time consumed in order to train the SVM module for DT and GÉANT2 
networks 
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So far, SVM has proved to be more accurate in classifying lightpaths in low 

and high QoT categories, but since in the dynamic operation of a network not only 

the QoT of each new lightpath to be established must be assessed, but also that of 

co-propagating ones, a low computing time per lightpath is required, especially in 

highly dynamic networks. 

Figure 4 displays the computing time to assess the QoT per lightpath for the 

DT network for 32 wavelengths using both CBR methods, SVM and the Q-Tool. As 

shown in Figure 4, SVM outperforms both CBR methods. In particular, the 

computing time for SVM is around 40 times faster than that of the R-CBR for 5000 

training cases. It can be observed that the difference between R-CBR and SVM 

computing times is increased with the size of the training dataset. The reason is that, 

while SVM classifies lightpaths using a mapping function and thus the computing 

time remains almost constant through the training dataset sizes range (being more 

influenced by the decision maker), the computing time for CBR is related to the size 

of the KB and the needed time to retrieve the most similar case from it. For FixE-CBR 

the KB is reduced in the optimization process and thus the computing time is lower 

than that for R-CBR. Notwithstanding, SVM outperforms also the optimized CBR, 

being approximately 5 times faster for 5000 training cases. 

 In fact, SVM method trained with 5000 cases is faster than both CBR based 

methods regardless the number of cases in the KB. In this way, a system performing 

SVM classification after training it with 5000 cases would be faster than a CBR based 

one with an initial (or permanent) KB size of 500 cases and would significantly 

Figure 3. Successful classifications of R-CBR and SVM in the uncertainty area for DT 
and GÉANT2 networks with 32 wavelengths and successful classifications in the 

uncertainty area betting for the most likelihood category. 
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outperform the accuracy in classification of lightpaths in the uncertainty area as it 

was shown in Figure 3 (98.73% vs. 94%). 

 Lastly, Figure 5 presents the generalization error of the SVM models trained 

in this section for DT network. This measure of error is crucial when it comes to 

qualifying a model based on machine learning as better or worse, since it 

characterizes its predictability. The generalization error is defined as the difference 

in performance (percentage of success in classification, in this case) that is obtained 

Figure 4. Computing time to assess the QoT per lightpath for the DT network for 32 
wavelengths using the Q-Tool, R-CBR, FixE-CBR and SVM methods. 

Figure 5. Generalization error for SVM models for DT network 
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when testing the optimized model with the own training data or "Accuracy In" and 

that obtained when testing the model with the test data belonging to the uncertainty 

area or "Accuracy Out". It is foreseeable to find a lower Accuracy Out value, as long 

as the test data is not used in any way in the training phase, since the model is 

optimized for the training data. However, as shown in the figure, as the training 

cases are increased, the generalization error decreases. Logically, the more cases are 

"learnt" by the model, the more accurate will be the decision boundary when 

classifying.  

4.2. R Scenarios 

Once SVM was proved to be more accurate and faster when it comes to 

classifying lightpaths into low and high QoT categories than CBR in the exact same 

conditions, the study is transfered to a different programming environment, R, 

where the caret package may be very helpful for training, optimizing, characterizing, 

evaluating and comparing models. The aim is to check if other machine learning 

algorithms may outperform SVM for this specific problem. 

All R scenarios randomly select 10 completely different test datasets of 6000 

lightpaths regardless their total length. A seed ensures all models and scenarios are 

tested with the same 10 datasets, which are removed from the database before 

collecting the training set. 

4.2.1. Decision Maker + Machine Learning Model 

The scenario in which a machine learning model is combined with a decision 

maker in order to carry out the QoT classifications is replicated again. In this case, 

only the DT network with 32 wavelengths is studied, as the analysis for 64 

wavelengths does not yield results of significant interest compared to it. Also, 

GÉANT2 network entails prohibitive training times for SVM as previously shown. 

Four different machine learning algorithms are compared: SVM, CART, logistic 

regression and Random Forests, and two different optimizations are performed 

during the cross-validation process: accuracy and AUC. As mentioned in the 

methodology section, testing cases will be separated depending on their total length, 

feeding the machine learning algorithm or the decision maker whether they belong 

to the uncertainty area or not. Training phase involves a unique training of every 

model with different sizes of the training set, which comprises cases belonging to 

the uncertainty area.  

4.2.1.1. Accuracy Optimization 

In this section, results when the optimization process of the cross-validation 

is carried out looking for the highest possible value of Accuracy-CV are exposed. 
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Figure 6 shows the performance offered by the four different machine 

learning algorithms in terms of Accuracy and Kappa derived from the training phase. 

On the left column, the boxplot (including the median, first quartile and third 

quartile) is depicted, while the average value together with the 95% confidence 

intervals are depicted on the right. Rows represent the size of the training data set, 

ranging from 1000 to 5000 from top to bottom. In addition, in every cell, the 

algorithms are already ordered from best to worst, in terms of median (left) and 

mean (right). Accuracy corresponds to the “Accuracy CV” already mentioned along 

Figure 6 Performance in terms of Accuracy and Kappa of the cross-validation process for DT network (32 lambdas) 
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this study. Kappa is a metric that compares an observed accuracy (the number of 

instances that were classified correctly) with an expected accuracy (the accuracy 

that any random classifier would be expected to achieve) as in the following 

formula:  

𝐾𝑎𝑝𝑝𝑎 =

(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) (1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)⁄   

That way, the smaller the expected accuracy for the same observed accuracy 

the greater the Kappa. Models with a greater Kappa are therefore more predictable, 

better in terms of the performance they might offer after the testing phase 

(classification of new instances). 

Summing up, Figure 6 shows an expected evolution of every model towards 

higher performance as the training dataset grows. In order to select the best one 

among them, a compact confidence interval with a higher mean value together with 

a higher median value and a compact boxplot moved to the right are the desirable 

conditions. It is not easy to select the best candidate, three of them, SVM, Random 

Forest and logistic regression, seem to offer quite similar performance both in terms 

of accuracy and kappa. At most CART could be discarded, although it is offering 

indeed a very high performance. 

Figure 7 shows the average Accuracy CV together with the 95% confidence 

intervals, employing a finer granularity, for each model. As previously discussed, 

every model seems to offer a high performance in terms of accuracy and only one 

can be discarded as the ideal candidate (CART) since the remaining three achieve a 

very similar average accuracy of around 98,5%. 

Figure 7. Percentage of successful classification of lightpaths during the cross-validation 
process for SVM, CART, Random Forest and logistic regression 
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There are other variables that can be considered to characterize these 

models. As an example, Figure 8 represents the training time for each model 

depending on the size of the training data set. 

As shown in Figure 8, although CART was discarded as the best candidate due 

to its lower accuracy-cv, it is by far the fastest in the training phase. As a matter of 

fact, it takes from 2 up to 4 magnitude orders more to train the other ones when 

compared to CART models. On the other hand, SVM is the slowest, being one 

magnitude order slower than Random Forest and logistic regression and what is 

more, SVM is more penalized by the size of the training dataset, resulting in greater 

differences with respect to the others as the number of training cases grows. 

Summing up, Random Forest and logistic regression seem to be taking the lead. 

So far, only the training phase has been taken into account. The following 

figures show the results after the testing phase. 

Figure 9 depicts the accuracy out (the accuracy obtained after classifying the 

testing cases inside the uncertainty area employing the machine learning model 

together with the accuracy obtained by the decision maker). Not many differences 

are observed when comparing this figure with Figure 7. It is only worth mentioning 

that the global accuracy is higher (thanks to the decision maker, which was 

artificially designed to classify correctly 99.99% of lighpaths outside the uncertainty 

area) and that the levels of accuracy achieved are comparable to the ones obtained 

for the MATLAB scenario for the three best candidates: SVM, Random Forests and 

logistic regression. 

Figure 8. Training time in minutes for CART, SVM, logistic regression and Random Forest 
models 
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Another metric that is worth studying once the testing phase is concluded is 

the AUC, defined in this scenario for the classification of testing lightpaths within the 

uncertainty area performed by the machine learning model. Figure 10 shows the 

average AUC together with the 95% confidence intervals for CART, Random Forest, 

logistic regression and SVM. All models present an AUC close to 1, especially for 

Random Forests, SVM and logistic regression, in that precise order, meaning that 

they perform classifications very accurately, identifying correctly both categories.  

 
Figure 10. Area under the ROC curve for testing cases for CART, Random Forest, logistic 

regression and SVM 

Figure 9. Successful classification of lightpaths of the whole system (combination of the 
decision maker with CART, Random Forests, logistic regression and SVM )  
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Finally, the computing time per lightpath is analysed in Figure 11 (taking into 

account the decision maker and the corresponding machine learning model). As 

shown in the figure, all models are faster than SVM (up to 1 magnitude order), which 

involves that they are also faster than the CBR scheme proposed in the reference 

article. As in previous figures, Random Forests and logistic regression are 

presenting quite similar results. 

So far, only CART model can be discarded as an ideal candidate: despite 

offering the best results in terms of time metrics, it provides significantly lower 

performance metrics than the rest. Among the other models, metrics proposed are 

very similar, with a slight advantage for SVM in accuracy and Random Forests in 

AUC. However, significantly higher training and testing times allow SVM to be 

discarded from among them. Finally, in order to choose between logistic regression 

and Random Forests, the best decision seems to opt for the simpler model, which 

entails shorter time metrics, that is, to opt for logistic regression. Notwithstanding, 

the following scenario may help to refine the best candidate search. 

4.2.1.2. AUC Optimization 

In this section, results when the optimization process of the cross-validation 

is carried out looking for the highest possible value of AUC-CV are exposed. The 

reason for analysing this metric is justified by the interest that a network operator 

might have in a system that predicts the lightpath QoT minimizing the number of 

false positives, even though this could lead to an increase in the number of false 

negatives. In this way, lightpaths that would result in a Q-factor value below a 

certain threshold would not be established, reinforcing quality of service (QoS). 

Therefore, higher values of specificity would be desirables in the design of the 

proposed machine learning models. 

Figure 11. Computing time per lightpath (ms) taking into account the combined 
classification of the decision maker and the different machine learning models 
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Same considerations as in Figure 6 for Figure 12 regarding rows (i.e., training 

cases ranging from 1000 to 5000), columns (boxplots vs. confidence intervals) and 

machine learning algorithms. On this occasion, performance metrics derived from 

the cross-validation process are AUC (named ROC in the figure), sensitivity (Sens) 

and specificity (Spec). As mentioned before, a high AUC is desirable and also the 

specificity is considered an essential metric for model design (i.e., specificity needs 

to be as close to 1 as possible). As shown in Figure 12, after the cross-validation 

process with the aim of improving the AUC, all models provide extremely high 

performance metrics. CART is clearly a step below the rest, but the remaining ones 

provide extremely compact boxplots and confidence levels, with median and mean 

values of AUC and Spec extremely close to 1. 

Figure 12. Performance in terms of AUC (named ROC), sensitivity (Sens) and specificity (Spec) of the cross-
validation process for different machine learning algorithms 
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Figure 13 shows also the AUC-CV with a finer granularity. Conclusions 

derived from this figure are the same as in Figure 12, i.e., CART is clearly providing 

a lower AUC metric than the rest, yet its performance is high enough. 

 

With the aim to shed some more light on the search for the ideal candidate, 

the following figure (Figure 14) proposes the analysis of the training time for all the 

models under study. Results are, logically, similar to the ones in Figure 8. As in the 

previous scenario analysis (optimization of the accuracy metric) CART stands out 

for its speed when it comes to train, up to 4 magnitude orders faster than the 

slowest, SVM. 

 

Figure 13. Area under the ROC curve for the cross-validation process for CART, 
logistic regression, Random Forests and SVM models 

Figure 14. Training time after optimizing AUC for CART, logistic regression, 
Random Forests and SVM 
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On the other hand, SVM is more penalized by the size of the training dataset, 

resulting in greater differences with respect to the others as the number of training 

cases grows. Summing up, Random Forest and logistic regression trade-offs 

between time and performance metrics seem optimal. 

So far, only the training phase has been taken into account. The following 

figures show the results after the testing phase. 

Figure 15 depicts the accuracy out for all the models. Not many differences 

are observed when comparing this figure with the corresponding (Figure 9) of the 

previous scenario. Again, it is worth mentioning that the levels of accuracy achieved 

are comparable to the ones obtained for the MATLAB scenario for the three best 

candidates: SVM, Random Forests and logistic regression 

Figure 16 shows the average AUC together with the 95% confidence intervals 

for all the models under study. Everyone presents an AUC close to 1, especially for 

Random Forests, SVM and logistic regression, in that precise order, meaning that 

they perform classifications very accurately, identifying correctly both categories. 

Results are very similar to the ones obtained in the previous scenario with one small 

difference, AUC out, as expected, is slightly higher for SVM than the scenario where 

the accuracy was optimized. 

 

 

 

 

 

Figure 15. Successful classification of lightpaths (decision maker + machine 
learning models) for CART, logistic regression, Random Forests and SVM 
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Finally, Figure 17 presents the computing time per lightpath during the 

classification into high and low QoT categories for every model (in combination with 

the decision maker). Same conclusions can be derived as in the previous scenario, 

as the computing time depends on the complexity of every model, which may not 

really differ when optimizing during the cross-validation phase with a performance 

metric or another. It is worth only remembering that SVM turns up to be the slowest, 

but at the same time it was faster in MATLAB scenario than every CBR 

implementation of the reference article. 

As every model turned to be highly accurate in this binary classification 

model, the analysis of the optimization with different performance metrics 

(accuracy and AUC) has not yield significant differences. Notwithstanding, the 

additional analysis of the AUC performance metric allowed to extract important 

Figure 17. AUC after the testing phase for CART, logistic regression, Random Forests and 
SVM 

Figure 16. Computing time per lightpath (ms) during the classification for CART, logistic 
regression, Random Forests and SVM in combination with the decision maker.   
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information of the expected response of the designed models, like the associated 

specificity. 

As stated above, logistic regression and Random Forests are clearly the best 

candidates. Among them it is still not clear which one to choose, as Random Forests 

provides slightly higher performance metrics (accuracy and AUC) but logistic 

regression is faster. 

4.2.2. Removing the Decision Maker 

So far the study has considered an artificial decision maker to classify cases 

outside an uncertainty area, whose thresholds are chosen by investigating the data 

priori, with the aim to reduce the overall computing time per lightpath. In particular 

for DT network, only 8% of the cases are solved whether by the CBR or the machine 

learning module. The truth is that machine learning algorithms might be used to face 

the entire problem, avoiding the artificial creation of thresholds at a guess. For this 

reason, two new scenarios (one optimizing the accuracy performance and another 

one optimizing the AUC) are proposed removing the decision maker (i.e., the 

artificial thresholds). For this reason, the training dataset will contain lightpaths of 

any length.  

For the sake of a fair comparison with the previous R scenarios, the training 

datasets contain the same cases belonging to the uncertainty area as before and new 

cases outside this area are added in such a number that the proportion of lightpaths 

inside and outside the uncertainty area in the whole database is kept (i.e., the 

number of lightpaths in the training dataset shared with the previous scenarios will 

represent only 8% of the total training dataset, while the remaining 92% will be 

randomly selected among the lightpaths outside the uncertainty area). In addition, 

test datasets are the same as the ones used in the previous R scenarios. 

It is worth mentioning, as stated in the methodology section, that once SVM 

was proved to outperform the CBR systems proposed in the reference article in the 

MATLAB scenario and later was also proved itself to be outperformed by Random 

Forests and logistic regression in the R scenarios (above all due to time metrics), it 

is discarded for the remaining of the study, mainly because of its extensive training 

time. 

4.2.2.1. Accuracy Optimization 

As stated above, in this scenario the models are trained with the aim to 

optimize the accuracy performance. Figure 18 shows the results of this optimization 

of the accuracy performance after the cross-validation process. 
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 Same considerations as in Figure 6 for Figure 18 regarding rows (i.e., 

training cases, in this case ranging from 12500 to 62500), columns (boxplots vs. 

confidence intervals) and machine learning algorithms (once SVM is discarded). In 

this case, the accuracy CV is extremely closer to 100% for every model than as 

presented in Figure 6, due to the fact that a higher number of training cases are 

introduced to replace the decision maker. In terms of accuracy the three models are 

almost indistinguishable. On the other hand, kappa allows to categorize CART as the 

one expected to provide with the worst behaviour among the three of them, while 

Figure 18. Performance metrics (Accuracy and Kappa) after the cross-validation process for logistic regression, 
Random Forests and CART 
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Random Forests may be expected to provide with a slightly higher performance than 

logistic regression. 

Figure 19, which presents the accuracy CV for the three models, helps to 

visualize these facts. While Figure 7 showed an accuracy CV below 97% for CART 

and around 98.5% for logistic regression and Random Forests, Figure 19, depicts an 

increase of this metric up to 99.75% for CART and up to around 99.85% for the 

remaining models, with Random Forest slightly outperforming logistic regression. 

As shown in Figure 20, training times are dramatically increased with respect 

to the training times of the previous scenarios. This result is expected since, as stated 

before, this metric grows exponentially with the increase of the number of training 

cases and now training cases are increased by a 1250%!. CART is still extraordinary 

Figure 19. Successful classification of lightpaths during the cross-validation process 
for CART, logistic regression and Random Forests 

Figure 20. Training time for CART, logistic regression and Random Forests 
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fast, while Random Forests and logistic regression remain comparable up to 25000 

training cases. For greater training data sets the difference in training time rises up 

to almost one magnitude order slower for Random Forests. 

Figure 21 presents the accuracy out (as a reminder, now all instances within 

the testing datasets are classified by the machine learning models regardless the 

total length of the lightpaths) for CART, logistic regression and Random Forests after 

the classification is carried out. Results are perfectly comparable with the ones 

obtained with the hybrid system (decision maker + machine learning models) in 

Figure 9. Random Forests maintains its accuracy level in 99.87%, logistic regression 

accuracy is slightly decreased from 99.86% to 99.82% in this new scenario and 

CART maintains also its accuracy level in 99.73%.  

In the absence of analysing the AUC and computing time per lightpath, it 

seems that Random Forests and logistic regression are valuable alternatives to the 

hybrid systems seen so far. 

 

Figure 22 depicts the AUC out for the three models under study. It seems that 

a saturation point is reached with a training dataset size of 37500, At this point, 

Random Forests and logistic regression provides an almost perfect trade-offs 

between sensitivity and specificity (AUC extremely close to 1), up to 0.9998 and 

0.9977 for Random Forests and logistic regression, respectively. CART, although 

providing very high performance levels is clearly outperformed by the others. 

 

Figure 21. Successful classification of lightpaths after the testing phase for CART, 
logistic regression and Random Forests 
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Finally, Figure 23 allows to analyse the computing time per lightpath during 

the classification. As stated along this section, in this case, this computing time refers 

only to the classification performed by the machine learning models themselves 

since the decision maker is removed. There are some interesting conclusions that 

can be extracted comparing this figure with the corresponding one in the hybrid 

scenario in R, Figure 11.  

For the convenience of the reader, results shown in Figure 11 for 5000 

training cases, equivalent to 62500 cases in this new scenario (5000 cases inside the 

so-called uncertainty area and 57500 outside it), were 0.01, 0.003, 0.002, 0.001 

milliseconds for SVM, Random Forests, logistic regression and CART, respectively. 

As shown in Figure 23, computing time per lightpath has been increased for every 

model up to 0.025, 0.017, and 0.004 milliseconds for Random Forests, logistic 

regression, and CART, respectively. This increase was expected since the simple 

decision maker was extremely fast and it carried out 92% of the classifications, but 

Random Forests and logistic regression computing time per lightpath values are still 

comparable to the computing time per lightpath for SVM in the hybrid one (2.5 and 

1.7 times slower, respectively). Moreover, their accuracy performance is similar to 

the one offered by SVM (99.89%) in that scenario (Figure 11), since Random Forests 

and logistic regression achieved a successful classification of lightpaths of 99.87% 

and 99.82% in Figure 21.  

Summing up, SVM in the MATLAB hybrid system proved to be up to 40 times 

faster than R-CBR and up to 5 times faster than FixE-CBR, all of it with a higher 

percentage of successful classification of lightpaths. Random Forests and logistic 

regression achieved comparable percentages of successful classification of 

lightpaths in the scenario where the decision maker was removed with respect to 

SVM in the R hybrid scenario and also comparable computing times per lightpath. In 

Figure 22. Area under the ROC curve after the testing phase for CART, logistic 
regression and Random Forests 
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conclusion it can be stated that Random Forests and logistic regression can assume 

the binary classification problem proposed in the article of reference by themselves 

(i.e., without the decision maker) outperforming the accuracy metrics and in a 

shorter computing time per lighpath. 

4.2.2.2. AUC Optimization 

This scenario, as stated before, comprises the same study as the previous one 

(removing the decision maker) but carrying out an optimization of the AUC during 

the cross-validation process. Results are quite similar to the scenario that optimizes 

the accuracy. For this reason and with the intention of not extending this section 

much more, the main differences will be briefly discussed. 

As with the rest of R scenarios, Figure 24 depicts the performance metrics 

derived from the optimization of the AUC: ROC (which corresponds with the AUC-

CV), Sens (sensitivity) and Spec (specificity). In terms of specificity the models are 

indistinguishable, offering an excellent performance. The AUC is also extremely 

close to the ideal value of 1 for Random Forests and logistic regression, slightly 

higher for the former as it can be better visualized in Figure 25. CART is again clearly 

below the level of the other models, yet providing also a significantly good 

performance. 

 

 

 

 

Figure 23. Computing time per lighpath during the classification for CART, logistic 
regression and Random Forests 
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Figure 24. Performance of AUC (ROC), sensitivity (Sens) and specificity (Spec) for the cross-validation process 
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As expected, training times represented in Figure 26, are basically the same 

analysed previously in Figure 20, with CART turning to be extremely fast compared 

to the others and Random Forests increasing its training time faster than logistic 

regression as the number of training cases rise up. 

Figure 27 shows the accuracy out for this scenario. Again, differences with 

the corresponding figure (Figure 21) are insignificant, with a minimum reduction 

(0.04 percentage points in worst case) of the accuracy out, as the optimization is 

carried out this time for AUC, instead of for accuracy. 

 

Figure 25. Area under the ROC curve derived from the cross-validation process for CART, 
Random Forests and logistic regression 

Figure 26. Training time for CART, Random Forests and logistic regression 
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As shown in Figure 28, the AUC out (after the testing phase) is again 

extremely similar to the corresponding figure (Figure 22). The only difference is that 

saturation points are reached sooner. As an example, Random Forests AUC out is 

always above 0.9978. This small difference is in line with the fact that the cross-

validation stage optimized the AUC  

Finally, Figure 29 depicts the computing time per lightpath for this scenario. 

This metric is again around the same levels as in the corresponding figure of the 

previous scenario (Figure 23) 

 

 

Figure 28. Area under the ROC curve after the testing phase for CART, Random 
Forests and logistic regression 

Figure 27. Percentage of successful classification of lightpaths after the testing phase 
for CART, Random Forests and logistic regression  
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4.2.2.3. Selection of the Ideal Candidate 

Machine learning algorithms studied in this thesis have proven to be very 

efficient in solving the classification problem proposed in the reference article. So 

far, SVM has been discarded as the ideal candidate due to its necessary extremely 

high training time, while CART has been discarded because its performance metrics 

are below the desired levels.  

Moreover, the models proposed are able to classify lightpaths regardless 

whether they belong or not to the artificial uncertainty area, avoiding the need for a 

decision maker and the artificial creation of thresholds at a guess. In this ideal 

scenario, CART may provide with an interesting representation of how the learning 

process is performed. Figure 30 shows a chart representing schematically the 

drawing of the CART tree after the training phase. 

 

Figure 29. Computing time per lightpath during the classification phase for CART, 
Random Forests and logistic regression 

Figure 30. Drawing of the CART tree after the training process for the scenario without decision 
maker and optimization of the AUC 
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Before analysing the drawing of the tree, it is worth mentioning that the CART 

proposed neither performs centering and scaling of the data nor dummy variables 

transformation in order to make the tree more easily interpretable. 

X1 represents high QoT category, while X.1 represents low QoT. A node is 

labelled with the majority class that is introduced in it. Below the label of each node 

it can be found the proportion of cases of low QoT (to the left) and of upper QoT (to 

right-handed) with respect to the total of cases introduced in that node. Finally, the 

last number of the node represents the percentage of cases over the total that enter 

that node. After each node there is a bifurcation (except in the lowest level). If the 

condition is fulfilled the process takes the left path, if it is not fulfilled it takes the 

one on the right. 

So far, Random Forests and logistic regression have proven to be the best 

candidates but it is hard to say which one should be chosen. There is another degree 

of design that can be applied at this point and may help to make this decision. As in 

the classification process the probability of belonging to one or another class is 

calculated for each instance, the decision threshold can be modified to favour the 

sensitivity or specificity of the model as a function of the requirements. In our case, 

it can be reasoned that a network operator would be more interested in avoiding 

false positives that could affect QoS, becoming the existence of false negatives much 

less critical. Therefore, specificity becomes clearly the most significant metric.  

Taking this into account, the study carried out in the last scenario (the 

decision maker removed and optimization of the AUC) is taken as the starting point 

of the final decision. The models created in that scenario for Random Forests and 

logistic regression for 62500 training cases are tested with the 10 datasets at the 

same time (i.e., testing one time with 60000 test cases, instead of testing with 6000 

cases and repeating the process 10 times as in previous sub-sections). Figure 31 and 

Figure 32 show the ROC curves after this classification process is carried out, for 

logistic regression and Random Forests, respectively. 

 

Figure 31. ROC curve for logistic regression 
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Some thresholds are proposed in both figures so as to increase the specificity 

(this process penalizes the sensitivity). The threshold is shown at first place, while 

the specificity and sensitivity are the values inside parenthesis, in that order. 

From Figure 31, it is easy to conclude that increasing the threshold entails a 

penalization in the sensitivity metric. As an example, a threshold of 0.999 allow to 

increase specificity up to 0.979 and sensitivity would be reduced up to 0.973. If the 

requirements were even more restrictive, a threshold of 0.9999999985 (shown as 

1.000 in the figure) would be necessary to reduce the number of false positives to 0 

(i.e., increase specificity to 1), but this threshold would entail a reduction of the 

sensitivity up to 0.654 and, as a result of it, accuracy would be dropped to an 

undesirable 0.669. 

Random Forests proves to be easier to optimize in this last design. Figure 32 

shows a threshold of 0.943, that involves a perfect specificity of 1 with a sensitivity 

of 0.996. As a result, accuracy out is reduced only from 99.86% to 99.56%. For this 

reason, Random Forests is finally chosen as the ideal candidate for this classification 

problem. 

 

 

 

 

 

 

Figure 32. ROC curve for Random Forests 
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5. Conclusions 
The starting point of this thesis was the work presented in [35], which 

described and demonstrated the benefits of the employment of a cognitive QoT 

estimator of a hybrid nature in WRON networks to classify lightpaths into high and 

low QoT categories. This estimator basically consisted of two elements: a decision 

maker that only took into account the length of the lightpath and a Case-Based 

Reasoning (CBR) module that classified a given element according to the most 

similar case stored in its Knowledge Base (KB). The former was in charge of 

classifying all those lightpaths whose length was above or below the limits that 

identified a given uncertainty area in which, in principle, the QoT could not be firmly 

predicted, while the latter tried to classify indeed those inside the uncertainty area 

A machine learning approach was proposed to solve this binary classification 

problem the 14-node Deutsch Telekom (DT) network. With this aim, a SVM module 

was proposed to replace the CBR trying to classify lightpaths inside the uncertainty 

area. SVM proved to be a more efficient solution to this problem in a scenario 

recreating the exact conditions in which the reference study was performed. As a 

matter of fact, SVM achieved, in combination with the decision maker, a percentage 

of successful classifications up to 99.91% with 5000 training cases, while R-CBR and 

the optimized CBR achieved up to a 99.8% and 99.89% in the same conditions. In 

addition, SVM proved to be faster than the proposed system in the reference article, 

fact of significant relevance since a low computing time per lightpath is a critical 

requirement, especially in highly dynamic networks. SVM computed lightpaths 

around 40 times faster than R-CBR and 5 times faster than FixE-CBR in the optimal 

5000 training cases situation. Finally, in the scenario in which all lightpaths that 

were used to train and to test the different proposals belonged to the uncertainty 

area, SVM showed again a higher percentage of successful classifications of 

lightpaths, not only for DT network, but also for the ultra-long haul GÉANT network, 

achieving a 98.73% and 91.79% of accuracy, respectively, vs a 97.5% and 90.56% 

achieved by the R-CBR. Notwithstanding, the time that took to train the SVM model 

was too high and grew exponentially as the number of training cases was increased. 

As an example, for 5000 cases for DT network, it took more than 100 minutes to 

complete the training. For that reason, alternative machine learning algorithms 

were investigated 

Once SVM proved to outperform both CBR configurations proposed in the 

reference article, the study was moved to a different programming environment (R), 

“friendlier” in terms of machine learning techniques comparisons (using the caret 

package). There, the investigation performed in the reference article was recreated 

again with new machine learning algorithms replacing the CBR module. Specifically, 

besides SVM, Random Forests, logistic regression and CART were proposed as 

alternative candidates. In addition, the models were optimized during the training 
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phase looking for the best performance in terms of two different metrics: accuracy 

and Area Under the ROC Curve (AUC). Although the investigation derived from the 

utilization of one metric or the other did not yield any interesting conclusion since 

results were virtually identical, it allowed to deeply characterize and understand the 

trained models. However, the comparison between models did yield significant 

conclusions. CART proved to be the model providing with the lowest performance 

for the best case (5000 training cases) in terms of accuracy (99.72%) and AUC 

(0.9369). On the other hand, logistic regression (accuracy of 99.86% and AUC of 

0.9937), Random Forests (accuracy of 99.87% and AUC of 0.998) and SVM (accuracy 

of 99.885% and AUC of 0.9959) showed very close performance metrics.  

In order to select the best candidate, computing time per lightpath was also 

taken into account. CART turned to be the fastest (0.00078 ms), while Random 

Forests (0.0028 ms) and logistic regression (0.0017 ms) showed a very similar 

behaviour. On the other hand, SVM was clearly the slowest with a computing time 

per lighpath of 0.01 ms.  At this point, it was easy to conclude that Random Forests 

and logistic regression were even better candidates than SVM to replace the CBR 

module, moreover if the training time was taken into account as SVM was 

approximately 10 times slower than Random Forests and logistic regression. 

Another step beyond, the artificial decision maker using length thresholds 

imposed at a guess was removed and, a new scenario in which the machine learning 

algorithms were in charge of classifying the lightpaths by themselves, was proposed. 

SVM had been already discarded before, the other three were investigated in this 

new scenario. 

As it happened before, the comparison of the models optimized by the 

accuracy or by the AUC in this new scenario was little productive in terms of 

conclusions on differences in benefits. However, the comparison between the 

models themselves yield interesting conclusions.  

In terms of performance metrics, the accuracy was maintained in this 

scenario with respect the previous one and the AUC was even increased. As a matter 

of fact, CART provided, in the best case (62500 training cases), with an accuracy of 

99.73% and AUC of 0.954, logistic regression showed an accuracy of 99.82% and 

AUC of 0.997 and Random Forests achieved a 99.86% of accuracy and 0.9998% of 

AUC.  

In terms of time metrics, training time was dramatically increased for all 

models since the number of training cases was also increased by a 1250% in order 

to cope with enough cases outside the uncertainty area. In this situation, CART 

continued to be extraordinary faster than the rest. At the same time logistic 

regression could be trained, in the most critical case, around 8 times faster than 

Random Forests. Regarding computing time per lightpath, differences were less 
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significant, CART consumed 0.0037 ms, while logistic regression and Random 

Forests consumed 0.017 and 0.024 ms, respectively. 

From the results obtained in this new scenario, it was concluded that Random 

Forests and logistic regression could be perfectly considered as alternative 

candidates to replace the combination of the decision maker and the CBR modules 

proposed in the reference article. This statement is supported by the fact that these 

models obtained comparable accuracy values and a closer to 1 area under the ROC 

curve with respect to SVM in combination with the decision maker, all of it with 

comparable computing times per lightpath. 

The last remaining question was to decide between Random Forests and 

logistic regression, since the former offered better AUC and accuracy values, while 

the latter offered better test and training times. For these reasons, a new degree of 

freedom was used when designing these types of models. Such optimization was 

directly related to the interest that a network operator might have in using models 

that had a high specificity, thus reducing the number of false positives that could 

have a negative impact on QoS. 

By studying the ROC curve for logistic regression and Random Forests and 

proposing new decision thresholds, it was found that Random Forests could easily 

be optimized to provide a perfect specificity, reducing the number of false positives 

to 0 and without unduly compromising the final accuracy, which was slightly 

reduced from 99.86% to 99.56%. Since the logistic regression demanded much 

higher thresholds to achieve the optimum specificity, which in turn compromised in 

a more than considerable amount the final success, it was concluded that the best 

candidate to solve the problem raised was Random Forests. 

As future work it is proposed the extension of this analysis to ultra-long haul 

networks, like GÉANT2, in order to identify possible scalability issues. In addition, a 

new scenario in which the Q-factor may be completely estimated by machine 

learning algorithms, instead of classifying the quality of transmission into two 

categories, is proposed. For this matter, linear regression and neural networks may 

be an interesting starting point. 
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A. Resumen en Español 
El presente TFM realiza una revisión de la aplicación de técnicas de 

aprendizaje automático en los sistemas y redes de comunicaciones ópticas. Además, 

estudia y compara las características de diversos métodos de aprendizaje 

automático, tales como: máquinas de vectores soporte, regresión logística, árboles 

de clasificación y regresión (CART) y bosques aleatorios, para predecir la calidad de 

la transmisión al emplear circuitos ópticos en redes de comunicaciones ópticas con 

encaminamiento por longitud de onda. Los modelos desarrollados en el TFM 

obtienen mejores prestaciones que propuestas anteriores, fundamentalmente en 

términos de tiempo de cálculo, posibilitando su utilización en modo on-line incluso 

en redes altamente dinámicas, amén de ser más sencillos. 

El punto de partida es el artículo [35] en el que se plantea un estimador 

cognitivo para estimar la calidad de transmisión en redes ópticas de enrutamiento 

por longitud de onda. Este estimador consta de dos módulos operando 

conjuntamente: un decisor que clasifica los lightpaths en función de su longitud total 

y un módulo basado en la técnica denominada Case-Based Reasoning que los 

clasifica atendiendo al caso más parecido almacenado en su base de datos. El decisor 

estima si la calidad de un lightpath es baja o alta en función de si la longitud de éste 

es mayor al límite superior o menor al límite inferior de un área de incertidumbre 

en el que es difícil predecir en principio la calidad de transmisión.  Los umbrales de 

esta área de incertidumbre se calculan de manera artificial con la mera observación 

de los datos (longitudes pequeñas son más probables de ofrecer una mayor calidad 

de transmisión, mientras que longitudes muy altas afectan negativamente a dicha 

calidad). El módulo CBR se encarga de clasificar precisamente los lightpaths dentro 

del área de incertidumbre haciendo uso de una base de conocimiento que puede 

optimizarse mediante técnicas de aprendizaje y olvido, es decir, nuevos casos que 

aporten verdadero significado pueden almacenarse en dicha base de datos y casos 

redundantes pueden eliminarse. 

Con estos antecedentes, lo que se plantea en este TFM es explorar las posibles 

ventajas derivadas del uso de métodos de aprendizaje automático en la resolución 

de este problema de clasificación binaria. Para ello se establece el siguiente enfoque: 

1. Se replica el artículo en las condiciones exactas en las que éste se 

desarrolló (incluyendo mismas suposiciones, datos y entornos de 

programación y simulación), pero sustituyendo el módulo CBR por un 

el algoritmo conocido como máquinas de vectores soporte (SVM).El 

estudio, por lo tanto, se realiza también en MATLAB. 

2. Demostrar que en esas condiciones, SVM ofrece iguales o mejores 

prestaciones en términos de acierto en clasificación y en un tiempo de 
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clasificación por lightpath menor (aspecto crítico de diseño en redes 

dinámicas). 

3. Una vez demostrado que SVM supera las prestaciones del sistema 

propuesto en el artículo, se traslada el estudio a un entorno de 

programación que facilite la comparación entre distintos algoritmos 

de aprendizaje automático (R, con ayuda del paquete caret). 

4. En ese nuevo entorno se replica de nuevo el artículo con SVM y se 

proponen nuevas alternativas: regresión logística, árboles de decisión 

y bosques aleatorios. Si alguna de ellas supera las prestaciones de SVM 

en este nuevo entorno, quedará demostrado que también superarían 

las del sistema propuesto en el artículo. 

5. Finalmente, puesto que el decisor propuesto en el artículo es una 

herramienta artificial fundamentada en unos umbrales de decisión 

que definen el área de incertidumbre de manera poco sólida, se diseña 

un nuevo escenario en el que los algoritmos de aprendizaje 

automático son los únicos responsables de clasificar los lightpaths, es 

decir, los clasifican sin importar la longitud total de los mismos (el 

propio algoritmo aprenderá la importancia de la longitud del 

lightpath en el problema de clasificación propuesto). 

Los algoritmos de aprendizaje automático seleccionados son 

entrenados mediante validación cruzada (concretamente con 10-fold cross-

validation), proceso en el que además se optimiza, dependiendo del 

escenario, uno de dos posibles parámetros de rendimiento, acierto o área 

bajo la curva ROC, mediante la búsqueda de la mejor sintonización de los 

parámetros propios de cada método. Por ejemplo, SVM posee como 

parámetros sintonizables C y gamma, regresión logística posee alpha y 

lambda, CART posee el parámetro de complejidad y bosques aleatorios el 

mtry (número de predictores elegidos aleatoriamente). 

Antes de cada entrenamiento se separan unos datos de test con el fin 

de que éstos no sean utilizados en ningún paso de la fase de entrenamiento. 

Tanto los conjuntos de datos para entrenamiento como para test son 

controlados con una semilla para que las comparaciones entre modelos y 

escenarios sea lo más justa posible. 

Para el escenario en el que se replica exactamente el artículo en 

MATLAB, se simula el sistema propuesto tanto para la red alemana, Deustche 

Telekom (DT) como para la europea (GÉANT2). Grupos de 6000 y 36000 

datos de test se generan aleatoriamente para cada una de estas redes, 

respectivamente y grupos de entre 500 y 5000 datos de entrenamiento 

pertenecientes únicamente al área de incertidumbre se generan también 

aleatoriamente para entrenar SVM. Como variables de salida se obtienen el 

acierto en clasificación (que comprende la acción conjunta del decisor más 



 

58 

SVM) y el tiempo de computación por lightpath. Como novedad frente al 

artículo de referencia también se obtiene el tiempo de entrenamiento del 

SVM y su acierto interno (testeando los propios datos de entrenamiento). Los 

experimentos se repiten 100 veces para obtener valores con significado 

estadístico. Este estudio también se realiza particularizado únicamente para 

el área de incertidumbre. De hecho, el estudio para GÉANT2 sólo se realiza 

dentro de esta particularización, puesto que los tiempos de entrenamiento 

para SVM son demasiado elevados. En todos los casos SVM mejora 

ligeramente el acierto en clasificación con respecto a CBR y mejora 

sustancialmente el tiempo de computación por lightpath (hasta 40 veces más 

rápido que CBR normal y hasta 5 veces más rápido que el CBR optimizado). 

Una vez demostrado el hecho de que SVM mejora las prestaciones del 

sistema propuesto en el artículo en sus mismas condiciones, el estudio se 

replica de nuevo en R con los nuevos algoritmos alternativos. En este 

escenario y los siguientes, el estudio se particulariza para DT y los algoritmos 

son entrenados una única vez (para distintos tamaños del set de datos de 

entrenamiento) y se testean con 10 grupos de test para obtener resultados 

con significado estadístico. Bosques aleatorios y regresión logística alcanzan 

niveles de acierto en clasificación perfectamente comparables a los de SVM 

en este nuevo escenario y con tiempos de computación por lightpath 

significativamente menores. Además sus tiempos de entrenamiento son 

varios órdenes de magnitud más pequeños. CART, por el contrario, ofrece 

peores prestaciones en acierto, aunque es con diferencia el más rápido 

entrenando y clasificando. 

Una vez demostrado que hay alternativas mejores a SVM en estos 

últimos escenarios, se puede suponer que son a su vez mejores que el sistema 

basado en CBR propuesto en el artículo. 

El último paso consiste en trasladar dichas alternativas a un nuevo 

escenario en el que el decisor es eliminado. En este escenario SVM ya ha sido 

descartado como candidato ideal y el estudio se particulariza para CART, 

bosques aleatorios y regresión logística. Los datos de entrenamiento se 

extienden para poder afrontar este cambio. De esta manera, los sets de datos 

de entrenamiento contienen los mismos casos usados anteriormente (que se 

encontraban dentro de la zona de incertidumbre) y a éstos se les añaden 

datos fuera de la zona de incertidumbre en tal número que la proporción de 

datos dentro y fuera del área de incertidumbre se corresponde con la original 

de la base de datos completa. La fase de test se realiza exactamente con los 

mismos datos del escenario anterior, para seguir asegurando comparaciones 

justas entre escenarios y modelos. 
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Bosques aleatorios y regresión logística alcanzan de nuevo valores de 

acierto en clasificación comparables a SVM en el escenario con decisor, con 

valores de computación por lightpath ligeramente mayores (el decisor tenía 

una influencia dramática sobre el tiempo de computación) pero todavía 

significativamente por debajo de los tiempos obtenidos por CBR. CART, de 

nuevo obtiene peores prestaciones en acierto y significativamente mejores 

prestaciones en tiempo. Queda demostrado entonces que bosques aleatorios 

y regresión logística son candidatos perfectamente válidos para sustituir por 

sí solos el sistema completo decisor más CBR descrito en el artículo de 

referencia.  

Falta decidir el mejor candidato entre ambos, puesto que, aunque 

bosques aleatorios ofrece mejores prestaciones en acierto, es más lento a la 

hora de predecir y, sobre todo, de entrenar, que regresión logística. Para 

poder hacer la elección, se hace uso de un último grado de libertad en el 

diseño: el umbral de decisión. Se razona que un operador de red podría estar 

más interesado en sistemas que estimaran la calidad de transmisión 

cometiendo muy pocos errores al identificar casos positivos (categoría de 

calidad alta), es decir, que conllevaran muy pocos o ningún falso positivo (que 

fueran muy específicos), puesto que éstos inciden directamente en la calidad 

del servicio. Por ello se estudia incrementar el umbral de decisión (la 

clasificación se efectúa con un umbral de 0.5 por defecto, tras haber asignado 

un valor de probabilidad de pertenencia a una cierta clase para cada caso) 

para favorecer la disminución de falsos positivos (subiendo la métrica de 

especificidad), aunque ello conlleve una bajada de la tasa de acierto al 

provocar una bajada de la sensibilidad del sistema (se obtienen más falsos 

negativos). En este contexto, bosques aleatorios ofrece un mejor balance 

entre especificidad y sensibilidad, pudiendo aumentar el primero sin 

sancionar en exceso el segundo con umbrales de decisión mucho más 

razonables que regresión logística. Por todo ello se selecciona bosques 

aleatorios como el mejor candidato. 


