
A Note on the Stability of Fully Endogenous Growth with

Increasing Returns and Exhaustible Resources∗

Francisco Caboa† Guiomar Mart́ın-Herrána‡
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Abstract

We analyze a general R&D-based endogenous growth model with a growth-essential natural

resource. The economy comprises two separate sectors: final output and R&D, both directly

or indirectly dependent on the natural resource. Because the resource is exhaustible and it is

an essential productive input, increasing returns to scale to man-made inputs are compatible

with non-explosive sustained growth. The instability problem usually associated with increasing

returns is overcome thanks to the existence of imperfect markets in a decentralized economy.

We find an admisible range of values for the elasticity of capital in the R&D sector under which

growth is fully endogenous and saddle-path stable with no need of exogenous population growth.
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1 Introduction

The literature on R&D-based endogenous growth models and non-renewable natural resources as-

sumes constant returns to scale (CRS) to man-made inputs in both the final output and the research

sectors (see, for example, Grimaud and Rougé, 2003; Scholz and Ziemes, 1999; Schou 2002). As

Solow (1994) points out, this knife-edge condition implies a lack of robustness. Slightly increasing

returns to scale (IRS) would lead to explosive growth, while diminishing returns to scale (DRS)

would lead to stagnation. Groth (2007) built a semi-endogenous growth model with DRS to man-

made inputs (capital and knowledge) and a growth-essential non-renewable natural resource. The

model qualifies as a hybrid model in the terminology of Eicher and Turnovsky (1999). Endogenous

growth is feasible thanks to population growth. In this note, population growth is not needed and

endogenous growth is still attained thanks to the combination of IRS to man-made inputs and a

growth-essential resource.

The assumption of IRS is often linked with instability of the balanced path equilibrium. As

Groth and Schou (2002) show, the use of an exhaustible resource as an essential input is not a strong

enough stabilizer to overcome the instability problem when a one-sector economy is considered, unless

the population is assumed to grow at a positive constant rate. Groth and Schou (2002, 2007) leave

an open question: to what extent could the instability problem associated with IRS be overcome

if a separate R&D sector were considered? As we prove here, the instability problem associated

with IRS cannot be solved within a central planner setting, where all externalities are internalized.

Conversely, a decentralized economy characterized by market inefficiencies (knowledge externalities

and monopolistic competition) allows for a positive answer to this question.

This model is borrowed from Groth (2007) (section 5.2.2). The existence of a balanced growth

path (BGP) requires a condition on the elasticity of final output with respect to knowledge, which

depends on whether there is population growth or not. In a central planner setting, Groth (2007)

focuses on the case where population growth is required. Conversely, we study the alternative case

in a decentralized setting: fully endogenous growth can be attained without the aid of population

growth. Saddle-path stability can be ensured under an additional assumption on the elasticity on

the growth rate of knowledge with respect to capital. This condition is predominantly fulfilled under
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the plausible assumption of an elasticity of capital in the R&D sector smaller than in the final output

sector.

The note is organized as follows. Section 2 briefly recalls the general R&D-based growth model

with a growth-essential exhaustible natural resource presented in Growth (2007). Conditions for

existence and uniqueness of the balanced-path equilibrium are provided under the assumption of

constant population. In Section 3 the saddle-path stability of the balanced path equilibrium is

proved. The transitional dynamics is also analyzed. Section 4 concludes.

2 R&D-based growth model with a growth-essential resource

We consider the general R&D-based endogenous growth model presented in Groth (2007) with a

non-renewable natural resource as a productive input:1

Y = AεKα
Y L

β
Y R

γ , α, β, γ ∈ (0, 1), α+ β + γ = 1, ε > 0, (1)

Ȧ = µAφK1−η
A Lη

A, A(0) = A0, η ∈ (0, 1), φ ∈ R, (2)

K̇ = Y − C, K(0) = K0, (3)

Ṡ = −R, S(0) = S0, (4)

where Y is final output (FO), a composite good used either for consumption or for investment in

physical capital, and A is knowledge or technology. KY (KA) and LY (LA) are the capital and labor

required to produce FO (R&D), where K = KY + KA and L = LY + LA = L(0)ent, n ≥ 0. C is

aggregated consumption, S the stock of the non-renewable resource and R the total harvesting.

These equations stem from a quite general model of an expanding variety of intermediate goods

(see, for example, Barro and Sala-i-Martin, 2004) with an exhaustible resource as a productive input.

FO is produced using labor, an exhaustible natural resource and a set of durable intermediate goods.

We analyze a decentralized setting2 in which the non-renewable resource is harvested by competitive

firms. In the intermediate-goods sector, monopoly firms transform capital into durable goods using

the designs created in the R&D sector. The Ethier effect in the FO sector associated with a rise

in the number of designs is assumed ε ≥ 1 − α, encompassing increasing (ε + α > 1) or constant

(ε+ α = 1) returns to man-made inputs. Discoveries are non-rival goods which are non-excludable
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within the innovative sector. The “standing on shoulders” externality does not necessarily imply the

“knife-edge” assumption of φ = 1. Innovation depends on the existing stock of technology and the

number of researchers, but also on the capital stock (or foregone output). Thus, this model does not

consider research as independent of the capital stock (like the standard “knowledge-driven” models),

nor does it require identical elasticities in the production of R&D and FO (like the “lab-equipment”

model in the terminology of Rivera-Batiz and Romer (1991)). It is a hybrid model in which research

requires labor and capital but not necessarily mimicking the FO sector, η ∈ (0, 1). Possibly 1−η < α,

since the R&D sector is relatively intensive in human capital.

The optimal behaviour of all agents in this decentralized economy with imperfect competition

in the intermediate-goods sector can be summarized by the Ramsey and the Hotelling rules:3

gC =
1

σ
(r − ρ) + n, gpR

= r, (5)

with 1/σ > 0 the elasticity of intertemporal substitution of consumption (assuming an isoelastic

utility function), ρ the discount rate, r the rate of return, and pR the market price of the natural

resource. Moreover, due to monopolistic competition in the intermediate-good sector, the relation-

ship between the rate of return on capital and its marginal productivity in the FO sector (or the

social rate of return) must satisfy:

r = α
∂Y

∂KY

= α2 Y

KY

. (6)

2.1 Fully endogenous growth: existence and uniqueness

A balanced growth equilibrium requires a continuous rise of knowledge which overcomes the decline

in the exhaustible essential resource. This equilibrium is characterized by the standard conditions:

g∗K = g∗KA
= g∗KY

= g∗Y = g∗C ≡ g∗, g∗lY = g∗kY
= g∗r = g∗u = 0, g∗R = g∗S < 0, with lY = LY /L,

kY = KY /K ∈ (0, 1) and u = R/S.

Log-differentiating the production function (1) and taking into account the characterization of

a BGP, the growth rate of FO, g, can be written as:

g =
1− φ

1− η
gA − η

1− η
n, g =

(1− φ)γ

(1− α)(1− φ)− ε(1− η)
gR +

ε− (1− φ)γ

(1− α)(1− φ)− ε(1− η)
n. (7)

To have a BGP with positive growth and to avoid explosive growth condition φ < 1 is required.

Moreover, as shown in Groth (2007), a BGP with g > 0 can be based on a sufficiently rapid growth in
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population, n > 0, together with an upper bound on the elasticity of FO with respect to knowledge,

ε < (1− φ)(1− α)/(1− η). Conversely, we are interested in a BGP which does not require the aid

of an exogenous source of growth. Therefore, here and henceforth we assume constant population,

n = 0. In consequence, a BGP is only feasible under a new set of conditions:

Condition 1: 1− ε(1− η)

1− α
< φ < 1.

Condition 1 states, on the one hand, that the knowledge externality in R&D is less than linear;

and on the other, that returns to scale to man-made inputs (capital and technology) must be

“globally” increasing, considering the R& D and FO sectors altogether. The assumption of globally

IRS reverses the condition in Groth (2007). Which assumption better reflects reality is difficult

to asses as they involve parameters associated with technological knowledge which are difficult to

quantify. The elasticity of capital in the R&D sector, 1 − η, is considered null in the “knowledge-

driven” model, and equal to α in the “lab-equipment” model. Here, we will see that Condition 1

is compatible with the assumption 1 − η < α. Parameter ε, which collects the Ethier effect in the

FO sector, can be settled equal to 1 − α (or greater if a knowledge spillover also appeared in the

intermediate-goods sector). Finally, parameter φ representing the net effect of knowledge spillovers

and the “fishing-out” effect has been claimed to be close to one4, while other authors assume a

smaller value (for example, Steger 2005 states φ = 0.5).

For shortness, we focus on the standard model à la Romer (1990) with CRS to man-made inputs

in the FO sector, ε + α = 1. In consequence, Condition 1 implies IRS in the innovative sector and

can be re-written as: η < φ < 1. The general case with ε ≥ 1−α can be handled similarly, see Cabo

et al. (2013).

The growth rate of the economy along the BGP is given by:

g∗ =
ρ

1− σ + (1−α)(φ−η)
γ(1−φ)

. (8)

This growth rate is positive if consumers are not excessively inelastic:5

Condition 2: σ < 1 +
(1− α)(φ− η)

γ(1− φ)
.

A BGP corresponds to a steady state of the following system of five differential equations in
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variables c = C/K, lY , χ = gA, y = Y/K, and u = R/S:

gc =

(
α2

σkY

− 1

)
y + c− ρ

σ
, (9)

glY = Φ(lY )

{(
1− α

kY

− (1− γ) (1− η)

α

)
y +

(
(1− γ) (1− η)

α
− 1

)
c+ Γ(lY )χ

}
, (10)

gχ=Ψ(lY )glY + (1− η)y − (1− η)c+ (φ− 1)χ, (11)

gy = Ω(lY )glY +

{
α− 1− αγ

1− γ

(
α

kY

− 1

)}
y +

1− α− γ

1− γ
c+

1− α

1− γ
χ, (12)

gu=Ω(lY )glY +
α

1− γ

(
1− α

kY

)
y +

1− α

1− γ
χ+ u− α

1− γ
c, (13)

where

kY = lY
α2η

{α2 − (1− η)[α2 + β]} lY + β(1− η)
, (14)

Φ(lY ) =
α(1−lY )

[(1−γ)(1− η)−α](lY −kY )
, Ψ(lY ) = − (1− η)kY +ηlY

1−lY
, Ω(lY ) =

α(1−kY )+β(1−lY )

(1−γ)(1−lY )
,

Γ(lY ) =
γ − α

α
− (φ− 1)(1− γ)

α
+

η(1− γ)(1− α)

β

lY
1− lY

.

Proposition 1. For n = 0, under Conditions 1 and 2, there exists a unique steady-state equilibrium6

for the economy with l∗Y ∈ (0, 1) and c∗, y∗, χ∗, u∗ > 0.

Proof. See Cabo et al. (2013).

3 Saddle-path stability of the balanced growth equilibrium

For an economy with separated R&D and FO sectors, in a decentralized setting with imperfect

markets and knowledge externalities, the instability associated with IRS to man-made inputs is

overcome under certain conditions.

Variables c, lY and u in (9)-(13) can be regarded as controls. Correspondingly, y and χ are

determined by the state variables K, A and S. Therefore the stable manifold must be at least of

dimension two. The transition path is unique when the stable manifold is exactly two-dimensional.

Proposition 2. Under Conditions 1 and 2, the determinant of the Jacobian matrix at the steady

state is positive if and only if:

1− η ∈
(

α2

α2 + β
,

α

1− γ

)
. (15)

Additionally, sufficient condition7 α > γ, guarantees that the stable manifold is either two or four-

dimensional.
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Proof. See Appendix A.

Numerical simulations show that the stable manifold is always two-dimensional. This result is

robust to changes in parameter values. Therefore the path converging to the steady state is unique.

Condition (15) establishes a range of variation for the elasticity of capital in the R&D sector.

Because empirically α is several times the size of γ, condition (15) is compatible with 1−η < α. For

example, following Barro and Sala-i-Martin (2004), α = 0.4 seems adequate for developed countries,

and assuming γ = 0.15, condition (15) reads: 1−η ∈ (0.26, 0.47). This illustrates that the conditions

in Proposition 2 are more likely satisfied when the elasticity of capital in the R&D sector, 1− η, is

lower than in FO the sector (α = .4).

The social planner’s problem versus the decentralized solution:

As stated above, an elasticity of capital in the FO sector greater than in the research sector

seems realistic. Specifically, we assume that 1−η remains below α/(1−γ), the upper bound in (15),

which can be interpreted as the elasticity of capital in the FO sector when the resource is harvested

following the Hotelling rule. Stability further requires that 1− η surpasses the lower bound in (15),

which states that the final output sector employs labor more intensively than capital, l∗Y > k∗Y .

In the decentralized setting, the monopolistic competition in the industry which provides in-

termediate goods to FO producers implies (6). Due to this inefficiency a R&D sector with a low

elasticity of capital, 1 − η < α/(1 − γ), can be compatible with a FO sector less capital intensive,

l∗Y > k∗Y . By contrast, inefficiencies are not present in a social optimum and following the same steps

as in the decentralized setting, it can be proved that without population growth, the social planner’s

problem remains unstable (as Groth and Schou (2002) anticipated).

3.1 Transitional adjustment

We now turn to the transitional adjustment of the economy in response to some types of disturbances.

The state of the economy is represented by E1 = K1−η/A1−φ and E2 = SγA1−α/K1−α, which

are totally determined by the state variables K, A and S, and remain constant along the steady

state. By linearizing the dynamics of variables E1, E2, and the control variables lY , c and u in a

neighborhood of the steady state, we can study the qualitative behaviour of the relevant variables
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along the transition. Our numerical example considers: µ = L = 1, ρ = .05, α = .4, γ = .15, σ =

1.1, 1− η = .32, φ = .7.

Insert Figure 1 over here

The existence of a two-dimensional stable manifold, means that stabilizing policy functions

lY (E1, E2), c(E1, E2) and u(E1, E2), can be uniquely adopted (no indeterminancy). The graphs in

Figure 1 show the contour lines of the surfaces lY (E1, E2) and c(E1, E2) (the graph for u(E1, E2)

mimics Figure 1 right). Lighter (darker) regions represent values above (below) the steady state.

The contour lines corresponding with the steady-state values c∗ and l∗Y are highlighted.

Starting from the steady-sate position P0 = (E∗
1 ,E

∗
2 ), a positive shock on the stock of the

natural resource8 would imply E2 > E∗
2 and E1 = E∗

1 in point P1. Labor devoted to FO, lY (and

correspondingly capital share, kY ) should be initially lower than l∗Y (and k∗Y ). Thus more labor and

capital should be devoted to R&D, and so, χ > χ∗. The depletion rate should also start below

its steady-state value. Numerically, this rate becomes greater immediately after the shock. This

confirms that a more abundant stock of resource leads to greater harvesting, which counteracts the

reduction in labor and capital, leading to a greater production of FO.

Insert Figure 2 over here

These policies will take the economy from P1 to the long-run equilibrium, P0, following the

dashed lines. The time paths of the relevant variables along the transition are depicted in Figure 2.

The main outcome after a positive shock on the stock of the resource is a greater growth rate of the

economy along the transition, which enables a greater consumption per unit of capital.

4 Conclusions

Following the formulation in Groth (2007) we study a general R&D-based endogenous growth model

in which the FO and the R&D sectors are considered separately. It is a hybrid model (in the

terminology of Eicher and Turnovsky, 1999) because capital and knowledge enter the production

function of FO and R&D. A non-renewable natural resource is a direct input in the production of

FO, and it enters indirectly into the growth engine because the capital is used in the R&D sector (the

10



resource is growth-essential). Groth (2007) focuses on the case where endogenous growth requires

population growth. This note focuses on the alternative case, balanced growth is feasible without an

exogenous growth in population, but based on IRS in man-made inputs. IRS are compatible with a

BGP because the use of the non-renewable natural resource has to diminish over time.

The existence and uniqueness of a BGP needs two conditions. Condition 1 states that the

knowledge externality in the research sector must be less than linear and the returns to scale to

man-made inputs must be “globally” increasing. That is, if man-made inputs show CRS in the FO

sector, as in the standard model à la Romer, then IRS to man-made inputs in the research sector are

needed. More generally, to guarantee sustained growth, the DRS or CRS in one sector must be more

than offset by IRS in the other sector. Condition 2 requires consumers not excessively reluctant to

substitute present for future consumption.

In a decentralized economy with constant population the assumption of globally IRS to man-

made inputs does not necessarily lead to instability. The inefficiency from monopolistic competition

in the sector which provides intermediate goods to FO producers allows us to escape the instability

problem associated with IRS. Saddle-path stability requires the elasticity of capital in the R&D

sector to be low enough (with respect to the FO sector) but greater than a lower bound. By

contrast, a central planner setting shows no inefficiencies and is always unstable.

Finally, we have numerically characterized the policy functions that bring the economy towards

the BGP. Specifically, the transitional dynamics after a positive shock on the stock of the resource.

Appendix A

Proof of Proposition 2

From the system (9)-(13), the Jacobian matrix in c, lY , χ, y, u, at the steady state reads:

J∗ = (aij) , i, j ∈ {1, . . . , 5}
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where

a11 = c∗, a12 = −α

σ
∆(l∗Y )y

∗c∗, a14 =
(α
σ
Π(l∗Y )− 1

)
c∗, a13 = a15 = 0,

a21 = l∗Y Φ(l
∗
Y )

(
(1−γ) (1− η)

α
−1

)
, a22 = l∗Y Φ(l

∗
Y )

(
∆(l∗Y )y

∗+Υ
χ∗

(1−l∗Y )
2

)
,

a23 = l∗Y Φ(l
∗
Y )Γ(l

∗
Y ), a24 = l∗Y Φ(l

∗
Y )

(
1−Π(l∗Y )−

(1−γ) (1− η)

α

)
, a25 = a35 = a45 = 0,

a31 =

(
Ψ(l∗Y )

l∗Y
a21−(1− η)

)
χ∗, a32 =

Ψ(l∗Y )

l∗Y
a22χ

∗, a33 =

(
Ψ(l∗Y )

l∗Y
a23+φ−1

)
χ∗, a34 =

(
Ψ(l∗Y )

l∗Y
a24+(1− η)

)
χ∗,

a41 =

(
Ω(l∗Y )

l∗Y
a21+

β

1− γ

)
y∗, a42 =

(
Ω(l∗Y )

l∗Y
a22+

αγ

1− γ
∆(l∗Y )y

∗
)
y∗,

a43 =

(
Ω(l∗Y )

l∗Y
a23+

1− α

1− γ

)
y∗, a44 =

(
Ω(l∗Y )

l∗Y
a24+

αγ

1− γ
(1−Π(l∗Y ))−(1−α)

)
y∗,

a51 =

(
Ω(l∗Y )

l∗Y
a21−

α

1− γ

)
u∗, a52 =

(
Ω(l∗Y )

l∗Y
a22+

α

1− γ
∆(l∗Y )y

∗
)
u∗,

a53 =

(
Ω(l∗Y )

l∗Y
a23+

1− α

1− γ

)
u∗, a54 =

(
Ω(l∗Y )

l∗Y
a24+

α

1− γ
(1−Π(l∗Y ))

)
u∗, a55 = u∗,

and

∆(l∗Y ) =
(1− η)β

αη (l∗Y )
2 > 0, Π(l∗Y ) =

α

k∗Y
= α+

β

α

1− η

η

1−l∗Y
l∗Y

, Υ =
η(1−γ)(1−α)

β
.

Since u∗ > 0, the sign of det J∗ equals the sign of the 4th leading principal minor. Further,

c∗, l∗Y , χ
∗, y∗ > 0, so after some simplifications which do not change the sign of the determinant9

(f1/c
∗, f2/l

∗
Y , f3/χ

∗ −Ψ(l∗Y )f2/l
∗
Y , f4/y

∗ − Ω(l∗Y )f2/l
∗
Y ), this principal minor equals

Φ(l∗Y )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −α
σ∆(l∗Y )y

∗ 0 α2

σk∗
Y
− 1

(1−γ)(1−η)
α − 1 ∆(l∗Y )y

∗+Υ χ∗

(1−l∗Y )2 Γ(l∗Y ) 1− α
k∗
Y
− (1−γ)(1−η)

α

−(1− η) 0 φ− 1 1− η

β
1−γ

αγ
1−γ∆(l∗Y )y

∗ 1−α
1−γ

αγ
1−γ

(
1− α

k∗
Y

)
−(1−α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant along the second column, it follows:

Φ(l∗Y )

(
∆(l∗Y )y

∗Θ+Υ
χ∗

(1− l∗Y )
2
Ξ

)
, (16)

Θ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −α
σ

0 α2

σk∗
Y

− 1

(1−γ)(1−η)
α

− 1 1 Γ(l∗Y ) 1− α
k∗
Y

− (1−γ)(1−η)
α

−(1− η) 0 φ− 1 1− η

β
1−γ

αγ
1−γ

1−α
1−γ

αγ
1−γ

(
1− α

k∗
Y

)
−(1−α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Ξ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 α2

σk∗
Y

− 1

(1−γ)(1−η)
α

− 1 1 Γ(l∗Y ) 1− α
k∗
Y

−(1− η) 0 φ− 1 1− η

β
1−γ

0 1−α
1−γ

αγ
1−γ

(
1− α

k∗
Y

)
−(1−α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Adding the first and fourth columns of Θ, it follows that this determinant is zero.
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For Ξ, after some algebra, taking into account Condition 2 and φ < 1, it follows:

Ξ =
1− φ

1− γ

α2γ

σk∗Y

[
σ − 1− (1− α)(φ− η)

γ(1− φ)

]
< 0.

Because at the steady state χ∗, y∗, (1 − l∗Y ), ∆(l∗Y ) > 0, from (16) it follows that the sign of

det J∗ equals the sign of −Φ(l∗Y ), which is positive if and only if [(1− η)− α/(1− γ)](l∗Y − k∗Y ) < 0.

From equation (14), l∗Y > k∗Y ⇔ 1− η > α2/(α2 + β). And it is easy to see that:

α2

α2 + β
<

α

1− γ
< 1.

Therefore under condition (15), Φ(l∗Y ) < 0 and det J∗ > 0.

In a second step we prove that there exists an even (not null) number of negative eigenvalues.

All the elements in the fifth column in the Jacobian matrix are zero except a55, which is a

(positive) eigenvalue. We focus on the addition of the remaining elements in the main diagonal.

The steady-state values c∗, χ∗ and y∗ satisfy:

χ∗ =
1− η

φ− 1

(
ρ

σ
− α2

σk∗Y
y∗
)

=
1− η

1− φ
(y∗ − c∗), y∗ =

k∗Y
α2

ρ

1− Λ
, y∗ − c∗ =

ρ

σ

Λ

1− Λ
, (17)

where k∗Y denotes the value of variable kY satisfying (14) when lY equals l∗Y and

Λ =
σ

1 + (1−α)(φ−η)
γ(1−φ)

. (18)

Taking into account expressions in (17),

a33=
αy∗

k∗
Y

{
Ψ(l∗Y )Φ(l

∗
Y )

(
1−α

σ

(
1− (1−γ)(1− η)

α

))
− (1− η)α

σ

}
+

ρ

σ

(
1− η+Ψ(l∗Y )Φ(l

∗
Y )

(
1− (1−γ)(1−η)

α

))
,

a22=Φ(l∗Y )l
∗
Y

{
(1− η)β

αη

y∗

(l∗Y )2
− η(1−γ)(1−α)(1− η)

β(1−φ)σ(1−l∗Y )2

(
ρ−α2y∗

k∗
Y

)}
.

Replacing y∗ by its expression in (17), the term Σ = a11 + a22 + a33 + a44, can be written as:

ρ

1− Λ

{
−Λ

σ
− k∗Y

α2

1− l∗Y
l∗Y − k∗Y

− γ

1− γ
− Λ

σ

l∗Y
l∗Y − k∗Y

− Ω(l∗Y )−Ψ(l∗Y )

(1− γ)(1− η)− α

1− l∗Y
l∗Y − k∗Y

+
α(1− η)

(1− γ)(1− η)− α

1

l∗Y − k∗Y

[
k∗Y
α3

β

η

1− l∗Y
l∗Y

+
η(1− γ)(1− α)Λ

β(1− φ)σ

l∗Y
1− l∗Y

]}
.

Because Λ < 1, the sign of Σ coincides with the sign of the term in brackets. Rearranging terms

and taking into account that:

Ω(l∗Y )−Ψ(l∗Y )

(1− γ)(1− η)− α
=

α

(1− γ)(1− η)− α

1

l∗Y − k∗Y
− α

1− γ
,

13



the term in brackets above can be rewritten as:

1

l∗Y − k∗Y

{
−k∗Y (1− l∗Y )

α2
− Λl∗Y

σ
+

α

(1− γ)(1− η)− α

[
− 1

α
+

k∗Y
α3

(1− η)β

η

1− l∗Y
l∗Y

+
η(1− η)(1− γ)(1− α)Λ

β(1− φ)σ

l∗Y
1− l∗Y

]}
+ 1− Λ

σ
.

From (14) and (15) it follows that l∗Y − k∗Y > 0. Therefore, the sign of the expression above is

not modified when multiplied by l∗Y − k∗Y . Furthermore, replacing k∗Y using expression (14), and

rearranging terms, the sign of Σ is given by the sign of:

− 1− l∗Y

α2 + β 1−η
η

1−l∗Y
l∗Y

Σ1 −
Λ

σ
l∗Y − α

(1− γ)(1− η)− α
Σ2,

where

Σ1 = 1−
(
β
1− η

η
−α2

)(
1−Λ

σ

)
, Σ2 =

α

α2+β 1−η
η

1−l∗Y
l∗Y

−Λ

σ

(1−γ)(γ(1− η)+(1−α)(φ− η))

αγ(1−φ)
.

Replacing Λ by (18), and after some manipulations, the sign of Σ1 is given by the sign of:

1 + α2 − β
1− η

η
+

γ(1− φ)

(1− α)(φ− η)
.

Under condition (15), the expression above and hence Σ1 are positive.

Similarly, after some simplifications, the sign of Σ2 coincides with the sign of:

α2[(η − φ)] + (1− η)[αγ − (1− γ)(1− α)(1− η)].

Therefore, a sufficient condition for Σ2 ≤ 0 is αγ − (1 − γ)(1 − α)(1 − η) ≤ 0. And this inequality

holds under condition (15), assuming additionally that α > γ.

14



Notes

1All variables depend on the time argument, which is omitted when no confusion can arise.

2For the micro foundations see Cabo et al. (2013).

3Here, and henceforth, gx denotes the growth rate of variable x.

4Evidence in favor of a R&D productivity increasing nearly proportionally with the stock of ideas already discovered

in a country-level can be found in Porter and Stern (2000), who estimate the shape of the ideas production function

by using a panel data set of patents. They also find, nonetheless, that the stock of patents has a quite modest effect

on total factor productivity.

5Under Condition 1 the upper bound for σ is greater than one, and Condition 2 is not excessively restrictive. In

Groth (2007) this inequality is reversed, although due to the DRS assumption the lower bound for σ is lower than

one.

6The unique steady-state equilibrium satisfies the transversality conditions, and functions are concave.

7Sufficient condition α > γ agrees with the empirical data which considers α to be several times γ (see Groth, 2007

and references therein).

8A similar analysis can be done starting from any other initial situation of unbalanced growth.

9Here fi denotes the i-th file.
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Figure 1: Contour lines of the linearized stable manifold for c (left), and lY (right)
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